JP2004187398A - バッテリの電池制御装置 - Google Patents

バッテリの電池制御装置 Download PDF

Info

Publication number
JP2004187398A
JP2004187398A JP2002351161A JP2002351161A JP2004187398A JP 2004187398 A JP2004187398 A JP 2004187398A JP 2002351161 A JP2002351161 A JP 2002351161A JP 2002351161 A JP2002351161 A JP 2002351161A JP 2004187398 A JP2004187398 A JP 2004187398A
Authority
JP
Japan
Prior art keywords
voltage
battery
cell
value
charging power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351161A
Other languages
English (en)
Inventor
Susumu Komiyama
晋 小宮山
Takezo Yamaguchi
武蔵 山口
Hiroshi Iwano
岩野  浩
Hideaki Watanabe
英明 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002351161A priority Critical patent/JP2004187398A/ja
Publication of JP2004187398A publication Critical patent/JP2004187398A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】充電電力の制限を正確に行うことができるバッテリの電池制御装置を提供する。
【解決手段】複数の電池セル19nを備えたバッテリ6の電池制御装置において、各電池セル19nに並列に接続され、各電池セル19nの電圧Vnに基づいて各電池セル19nの充電電流をバイパスさせるバイパス回路20nを備える。また、バイパス回路20nを流れるバイパス電流に応じて充電電力の制限する制限手段と、を備える。例えば、最大バイパス電流値Imaxやバイパス電流総和Iが大きければ、制限値を増大することにより適切な充電電力制限を行う。
【選択図】 図2

