JP2004186530A - Cleaning apparatus and cleaning method - Google Patents

Cleaning apparatus and cleaning method Download PDF

Info

Publication number
JP2004186530A
JP2004186530A JP2002353350A JP2002353350A JP2004186530A JP 2004186530 A JP2004186530 A JP 2004186530A JP 2002353350 A JP2002353350 A JP 2002353350A JP 2002353350 A JP2002353350 A JP 2002353350A JP 2004186530 A JP2004186530 A JP 2004186530A
Authority
JP
Japan
Prior art keywords
supercritical fluid
additive
pressure vessel
cleaning
upper chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002353350A
Other languages
Japanese (ja)
Inventor
Yasushi Murata
裕史 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2002353350A priority Critical patent/JP2004186530A/en
Publication of JP2004186530A publication Critical patent/JP2004186530A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning In General (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cleaning apparatus for cleaning an object in a supercritical fluid, wherein an additive is uniformly diffused and easily dissolved into the supercritical fluid and the supercritical state is stably maintained. <P>SOLUTION: The wafer cleaning apparatus 10 comprises a pressure vessel 12 having a lower chamber 12a accommodating an additive and an upper chamber 12b accommodating a supercritical fluid and holding a wafer in the supercritical fluid, a heater 14 for heating the additive, a heater 16 for heating the supercritical fluid, a partition 18 for connecting or disconnecting the lower and upper chambers, a controller 20 for operating the partition 18, and a wafer stage 22. The partition 18 connects the lower and upper chambers to allow additive diffusion into the supercritical fluid or disconnects the two chambers so as not to allow the diffusion. The upper chamber 12b may be replenished with a pure supercritical fluid when the two chambers are disconnected. The pressure vessel 12 has at its top a light take-in window 30 for light to be projected on the supercritical fluid for improving additive dissociation and supercritical fluid cleaning effect, and has at its bottom a ultrasonic wave application unit 32 for ultrasonic wave application for accelerating additive diffusion. The wafer stage 22 has a heating means 34 for heating the wafer for dew condensation prevention. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、洗浄液として超臨界流体を使用し、被洗浄体を洗浄する洗浄装置及び洗浄方法に関し、更に詳細には、超臨界流体を洗浄液として使用する際、添加剤を超臨界流体中に均一に分散、溶解させることが容易で、かつ超臨界状態を安定して維持できる洗浄装置及び洗浄方法に関するものである。
【0002】
【従来の技術】
半導体装置の製造過程では、必ずと言って良い程、基板上に成膜された電極層、配線層、絶縁膜等にパターンエッチングを施すことにより、所望平面形状の電極、配線パターン、コンタクトホール等を形成するパターニング工程が実施されている。
パターンエッチングでは、例えば基板に形成した配線層上にレジスト膜を成膜し、次いでレジスト膜をパターニングして所望の配線パターンと同じ形状のレジストパターンを有するレジストマスクを形成する。次いで、レジストマスクをエッチングマスクにして配線層をエッチングして、配線パターンを形成する。
配線層をエッチングした後、配線パターン上に残るレジストマスクを除去するマスク除去工程に移行する。
【0003】
マスク除去工程では、従来、硫酸過水、アミン系レジスト・ポリマー除去剤、フッ素系レジスト・ポリマー除去剤等をレジスト除去液として用いて、レジストマスクを載せた基板をレジスト除去液に所定時間浸漬してレジストマスクを除去している。
【0004】
ところで、半導体装置の大規模化及び高集積化に伴い、配線パターンの配線幅も微細になり、近年のLSI(大規模集積回路)では、今や、線幅が100nm以下になろうとしていて、必然的に、配線パターンのアスペクト比(高さ/幅)も増大している。
その結果、従来のように、レジスト除去液に基板を浸漬してレジストマスクを除去するやり方では、レジスト除去液の大きな表面張力によって気液界面で大きな吸引力が発生し、形成した高アスペクト比のパターンに損傷を与えることおそれがある。つまり、パターン倒れが発生するおそれがある。
【0005】
レジストマスクの除去工程で生じるパターン倒れのような微細構造に対する損傷は、可動部と基板との間に間隙を有する中空構造を備えたマイクロマシン(MEMS)の製造過程で中空構造を備えたマイクロマシンを洗浄する際にも、また半導体装置の製造過程で実施する、ダマシン法による配線構造の形成工程で、多孔質の低誘電率層間絶縁膜を洗浄する際にも生じる。
つまり、微細構造を備えた被洗浄体の洗浄に際して、表面張力の大きい洗浄液を使った従来の洗浄方法では、微細構造に損傷を与えないようにして、被洗浄体を洗浄することが難しい。
【0006】
そこで、表面張力が生じない超臨界流体をレジスト除去液或いは洗浄液として使用する「超臨界流体技術」が開発され、これまでにも、特開平01−200828号公報、特開平01−286314号公報、特開平09−43857号公報、特開平08−181050号公報等により、種々の提案がなされている。
【0007】
超臨界流体技術とは、物質固有の臨界温度、臨界圧力以上の条件下に物質を昇温、昇圧した場合、物質は液体と固体との中間の性質を有し、表面張力を生じない超臨界流体となるので、このような超臨界流体を洗浄処理等の処理に利用する技術である。
特に、COは、31℃、7.38MPaで超臨界流体になり、工業的には使い易い。しかし、超臨界流体COを洗浄液として被洗浄体を洗浄しても、レジストあるいはレジスト残留物を被洗浄体から解離する能力が乏しく、そのためにレジストあるいはレジスト残留物を被洗浄体から完全には除去することが難しい。
そこで、被洗浄体からレジスト或いはレジスト残留物を剥離する剥離化学薬品(以下、添加剤と言う)や、その解離溶媒を添加することにより、被洗浄体からのレジストマスクの剥離を容易にしようとする試みが成されている。
ここで、解離溶媒とは、添加剤の溶解助剤であって、添加剤の超臨界流体COに対する溶解性が良くないときに使用する溶媒である。
【0008】
以下に、米国特許公報、Pub No.US2002/0048731 A1に基づいて、超臨界流体技術を適用して、半導体基板(以下、ウエハと言う)からフォトレジスト膜あるいはフォトレジスト残留物を取り除く方法を具体的に説明する。
まず、ウエハ面上にフォトレジスト膜、あるいはフォトレジスト残留物が付着したウエハを洗浄装置の圧力室内に置く。次いで、圧力室の圧力を調節し、超臨界流体COおよび添加剤を圧力室に導入する。フォトレジスト膜あるいはフォトレジスト残留物がウエハから除去されるまで、添加剤を溶解した超臨界流体COがフォトレジスト膜あるいはフォトレジスト残留物に接触しているように、添加剤を溶解した超臨界流体CO中にウエハを維持する。フォトレジスト膜あるいはフォトレジスト残留物がウエハから除去された後、圧力室を開放し、ウエハを洗い流す。