Description

【0001】
【産業上の利用分野】
本発明は、バッテリの充電制御装置および放電制御装置に関する。特に、バッテリの過充電および過放電を防止するための制御に関する。
【0002】
【従来の技術】
従来の電池制御装置として、以下のようなものが知られている。
【0003】
電池の各電池ブロックの電圧値を、それぞれに備えた電圧センサを用いて検出する。判定部では、電池ブロックを比較的温度の近いもの同士を集めてグループ分けし、各グループ内におけるブロック間の最大電圧差を算出する。そして、各グループの最大電圧差の中の最大値MAX(ΔVn)を取り出し、これを第1の閾値と比較する。第1の閾値以上であった場合には、電池の放電量を制限する。さらに、MAX(ΔVn)が第2の閾値以上となった場合には、電池の放電を停止する(例えば、特許文献1、参照。)。
【0004】
【特許文献1】
特開平11−178225号公報
【0005】
【発明が解決しようとしている問題点】
しかしながら、上記のような電池制御装置においては、セル電圧の立ち上がりが速い場合と遅い場合で同じように電力を制限するだけでは、立ち上がりの速い場合には制限が間に合わずに電力が過剰に流れたり、逆に遅い場合には制限しすぎたりするという問題が生じる。制限が間に合わず、第2の閾値まで電圧が到達してしまうと電力の流れが急に停止されて、運転性や動力性能に大きな悪影響を与えてしまう。
【0006】
そこで、本発明は上記の問題を鑑みて、充電電力の制限を適切に行うことができるバッテリの電池制御装置を提供することを目的とする。
【0007】
【問題点を解決するための手段】
本発明は、外部から電力が充電される複数の電池セルを備えたバッテリの電池制御装置において、前記各電池セルに並列に接続され、前記各電池セルの電圧に基づいて前記各電池セルの充電電流をバイパスさせるバイパス手段を備える。さらに、前記バイパス手段を流れるバイパス電流に応じて充電される電力を制限する制限手段を備える。
【0008】
【作用及び効果】
各電池セルに並列に接続され、各電池セルの電圧に基づいて各電池セルの充電電流をバイパスさせるバイパス手段を備えることで、電池セルの過充電を抑制することができる。また、バイパス手段を流れるバイパス電流値に応じて充電される電力を制限する制限手段を備えることで、過充電電力を正確に把握することができるので、適切な充電電力の制限を行うことができる。
【0009】
【発明の実施の形態】
第1の実施形態に用いる電池制御装置を搭載するシリーズハイブリット車輌の概略構成を図1に示す。なお、この電池制御装置は、シリーズ型に限らず、パラレル型、遊星歯車装置等の歯車式の合成分配装置を有するものなど、様々のハイブリッド車輌に適用することができる。
【0010】
パワートレインは、エンジン1と、エンジン1に直結されたエンジン1の動力を電力に変換する発電モータ2と、発電モータ2で生成された電力またはハイブリット車輌の走行により生じる電力を蓄電するバッテリ6を備える。バッテリ6は複数の電池セル19n(図2参照)を直列に接続することにより構成する。ここでは、電池セル19として一つの単電池を備えた電池セルを用いるが、電池数が多い場合等には、複数の単電池を組み合わせたものを電池セル19としてもよい。さらに、バッテリ6に蓄えられた電力を用いて駆動される駆動モータ3を備え、駆動モータ3のトルクをファイナルギア4を介してタイヤ5に伝達することにより走行する。
【0011】
また、このような装置の制御系として、全体の制御を行う統合コントローラ9と、エンジンコントローラ7、発電機コントローラ8、バッテリコントローラ10、駆動モータコントローラ11を備える。統合コントローラ9には、アクセルペダル12の踏み込み位置(APS)を検出するアクセル開度センサと、車速を検出する車速センサからの信号、さらにバッテリコントローラ10からバッテリ6の電池状態の情報が入力される。エンジンコントローラ7では、統合コントローラ9で求めたエンジントルク指令値Tsに基づいてスロットル開度を制御して、エンジントルクを制御する。また、発電機コントローラ8では、エンジン1および発電モータ2の回転速度が統合コントローラ9で求めた回転速度指令値Nsに従うように、発電モータ2の回転速度制御を行う。回転速度制御とは、指令値と実回転速度との偏差に応じたトルク指令値を決定し、トルクがその指令値となるように行う発電モータ2のベクトル制御である。このとき、エンジン1からトルクを取り出せる場合には発電モータ2で発電が行われ、エンジン1に燃料が供給されていない状態であれば発電モータ2でモータリングを行って電力を消費する。また、駆動モータコントローラ11は、統合コントローラ9で求めたモータトルク指令値Tsbに基づいて駆動モータ3をベクトル制御する。
【0012】
バッテリコントローラ10では、バッテリ6の電圧、電流、温度を電圧センサ、電流センサ、温度センサにより検出し、バイパス電流値In、SOC、最大充放電電力Pinmax、Poutmaxを統合コントローラ9に送る。ここで、バイパス電流値Inは、図2に示すようなバッテリ6を構成する電池セル19nのバイパス回路20nを流れる電流値である。図2には、バッテリ6の一部、第1セル19A、第1セル19B、第3セル19Cの三つのセルを示す。ただし、本実施形態の総セル数はnセルとして、電池セル19n(n=1、2、3・・・A、B、C・・・、n)、バイパス回路20n(n=1、2、3・・・A、B、C・・・、n)によりバッテリ6を構成する。バイパス回路20nには電圧センサ21nを備え、バイパス回路20nを流れるバイパス電流値Inを検出する。
【0013】
電池セル19n毎に備えたバイパス回路20nは、セル電圧Vnのバラツキを抑制するものである。ここでは各電池セル19nに並行に、内部抵抗Rとツェナ−ダイオードZDnを備えたバイパス回路20nを構成する。ある電池セル19Bのセル電圧Vnが逆方向電圧Vrを超えた場合には、バイパス回路20Bに電流が流れる。このように、充電が継続すると過剰電流がバイパス回路20nを通って比較的低い電圧の電池セル19nのみに給電されるので、電池セル19nの電圧が逆電圧Vr近傍付近にそろい、各電池セル19nの電圧のバラツキを抑制することができる。
【0014】
例えば、図2は各電池セル19nの充電が進行した場合を示している。各電池セル19nに電流Iが給電されており、各セル電圧Vnが逆電圧Vr近傍にある。ここで、電池セル19Bのセル電圧VbがVr+ΔV(ΔV>0)となった場合には、バイパス回路20Bにバイパス電流I2Bが流れる。ここで、ΔV=I2B×Rである。そのため、バイパス電流値In(ここではI2B)を検出することで、電池セル19Bのセル電圧Vbが逆電圧Vrをどの程度超えているのかを検出することができる。反対に、バイパス回路20nの抵抗R(n=A、B、C)にかかる電圧を検出することでバイパス電流値Inを検出することができる。電流I2Bは、バイパス回路20Bを介して隣接する電池セル19Cに供給され、電池セル19Cが逆電圧Vrに達していない場合には電池セル19Cに蓄電され、逆電圧Vrに達している場合には図示しない隣接するセルに供給される。
【0015】
なお、この逆方向電圧Vrは充電電力の制限を開始する電圧値とする。つまり、バイパス回路20nにバイパス電流が流れているのを検知したら、充電電力の制限を開始する。
【0016】
次に、統合コントローラ9における、上述したような各指令値の演算方法を図3のブロック図を用いて説明する。なお、本制御は、一定時間(例えば10msec)毎に繰り返し演算されるものとする。
【0017】
アクセル開度センサにより検出されたAPS信号と、車速センサにより検出した車速信号とから、車軸駆動力MAPを参照して目標車軸駆動力Tsdを求める。ここで、車軸駆動力MAPは、図3に示すようにAPSと車速に対する目標車軸駆動力Tsdを、予め実験等により設定したマップである。目標車軸駆動力Tsdを、ファイナルギア4のファイナルギア比Gfで除算して、駆動モータ軸でのモータトルク指令値Tsbを求める。モータトルク指令値Tsbは、統合コントローラ9から駆動モータコントローラ11に送られ、その値に基づき駆動モータ3のトルクのベクトル制御が行われる。
【0018】
次に、目標車軸駆動力Tsdに車速信号から求まる車軸回転速度を乗じて目標駆動パワーPsdを求める。駆動モータ3でモータトルク指令値Tsbを実現する際の損失を推定し、それを目標駆動パワーPsdに加算して駆動モータ効率補正を行ったものを目標駆動電力Pseとする。
【0019】
一方、SOC、最大充放電電力Pinmax、Poutmaxから、後述するようにバッテリ6の充放電電力指令値tP_batを求める。目標駆動電力Pseと充放電電力指令値tP_batを足し合わせて目標発電電力Pgenを求める。この目標発電電力Pgenを生じる際に、発電モータ2で生じる損失を推定し、それを目標発電電力Pgenに加えて発電モータ効率補正を行ったものを目標エンジン出力Penとする。目標エンジン出力Penを実エンジン回転速度で除算して、エンジントルク指令値Tsを求める。エンジントルク指令値Tsをエンジンコントローラ7に送り、それに基づきエンジン1のスロットル開度を制御してトルクを制御する。
【0020】
また、目標エンジン出力Penを最良燃料比で出力できるエンジン1の回転速度を演算し、それを発電モータ2の回転速度に変換したものを回転速度指令値Nsとして発電機コントローラ8に送る。発電機コントローラ8では、エンジン1と発電モータ2の回転数がその値と等しくなるように発電モータ2の回転速度制御を行う。
【0021】
次に、バッテリ6の充放電電力指令値tP_batを求める方法を図4の制御ブロック図を用いて説明する。
【0022】
バッテリ6の蓄電状態(SOC)と目標蓄電状態(目標SOC)との差から、バッテリ5の蓄電状態を最適にするための目標充放電電力tPを求める。このとき、目標充放電電力tPは、充電電力であればプラス、放電電力であればマイナスで表される。
【0023】
まず充電電力指令値tP_batの求め方を説明する。
【0024】
目標充放電電力tPと0を比較して大きい方を目標充電電力tPinとする。このとき、tPが充電電力を示す場合にはtPin=tP、放電電力である場合にはtPin=0となる。次に、充電電力補正演算により求めた充電電力補正値ΔPinlmtと最大充電電力Pinmaxとから求めた補正最大充電電力Pinlmtと、目標充電電力tPinと、を比較して、小さい方を充電電力指令値tP_batとする。なお、ここで充電電力補正値ΔPinlmtは、充電電力の制限値に相当する。
【0025】
次に、充電電力指令値tP_batと同時に求められる放電電力指令値tP_batの求め方を説明する。
【0026】
目標充放電電力tPと−1との積と0とを比較して、大きい方を目標放電電力tPoutとする。ここで、tPが充電電力を示す場合にはtP>0であり−tPは負の値となるので、tPout=0となる。一方、tPが放電電力を示す場合にはtP<0であり−tPは正の値となるので、tPout=−tPとなる。次に、最大放電電力Poutmaxとこの目標放電電力tPoutを比較して、小さい方を選択し、これに−1を乗じたものを放電電力指令値tP_batとする。
【0027】
上述したように充電電力指令値tP_batおよび放電電力指令値tP_batを設定すると、充電目標充放電電力Ptが充電の場合にはtP_bat=MIN(tP、Pinlmt)、tP_bat=0となる。一方、放電の場合にはtP_bat=0、tP_bat=MIN(tP、Poutmax)となる。そこで、充電電力指令値tP_batから放電電力指令値tP_batを引くことで、充電電力指令値tP_batを求めることができる。ただし、充放電電力指令値tP_batは充電電力指令値を示す場合には正の値、放電電力指令値を示す場合には負の値となる。
【0028】
次に、上述した充放電電力指令値tP_bat演算の充電電力指令値tP_bat演算について詳しく説明する。充電電力指令値tP_batの演算における制御ブロックを図5に示す。
【0029】
図2に示したような各バイパス回路20nを流れるバイパス電流値Inを電流センサ21nを用いて検出し、その結果を統合コントローラ9に入力する。バイパス電流値Inのうち最も大きな値である最大バイパス電流値Imaxを求める。この最大バイパス電流値Imaxは、セル電圧Vnが逆電圧Vrより高くなった場合の電圧値ΔV(=Vn−Vr)のうち最大の電圧値ΔVmaxに対応している。そこで、この最大バイパス電流値Imaxを比例微分積分(PID)制御により処理することにより、充電電力補正値ΔPinlmtを演算する。また、バッテリ6に充電することのできる最大値である最大充電電力Pinmaxを算出する。この最大充電電力Pinmaxから充電電力補正値ΔPinlmtを引くことにより補正最大充電電力Pinlmtを算出する。
【0030】
ここで、補正最大充電電力Pinlmtが充電を示す場合には正の値となるので、下限制限を行う。つまり、MAX(Pinlmt、0)を行うことにより、補正最大充電電力Pinlmtが充電電力を示している場合のみを選択する。
【0031】
さらに、図4において説明したように、SOCと目標SOCとから目標充放電電力tPを求め、さらに下限制限を行うことにより求めた目標充電電力tPinと、補正最大充電電力Pinlmtを比較して上限制限を行う。このように求めた値を充電電力指令値tP_bat=MIN(Pinlmt、tPin)とする。これにより、各電池セル19nのバイパス回路20nにかかる電圧ΔVに応じて補正した補正最大充電電力Pinlmtよりも、目標充電電力tPinが大きくなった場合には、充電電力指令値tP_batを補正最大充電電力Pinlmtまで制限して、バッテリ6で過充電が生じるのを抑制する。
【0032】
次に、上述したような充電電力指令値tP_batを求めるフローを図6のフローチャートに示す。
【0033】
ステップS1において、バッテリ6の目標充電電力tPinを、SOCと目標SOCとから求めた目標充放電電力tPと0との最小値を選択することにより求める。ステップS2において、各バイパス回路20nを流れるバイパス電流値Inの値を読み込む。次にステップS3において、バイパス電流値Inの最大値を選択して最大バイパス電流値Imaxを選択する。ステップS4では、バッテリ6の充電電力補正値ΔPinlmtを、最大バイパス電流値Imaxを用いたPID制御により求める。
【0034】
【式1】
Figure 2004187398
【0035】
なお、この充電電力補正値ΔPinlmtは制限値に相当し、最大バイパス電流値Imaxに応じて設定される。次にステップS5では、バッテリ6の最大充電電力Pinmaxを演算する。ステップS6において、充電電力補正値ΔPinlmtを用いてバッテリ6の補正最大充電電力Pinlmtを演算する。
【0036】
【式2】
Figure 2004187398
【0037】
次にステップS7において、式(3)に示すように補正最大充電電力Pinlmtと目的充電電力tPinの大きさを比較して小さい方を充電電力指令値tP_batと設定する。
【0038】
【式3】
Figure 2004187398
【0039】
充電電力指令値tP_batと、前述したように目標充放電電力tPと最大充電電力Poutmaxとから求めた放電電力指令値tP_batと、から、充放電電力指令値tP_batを求めて、エンジントルク指令値Ts、発電モータ回転速度指令値Nsを演算する。
【0040】
このように充電電力を制限することで、図7に示すタイムチャートのような充電電力指令値tP_batを得ることができる。充電電力が増大するに伴ってセル電圧Vnが増大した場合、ここではセル電圧VnがVrを超えた場合に、充電電力の制限を開始する。セル電圧VnがVrを超えたかどうかは、バイパス回路20nに流れるバイパス電流によって判断する。また、セル電圧VnがVrをどの程度超えたかを、バイパス回路20nを流れる電流のうち最大バイパス電流値Imaxにより判断する。最大バイパス電流値Imaxに応じて充電電力の上限値、つまり最大充電電力Pinmaxを補正することで、充電電力を抑えて全ての電池セル19が過充電となるのを防ぐことができる。