【0009】
前掲公報によれば、フォトレジスト膜やフォトレジスト残留物だけでなく、ウエハ上の他のパーティクルや金属汚染物質も同様にして除去が可能であると評価している。
また、添加剤が超臨界流体COに溶解し難いときには、添加剤に加えて、添加剤と超臨界流体COとの繋ぎの溶剤として解離溶媒を超臨界流体COに添加することもある。
【0010】
【非特許文献1】
米国特許公報、Pub No.US2002/0048731 A1(図1)
【0011】
【発明が解決しようとする課題】
しかし、前掲公報に開示されている超臨界流体COによるレジスト除去方法には、以下のような問題があった。
第1には、フォトレジスト膜やエッチング残渣に対する超臨界流体COの除去性能を向上させるために、超臨界流体COにできるだけ多量の添加剤を溶解させたいものの、多量の添加剤を超臨界流体COに溶解させることが難しい問題である。
第2には、添加剤及び解離溶媒と、超臨界流体COとを除去装置の圧力室内で混合するとき、均一な分散又は拡散が難しく、分布斑が生じ易いという問題である。
第3には、物質が超臨界状態になる臨界点は物質によって異なるので、例えばCOが超臨界状態にあったとしても、添加剤や解離溶媒等の別の物質を超臨界流体COに加えた瞬間に、超臨界流体COの超臨界状態が不安定になる現象が起きてしまい、被洗浄体を安定な状態で洗浄し、フォトレジスト膜又はエッチング残渣を除去することが難しいという問題である。
【0012】
そこで、本発明の目的は、超臨界流体により被洗浄体を洗浄する際、添加剤を超臨界流体中に均一に分散、溶解させることが容易で、かつ超臨界状態を安定して維持できる洗浄装置及び洗浄方法を提供することである。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る洗浄装置は、下部室と、下部室の上方に連続して設けられた上部室とを備え、下部室に添加剤又は添加剤と解離溶媒との混合液(以下、添加剤と総称する)を収容すると共に上部室に超臨界流体を収容し、かつ超臨界流体中に被洗浄体を保持する縦型圧力容器と、
圧力容器の下部室に沿って設けられ、添加剤を加熱する加熱手段と、
圧力容器の上部室に沿って設けられ、超臨界流体を加熱して超臨界流体の温度を調節する温調手段と、
圧力容器の下部室と上部室との間に設けられ、下部室と上部室とを自在に連通させ、かつ遮断する仕切り板と、
圧力容器の外部から仕切り板を操作して圧力容器の下部室と上部室とを自在に連通させ、かつ遮断する操作装置と
を備えていることを特徴としている。
【0014】
圧力容器の下部室に設けられた加熱手段は、添加剤を加熱して添加剤の対流を生じさせることにより、超臨界流体に添加剤を一様に拡散させ、溶解させる。圧力容器の上部室に設けられた温調手段は超臨界流体を加熱して、超臨界流体の温度を調節する。
仕切り板は、圧力容器の下部室と上部室との間に設けられ、操作装置による圧力容器の外部からの操作により、下部室と上部室とを自在に連通させ、かつ遮断する。仕切り板は、下部室と上部室とを連通させることにより添加剤を超臨界流体に拡散させることができ、逆に下部室と上部室とを遮断することにより添加剤の拡散を停止し、上部室を純粋の超臨界流体で置換させ、被洗浄体をリンス洗浄することができる。
【0015】
本発明の好適な実施態様では、被洗浄体に付着した解離対象物に対する添加剤の解離性及び超臨界流体の洗浄効果を高めるために、超臨界流体に光照射を行う光照射窓を圧力容器の上部室に設けている。更に好適な実施態様では、圧力容器の底部に超音波印加装置を設け、添加剤に超音波を印加して、超臨界流体に拡散し易くしている。
また、被洗浄体を保持する保持部材に被洗浄体加熱手段を設けている。被洗浄体を加熱することにより、被洗浄体と超臨界流体との温度差により被洗浄体上に結露が生じるのを防止することができる。
更には、温調手段を調節して圧力容器内の超臨界流体の温度を制御する温度制御装置と、圧力装置から超臨界流体を流出させる流出管に、又は圧力装置に超臨界流体を流入させる流入管に、圧力容器内の超臨界流体の圧力を制御する圧力制御装置を備えている。
【0016】
本発明では、圧力容器の下部室に添加剤を予め収容し、上部室に被洗浄体を収容し、次いで加熱手段により添加剤を加熱すると共に超臨界流体を導入して、添加剤の対流により添加剤を超臨界流体に拡散、溶解させつつ超臨界流体の圧力と温度を制御して、被洗浄体を洗浄する。次いで、仕切り板により圧力容器の上部室と下部室との連通を遮断して、上部室に超臨界流体を導入することにより、上部室の添加剤を溶解した超臨界流体を純粋の超臨界流体で置換しつつ、被洗浄体をリンス洗浄することができる。
本発明では、添加剤を加熱して、添加剤の対流を生じさせることにより、添加剤を超臨界流体CO等の超臨界流体中へ一様に拡散させ、溶解させることができる。