【0041】
次に、本実施形態の効果について説明する。
【0042】
外部から電力が充電される複数の電池セル19nを備えたバッテリ6の電池制御装置において、各電池セル19nに並列に接続され、各電池セル19nの電圧Vnに基づいて各電池セル19nの充電電流をバイパスさせるバイパス回路20nを備える。また、バイパス回路20nを流れるバイパス電流に応じて充電される電力を制限する制限手段を備える。ここでは、統合コントローラ9におけるステップS4でバイパス電流におうじて制限値を設定し、ステップS6において最大充電電力Pinmaxの制限を行う。このように、バイパス回路20nを備えることで、各電池セル19nに過充電が生じるのを抑制することができる。また、バイパス回路20nを流れるバイパス電流に応じて充電電力の制限を行うことで、過充電電力が正確に把握できるので、正確な充電電力の制限を行うことができる。逆方向電圧Vrを超えてから過充電でバッテリ6に劣化が生じるまでのセル電圧の立ち上がりが早い場合には、バイパス電流値Inが大きくなる。反対に、逆方向電圧Vrを超えてから過充電でバッテリ6に劣化が生じるまでのセル電圧の立ち上がりが遅い場合には、バイパス電流値Inが小さくなる。これにより、バイパス電流値Inに応じて制限を制御することで、過充電や過度の制限を生じることを低減することができる。
【0043】
制限手段は、バイパス電流値Inのうち最も大きな電流値Imaxに応じて充電電力を制限する。これにより、各電池セル19n間の電圧にバラツキがあっても、最も過充電を生じ易い電池セル19nに応じて充電電力の制限を制御できるので、より確実に過充電を防ぐことができる。
【0044】
なお、ここではバイパス電流値Inを求めるために電流センサ21nを用いているが、この限りではない。例えば、バイパス回路20nに備えた抵抗R の電圧を検出する電圧センサを用いてもよい。
【0045】
次に、第2の実施形態について説明する。以下、第1の実施形態と異なる部分のみを説明する。
【0046】
ここで用いるバッテリコントローラ10の回路構成を図8に示す。バッテリコントローラ10を電池セル19nの電圧のバラツキを抑制するバイパス回路20n、各電池セル19nの過充電を検出する過充電検出回路14n、各電池セル19nの過放電を検出する過放電検出回路15nから構成する。各バイパス回路20nには電池セル19nと並列して内部抵抗Rと、ツェナ−ダイオードと、ダイオードと、トランジスタとを備える。また、全電流バイパス回路20を流れるバイパス電流値Inの総和に対応して電流が流れる抵抗Rbを備える。ここでは、この抵抗Rbにかかる電圧Vaを検出することによりバイパス電流値Inの総和を検出可能とする。つまり、ここではバッテリコントローラ10の一部により電圧を検出し、ひいてはバイパス電流の検出を行う。
【0047】
過充電検出手段14n、過放電検出手段15nの検出結果は、各電池セル19n毎のセル出力部16nに出力される。そして、各セル出力部16nから出力された信号はさらに出力部16に入力され、ここからいずれかの電池セル19nに過充放電が生じる可能性があるかどうかを表す信号を出力する。この出力結果は充放電制御回路18に入力され、ここでバッテリ6の充放電電力が制御される。
【0048】
次に、充電電力制限時の制御方法を説明する。ここでは、図9に示すように、第1の実施形態において最大バイパス電流値Imaxを用いて充電電力補正値ΔPinlmtを求めたのに対して、ここではバイパス電流総和I(=Inの総和)により求める。
【0049】
バイパス電流総和Iを、PID制御装置に通して、充電電力補正値ΔPinlmtを算出する。最大充電電力Pinmaxから充電電力補正値ΔPinlmtを減算する。次に、補正を加えた補正最大充電電力Pinlmtと0を比較して大きい方を選択することにより下限制限を行う。ここで、バッテリ6からの放電が行われる場合には、最大充電電力Pinmaxは負の値となる。そのため、下限制限により放電が行われる場合にはPinlmt=0、充電が行われている場合にはPinlmt=Pinmax−ΔPinlmtとなる。
【0050】
次に、このように求めた補正最大充電電力Pinlmtと、バッテリ6の蓄電状態から決定する目標充電電力tPinと、を比較して小さい方を選択して、充電電力指令値tP_batとする。
【0051】
図10に、本実施形態における充電電力指令値を算出するためのフローチャートを示す。
【0052】
ステップS11において、バッテリ6の目標充電電力tPinを演算する。次にステップS12において、バイパス電流総和I=Inの総和を求める。ここでは抵抗Rbにかかる電圧に対するバイパス電流総和Iを予め設定しておき、抵抗Rbにかかる電圧を検出することによりバイパス電流総和Iを検出する。または、第1の実施形態と同様に、各バイパス回路20nに流れるバイパス電流値Inを読み込み、それらを加算することによりバイパス電流総和I=In総和を求めることもできる。
【0053】
次にステップS13において、バッテリ6の充電電力補正値ΔPinlmtをPID制御により求める。
【0054】
【式4】
Figure 2004187398
【0055】
ステップS14において、最大充電電力Pinmaxを求めて、ステップS15において補正最大充電Pinlmtを求め、ステップS16でそれらのうち小さい方を選択することにより充電電力指令値tP_batを求める。
【0056】
次に、本実施形態の効果を説明する。ここでは、第1の実施形態と異なる効果として以下のような効果を得ることができる。
【0057】
制限手段は、バイパス回路20nによりバイパスさせたバイパス電流値Inの総和Iに応じて充電電力を制御する。これにより、電池セル19n毎のバイパス電流値Inを検出しなくても適切な充電電力の制限を行うことができる。
【0058】
次に、第3の実施形態について説明する。以下、第2の実施形態と異なる部分を中心に説明する。
【0059】
第1電圧Vと第2電圧Vを設定する。セル電圧Vnが第1電圧Vに達したら第1充電制限を開始する。セル電圧Vnが第2電圧Vに達したら、第1充電制限より制限量の時間変化が大きい第2充電制限を開始する。なお、V>Vとする。また、第1電圧Vを、第1、2実施形態における逆方向電圧Vrに相当する電圧とする。つまり、セル電圧Vnが第1電圧Vに達したら充電制限を開始するとともに、バイパス回路20nにバイパス電流を流通させる。ここでは、図11に示すようなバイパス回路20nを備え、セル電圧Vnが第1電圧Vに達したと判断されたらスイッチ信号SwをONにすることによりバイパス回路20nを流通可能な状態にする。
【0060】
セル電圧Vnが第1電圧V、または第2電圧Vに達しているかどうかの判断を、過充電検出回路14nにより行う。ここでは、過充電検出回路14nを図11に示すように構成する。スイッチ信号SwがOFFの場合には、各電池セル19nのセル電圧Vnと第1電圧Vを比較する。セル電圧Vnが第1電圧Vより高いと判断されたら、スイッチ信号SwをONにすることにより、セル電圧Vnと第2電圧Vとの比較を開始する。また、スイッチ信号SwがONとなったらバイパス回路20nもONとなり、バイパス電流が流れる。
【0061】
また、過放電検出回路15nにおいては、セル電圧Vnと第3電圧V、第4電圧Vの比較を行う。ここでは、V>Vとして、セル電圧Vnが第3電圧Vより低いと判断されたら第1放電制限を行い、第4電圧Vより低いと判断されたらさらに制限値を大きくした第2放電制限を行うことにより過放電状態となるのを防ぐ。バッテリ6が過放電の傾向があると判断された場合に、スイッチ信号SwがOFFの際には第3電圧Vとセル電圧Vnを比較する。スイッチ信号SwがONの際には第4電圧Vとセル電圧Vnを比較する。セル電圧Vnが第3電圧V3または第4電圧V以下であると判断された場合にはセル出力部16nからの信号Svを1とする。この信号Sv=1が出力されたら、放電制限を開始する。
【0062】
なお、この回路においてセル出力部16nからの信号Svが1の場合には、セル電圧Vnが比較電圧(VまたはV)より大きいと判断する。ここでは過充電検出回路14nと過放電検出回路15nとの出力部分がセル出力部16nで共通であるが、電池セル19nを直列に接続しているので、過放電と過充電との両方が生じる可能性は極めて低いと考えることができる。
【0063】
次に、本実施形態における充電電力制限の制御方法を図12のフローチャートを用いて説明する。ここでは統合コントローラ9に、第1タイマーおよび第2タイマーを備える。第1タイマーはV≦Vn<Vであると判断された時間T、第2タイマーはV≦Vnとであると判断された時間Tの計測を行う。
【0064】
ステップS21において、ステップS11と同様に目標充電電力tPinを演算する。ステップS22において、最大充電電力Pinmaxを演算する。ステップS23において、ステップS12と同様にバイパス電流総和Iを読み込む。次に、ステップS24において、バイパス電流総和Iに応じて設定される基本充電電力補正値ΔPinlmt0を求める。ここではバイパス電流総和Iを用いた式(5)に示すPID制御により求める。
【0065】
【式5】
Figure 2004187398
【0066】
次に、ステップS25において、各電池セル19nのセル電圧Vnを検出する。ステップS26において、セル電圧Vnが第1電圧V以上であるかどうかを判断する。図11の回路においては、スイッチ信号SwをOFFとして、セル出力部16nからの信号Svが1であるかどうかを検出することによりステップS25、S26を実現できる。セル電圧Vnが第1電圧Vに満たなかった場合(Sv=0の場合)には、過充電が生じる可能性がなく、充電電力を制限する必要はないと判断してステップS27に進む。ステップS27では、第1タイマーをリセット(T(s)=0)に設定する。ステップS28において、充電電力補正値ΔPinlmt=0に設定する。つまり、充電電力の制限値を0に設定する。
【0067】
一方、ステップS26において、Vn≧Vであると判断されたら、ステップS29において、セル電圧Vnが第2電圧Vに達しているかどうかを判断する。図11の回路においては、スイッチ信号SwをONとして、セル出力部16nからの信号Svが1であるかどうかを検出することによりステップS26、S27を実現できる。Vn<Vの場合、つまり、V≦Vn<Vの場合には、ステップS33に進み、第1充電制御を行う。ステップS33において、第2タイマーの計測をリセット(T(s)=0)する。ステップS34において、第1タイマーのカウントを行う。ここで、本制御の周期をtとするとT(s)=T(s−1)+tとなる。ここで、sは本制御の循環回数とする。
【0068】
次に、ステップS35において、暫定充電電力補正値ΔPinlmt1を求める。
【0069】
【式6】
Figure 2004187398
【0070】
ここで、関数fは、電圧セルVnが第1電圧Vに達してからの経過時間T(s)と、バイパス電流総和Iを変数とする関数である。経過時間T(s)が大きくなるにつれてΔPinlmt1も大きく設定する。また、バイパス電流総和Iが大きいほどΔPinlmt1も大きく設定する。次に、ステップS36で充電電力補正値ΔPinlmtに暫定充電電力補正値ΔPinlmt1を代入する。
【0071】
一方、ステップS29において、Vn≧Vであると判断されたら、第2充電制限を行う。ステップS30において、第2タイマーをカウントする(T(s)=T(s−1)+t)。なお、sは本制御フローの循環回数、tは本制御を行う周期とする。ステップS31において、補正値ゲインGin(=g(T(s)))を求める。ここで、T(s)は、セル電圧Vnが第1電圧Vに達してから第2電圧Vに達するまでの時間である。ここでは、ステップS34において、最終的にカウントされたT(s)の値となる。また、関数gをT(s)が小さいほど大きくなる関数とする。つまり、第1充電制限から第2充電制限へ移行するまでの時間T(s)が短いほどゲインGinを大きく設定する。これは、後述するようにセル電圧Vnの立ち上がりが短い場合には制限を大きく、立ち上がりがゆっくりしている場合には制限を抑える役割をする。なお、T(s)に関わらず、Gin>1となるように関数gを設定する。
【0072】
次に、ステップS32において、第2充電制限時の充電電力補正値ΔPinlmtを算出する。
【0073】
【式7】
Figure 2004187398
【0074】
ここで、ΔPinlmt1は、第1タイマーを最終的にカウントした時、つまり、T=T(s)である時の暫定充電電力補正値ΔPinlmt1となる。これは第2充電制限を開始する直前の充電電力補正値ΔPinlmtに等しくなる。また、fは、第2充電制限を行っている経過時間T(s)が大きくなるに従って大きくなる関数である。また、fは、ΔPinlmt0が大きいほど、ひいてはバイパス電流総和Iが大きいほどΔPinlmtが大きくなるような関数である。
【0075】
なお、f(T(s))>f(T(s))とする。関数fのTに対する変化率よりも、関数fのTに対する変化率の方が大きくなるように関数f、fを設定する。
【0076】
また、f(0、ΔPinlmt0)=0とする。これにより、T(s)=0の場合、つまり第2充電制御の制限初期値は、ΔPinlmt=Gin×ΔPinlmt1となる。このときGin>1に設定するので、第1充電制限から第2充電制御に変更する際に、制限値に相当する充電電力補正値ΔPinlmtの値が増大する。また、第1充電制限を行った時間が長いほどGinが大きく設定されるので、第2充電制限を開始する際の充電電力補正値ΔPinlmtが大きくなる。
【0077】
このように、充電電力の制限を行わない場合にはステップS28、第1充電電力補正を行う場合にはステップS36、第2充電電力補正を行う場合にはステップS32において充電電力補正値ΔPinlmtを設定したらステップS37に進む。ステップS37において、最大充電電力補正を行う。
【0078】
【式8】
Figure 2004187398
【0079】
これにより、最大充電電力Pinmaxを、バイパス電流総和Iや経過時間T、Tに応じて設定される充電電力補正値ΔPinlmtに応じて制限することができる。最後に、ステップS38において、ステップS16と同様に、目標充電電力tPinとPinlmtの小さい方を選択して、充電電力指令値tP_batを設定する。
【0080】
このように制御することで、図13に示すように充電電力補正値ΔPinlmtを設定することができる。第2充電制限時の制限値に相当する充電電力補正値ΔPinlmtの時間変化率、ここでは増加率は、第1充電制限時より大きくなる。図13においては、傾きが大となる。また、第2充電制限時の初期の制限値は、第1充電制限時の最終の制限値より大きく設定される。
【0081】
次に、本制御の効果を説明する。ここでは、第2の実施形態に加えて以下のような効果を得ることができる。
【0082】
セル電圧Vnの立ち上がりが短い場合、つまり、T(s)が小さい場合には、ゲインGinの値が大きくなり、ひいては第2充電制限値に相当するΔPinlmtが大きくなるので、素早く充電電力を制限することができる。これにより、過充電が生じてバッテリ6が劣化するのを防ぐことができる。一方、セル電圧Vnの立ち上がりがゆっくりしている場合、つまりT(s)が大きい場合には、ゲインGinの値が小さくなるので、第2充電制限値に相当するΔPinlmtが小さくなる。これにより、充電電力の制限が抑えられるので、過度の制限により充電性能が低下するのを防ぐことができる。
【0083】
制限手段は、充電電力を制限している時間に応じても制限値を変化させる。ここでは、例えば、第1充電制限を行う際には、第1充電制限を開始してからの経過時間T(s)に応じて制限値を変化させる。第2充電制限を行う際には、第2充電制限を開始してからの経過時間T(s)に応じて制限値を変化させる。このように時間変化に応じて制限値を変化させることで、急激な制限値の変化を避けることができるので、安定した運転性を維持することができる。特に、制限時間が経過するにつれて制限値を増大することで、過充電が生じやすい状態になるに従って制限される充電電力が増大するので、過充電が生じるのをさらに抑制することができる。
【0084】
電池セル19nのセル電圧Vnが第1電圧Vに達しているか否か、および、第1電圧Vより高い第2電圧Vに達しているか否かを判断する過充電検出回路14nを備える。バイパス回路20nは、セル電圧Vnが第1電圧Vを超えたら充電電流をバイパスさせる手段であり、制限手段では、セル電圧Vnが第1電圧Vに達してから第2電圧Vに達するまでの充電電力制限値の時間変化率よりも、第2電圧Vに達した後の充電電力制限値の時間変化率を大きくする。これにより、電池セル19nが満充電近傍となったところの充電制限値の時間変化率を大きく設定するので、過充電によりバッテリ6が劣化するのをさらに確実に防ぐことができる。反対に、満充電近傍ではない場合には制限値の変化率を抑えることで、過度の制限を抑制して充電性能を維持することができる。
【0085】
さらに、第1充電制限が開始してから第2充電制限が開始するまでの時間T(s)に応じて、第2充電制限の制限初期値を設定する。T(s)が小さいほど制限初期値を大きく設定する。ここではT(s)が小さいほど第1充電制限終了制限値に対する第2充電制限の制限初期値の増加率(ゲインGin)を大きく設定する。これにより、セル電圧Vnの立ち上がりが早い場合には、速やかに制限値を増大することで過充電となるのを防ぐことができる。
【0086】
次に、第4の実施形態について説明する。ここでは、第3の実施形態と同様の構成とする。また、充電電力制限の制御を図14に示すフローチャートを用いて説明する。以下、第3の実施形態と異なる部分のみを説明する。
【0087】
Vn<Vの場合、つまり充電制限を行わない場合や、V≦Vn<Vの場合、つまり第1充電制限を行う場合には、第3の実施形態と同様の制御を行う。一方、Vn≧Vの場合、つまり第2充電制限を行う場合には、ステップS52において式(9)を用いて充電電力補正値ΔPinlmtを演算する。なお、ステップS52は、第3実施形態におけるステップS32に相当する。
【0088】
【式9】
Figure 2004187398
【0089】
ここで、ΔPinlmt1は、第1充電制限の終了時、つまり、T=T(s)の時の充電電力補正値ΔPinlmtである。これは、T(s)が大きいほど大きくなる。また、ゲインGinは、T(s)の値が小さいほど大きく設定した値である。これは、第2充電制限時の制限率の変化に関係する値であり、ゲインGinが大きいほど、制限率の増加率が大きくなる。さらにfは、第2充電制限を開始してからの経過時間T(s)と、バイパス電流総和Iaに応じて設定される基本充電電力補正値ΔPinlmt0を変数とする関数である。ここでは、fを経過時間T(s)が大きくなりほど大きくなる関数とする。また、fを基本充電電力補正値ΔPinlmt0、ひいては、バイパス電流総和Iが大きいほど大きくなる関数とする。
【0090】
さらに、f(0、ΔPinlmt0)=0とする。これにより、図15に示すように、第1充電制限の終了時の制限値である補正値と、第2充電制限の制限初期値である補正値は、等しくΔPinlmt=f(T(s)、ΔPinlmt0)となる。
【0091】
このように、充電電力補正値ΔPinlmtを設定したら、第3の実施形態と同様に最大充電電力補正を行って、充電電力指令値演算tP_batを算出する。
【0092】
このように制御することで、充電電力補正値ΔPinlmtを図15に示すように設定することができる。第1充電制限時には、時間経過に伴って制限量に相当する充電電力補正値ΔPinlmtが増大する。セル電圧Vnが第2電圧Vに達したら、第2充電制限を開始する。このときの初期の制限値は第1充電制限の終了時の制限値に等しく設定する。第2充電制限の制限値の増加率は、第1充電制限を行った時間T(s)に応じて設定される。セル電圧Vnの立ち上がりが急激な場合には増加率を大きく、立ち上がりがゆっくりの場合には増加率を小さく設定する。また、この第2充電制限の制限量の増加率は、バイパス電流総和Iにも影響される。ここでは、バイパス電流総和Iが大きいほど関数fが大きくなるように関数fを設定する。
【0093】
次に、本実施形態の効果を説明する。以下、第3の実施形態と異なる効果のみを説明する。
【0094】
第3の実施形態においては、ゲインGinを第1充電制限終了時の制限量と積算することで、第2充電制限開始時の制限量の初期値とした。これに対して、本実施形態では、ゲインGinを時間の関数の比例値とすることで、ゲインGinによって制限値の時間変化率を設定する。これにより、セル電圧Vnの第1電圧Vから第2電圧Vへの立ち上がりが急激な場合には、制限量の増加率を大きく設定することができるので、過充電を確実に防ぐことができる。一方、立ち上がりがゆっくりの場合には、制限値の増加率も小さくなるので、過度の充電電力の制限を行うことなく、効率的な充電を行うことができる。
【0095】
電池セル19nのセル電圧Vnが第1電圧Vに達しているか否か、および、第1電圧Vより高い第2の電圧Vに達しているか否かを判断する過充電検出回路20nを備える。バイパス回路20nは、セル電圧Vnが第1電圧Vを超えたら充電電流をバイパスさせる手段である。制限手段では、第2電圧Vに達した後の充電電力制限値の時間変化率を、第1電圧Vに達したと判断されてから第2電圧Vに達したと判断されるまでの時間T(s)に応じて設定する。ここでは、T(s)が小さい時、つまりセル電圧Vnの立ち上がり時間が短い場合には、第2電圧Vに達した後の充電電力制限値の時間変化率を大きく設定することで、速やかに充電電力の制限を行うことができる。
【0096】
なお、本実施形態では統合コントローラ9を制限手段として、充電電力の制限を行っているが、この限りではない。このように、本発明は、上記実施の形態に限定されるわけではなく、特許請求の範囲に記載の技術思想の範囲内で様々な変更が成し得ることは言うまでもない。
【図面の簡単な説明】
【図1】第1の実施形態に用いるハイブリット車の概略構成図である。
【図2】第1の実施形態に用いるバッテリおよびそのバイパス回路の回路図である。
【図3】第1の実施形態に用いる車輌制御を示すブロック図である。
【図4】第1の実施形態における充放電電力指令値を求めるブロック図である。
【図5】第1の実施形態における充電電力指令値を求めるブロック図である。
【図6】第1の実施形態における充電電力指令値の制御を示すフローチャートである。
【図7】第1の実施形態における充電電力制限値のタイムチャートである。
【図8】第2の実施形態におけるバッテリおよびバッテリコントローラの回路図である。
【図9】第2の実施形態における充電電力指令値を求めるブロック図である。
【図10】第2の実施形態における充電電力指令値の制御を示すフローチャートである。
【図11】第3の実施形態に用いる単セルおよび単セルに備えるバッテリコントローラの回路図である。
【図12】第3の実施形態における充電電力制限値の制御を示すフローチャートである。
【図13】第3の実施形態における充電電力制限値のタイムチャートである。
【図14】第4の実施形態における充電電力制限値の制御を示すフローチャートである。
【図15】第4の実施形態における充電電力制限値のタイムチャートである。
【符号の説明】
6 バッテリ
9 統合コントローラ(制御手段)
14 過充電検出回路(電圧判断手段)
19 電池セル
20 バイパス回路

Claims (6)

  1. 外部から電力が充電される複数の電池セルを備えたバッテリの電池制御装置において、
    前記各電池セルに並列に接続され、前記各電池セルの電圧に基づいて前記各電池セルの充電電流をバイパスさせるバイパス手段と、
    前記バイパス手段を流れるバイパス電流に応じて充電される電力を制限する制限手段と、を備えたことを特徴とするバッテリの電池制御装置。
  2. 前記制限手段は、前記バイパス電流のうち最も大きな電流値に応じて充電電力を制限する請求項1に記載のバッテリの制御装置。
  3. 前記制限手段は、前記バイパス手段によりバイパスさせたバイパス電流値の総和に応じて充電電力を制御する請求項1に記載のバッテリの制御装置。
  4. 前記制限手段は、充電電力を制限している時間に応じても制限値を変化させる請求項1に記載のバッテリの電池制御装置。
  5. 前記電池セルのセル電圧が前記第1の電圧に達しているか否か、および、前記第1の電圧より高い第2の電圧に達しているか否かを判断する電圧判断手段を備え、
    前記バイパス手段は、前記セル電圧が前記第1の電圧を超えたら充電電流をバイパスさせる手段であり、
    前記制限手段では、前記セル電圧が第1の電圧に達してから前記第2の電圧に達するまでの充電電力制限値の時間変化率よりも、前記第2の電圧に達した後の充電電力制限率の時間変化率を大きくする請求項4に記載のバッテリの電池制御装置。
  6. 前記電池セルのセル電圧が前記第1の電圧に達しているか否か、および、前記第1の電圧より高い第2の電圧に達しているか否かを判断する電圧判断手段を備え、
    前記バイパス手段は、前記セル電圧が前記第1の電圧を超えたら充電電流をバイパスさせる手段であり、
    前記制限手段では、前記第2の電圧に達した後の充電電力制限値の時間変化率を、前記第1の電圧に達したと判断されてから前記第2の電圧に達したと判断されるまでの時間に応じて設定する請求項4に記載のバッテリの電池制御装置。
JP2002351161A 2002-12-03 2002-12-03 バッテリの電池制御装置 Pending JP2004187398A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351161A JP2004187398A (ja) 2002-12-03 2002-12-03 バッテリの電池制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351161A JP2004187398A (ja) 2002-12-03 2002-12-03 バッテリの電池制御装置

Publications (1)

Publication Number Publication Date
JP2004187398A true JP2004187398A (ja) 2004-07-02

Family

ID=32753147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351161A Pending JP2004187398A (ja) 2002-12-03 2002-12-03 バッテリの電池制御装置

Country Status (1)

Country Link
JP (1) JP2004187398A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007655A1 (ja) * 2005-07-07 2007-01-18 Kabushiki Kaisha Toshiba 電池システム
WO2010143670A1 (en) * 2009-06-12 2010-12-16 Nissan Motor Co., Ltd. Charge control device and method for secondary battery module
JP2012090416A (ja) * 2010-10-19 2012-05-10 Nissan Motor Co Ltd 電動車両の制御装置
JP2012110221A (ja) * 2005-12-16 2012-06-07 Hitachi Vehicle Energy Ltd 蓄電池管理装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007007655A1 (ja) * 2005-07-07 2007-01-18 Kabushiki Kaisha Toshiba 電池システム
KR101014981B1 (ko) * 2005-07-07 2011-02-16 가부시끼가이샤 도시바 전지 모듈
US8174237B2 (en) 2005-07-07 2012-05-08 Kabushiki Kaisha Toshiba Battery module
JP2012110221A (ja) * 2005-12-16 2012-06-07 Hitachi Vehicle Energy Ltd 蓄電池管理装置
WO2010143670A1 (en) * 2009-06-12 2010-12-16 Nissan Motor Co., Ltd. Charge control device and method for secondary battery module
JP2011019387A (ja) * 2009-06-12 2011-01-27 Nissan Motor Co Ltd 組電池の監視装置
RU2502171C2 (ru) * 2009-06-12 2013-12-20 Ниссан Мотор Ко., Лтд. Устройство и способ управления зарядом модуля аккумуляторной батареи
KR101399754B1 (ko) 2009-06-12 2014-05-27 닛산 지도우샤 가부시키가이샤 2차 전지 모듈용 충전 제어 장치 및 방법
US8907632B2 (en) 2009-06-12 2014-12-09 Nissan Motor Co., Ltd. Charge control device and method for secondary battery module
JP2012090416A (ja) * 2010-10-19 2012-05-10 Nissan Motor Co Ltd 電動車両の制御装置

Similar Documents

Publication Publication Date Title
US9800086B2 (en) Electric storage device management system, electric storage device pack, and method of estimating state of charge
JP6384412B2 (ja) 電源装置
US6225784B1 (en) Battery control apparatus for battery carried by hybrid vehicle
JP5480520B2 (ja) 電池制御装置、車両、及び電池制御方法
JP3560867B2 (ja) ハイブリッド車両のバッテリ制御装置
US11021145B2 (en) Control device for hybrid vehicle
EP2528189B1 (en) Battery charging control system
US9988052B2 (en) Vehicle provided with continuously variable transmission device
JP5493407B2 (ja) 組電池の容量調整装置
JPH08322107A (ja) ハイブリッド車の制御装置
JP2001078306A (ja) ハイブリッド車両の制御装置
JP2010280250A (ja) 動力発生源制御装置
US9260106B2 (en) Method and device for controlling an internal combustion engine
JP2010140762A (ja) リチウムイオン電池の状態を判別する判別装置
JPH06178405A (ja) 電気自動車用エンジン駆動発電機の制御装置
JP2004187398A (ja) バッテリの電池制御装置
JP2004227995A (ja) ハイブリッド車両の充放電制御装置
JP2004263619A (ja) 車両用電源制御装置
JP2004023949A (ja) 組電池の充放電制御装置および充放電制御方法
JP4149682B2 (ja) ハイブリッド車用組電池状態制御方法
JP2001147260A (ja) 蓄電装置の残容量検出装置
JP5887493B2 (ja) 電源装置
JP2009290984A (ja) 車両用電池の充放電制御装置
JP2006049198A (ja) 組電池の容量調整装置
JP2004187399A (ja) 組電池の制御装置