また、圧力容器内に流入する超臨界流体、或いは超臨界流体に相転移する物質(超臨界流体生成物質)、例えばCOの流れと、加熱による添加剤の対流の流れとにより添加剤を圧力容器内の超臨界流体中に均一な分布で分散させることができる。
更には、添加剤を対流及び拡散により徐々に超臨界流体中に溶解させているので、従来のように、添加剤を加えた瞬間に臨界点が変動し、超臨界状態が不安定になることが無く、圧力容器内の超臨界流体を超臨界状態に安定して保持することができる。
【0017】
本発明に係る洗浄方法は、圧力容器の下部室に添加剤又は添加剤と解離溶媒との混合液(以下、添加剤と総称する)を収容し、かつ圧力容器の上部室に被洗浄体を保持する前処理ステップと、
次いで、圧力容器の下部室と上部室とを連通させた状態に、圧力容器の下部室と上部室とを連通、遮断自在に仕切る仕切り板を維持して、添加剤を加熱すると共に、超臨界流体を上部室に導入し、添加剤を超臨界流体に拡散、溶解させつつ、添加剤を溶解した超臨界流体に被洗浄体を所定時間接触させて被洗浄体を洗浄する洗浄ステップと、
仕切り板を操作して圧力容器の下部室と上部室とを遮断し、超臨界流体を上部室に導入して、添加剤を溶解している上部室の超臨界流体を純粋の超臨界流体で置換して被洗浄体をリンス洗浄するリンス洗浄ステップと
を有することを特徴としている。
【0018】
本発明方法の好適な実施態様の洗浄ステップでは、被洗浄体と接触している超臨界流体に光を照射する。これにより、被洗浄体に付着した解離対象物に対する添加剤の解離性及び超臨界流体の洗浄効果を高めることができる。更には、洗浄ステップでは、圧力容器の下部室に収容されている添加剤に超音波を印加する。これにより、添加剤の超臨界流体への拡散を促進することができる。
尚、洗浄ステップでは、超臨界流体に相転移する特定物質を圧力容器の上部室に流入させ、圧力及び温度を調節して、圧力容器の上部室で特定物質を超臨界流体に相転移させるようにしても良い。
【0019】
本発明方法では、超臨界流体に相転移できる物質であれば、制約無く超臨界流体として適用できるが、ほぼ常温で比較的低い圧力で超臨界流体化できる二酸化炭素ガスが超臨界流体生成物質として好適である。
本発明方法では、添加剤として、HF、ヒドロキシアミン系、アルカノールアミン系、アルキシルアミン系、及び弗化アンモニウムの少なくともいずれかを用い、解離溶媒として、水、IPA、メタノール、エタノール、イソプロパノール、エチレングリコール、アセトン、メチルエチルケトン、ジメチルスルホキシド、及びN−メチルピロリジンの少なくともいずれかを用いる。
本発明方法では、1種類の添加剤を用いてもよく、また複数種の添加剤を混合して用いても良い。また、1種類の解離溶剤を用いてもよく、また複数種の解離溶剤を混合して用いても良い。
【0020】
【発明の実施の形態】
以下に、添付図面を参照し、実施形態例を挙げて本発明の実施の形態を具体的かつ詳細に説明する。
洗浄装置の実施形態例
本実施形態例は本発明に係る洗浄装置の実施形態の一例であって、図1は本実施形態例の洗浄装置の構成を示す模式的断面図である。
本実施形態例の洗浄装置10は、超臨界流体によりウエハを洗浄する洗浄装置であって、図1に示すように、縦型圧力容器12と、圧力容器12の下部室12aに沿って設けられた加熱手段14と、圧力容器12の上部室12bに沿って設けられた温調手段16と、圧力容器12の下部室12aと上部室12bとの間に設けられ、下部室12aと上部室12bとを自在に連通させ、かつ遮断する仕切り板18と、圧力容器12の外部から仕切り板18を操作して下部室12aと上部室12bとを自在に連通させ、かつ遮断する操作装置20と、上部室12bに設けられ、ウエハWを保持するウエハステージ22とを備えている。
【0021】
圧力容器12は、下部室12aに添加剤又は添加剤と解離溶媒との混合液(以下、添加剤と総称する)を収容し、上部室12bに超臨界流体を収容する圧力容器であって、圧力容器12に超臨界流体を流入させる流入管24と、圧力容器12から超臨界流体を流出させる流出管26とを上部室12bの側壁に備えている。
尚、超臨界流体に代えて、圧力容器12内で相転移して超臨界流体になる物質(超臨界流体生成物質)を圧力容器に流入させ、後述する温度制御装置36及び圧力制御装置38により、圧力容器12内の温度及び圧力を調節して圧力容器12内で超臨界流体生成物質を超臨界流体に相転移させるようにしても良い。
加熱手段14は、下部室12aに収容されている添加剤を加熱して、添加剤の対流を生じさせ、添加剤の対流により超臨界流体に添加剤を一様に拡散させ、溶解させる。
温調手段16は、上部室12bに収容した超臨界流体を加熱して、超臨界流体の温度を調節する。
【0022】
仕切り板18は、圧力容器12の外部から操作装置20によって操作され、自在に下部室12aと上部室12bとを連通させ、かつ遮断する。仕切り板18は、下部室12aと上部室12bとを連通させることにより添加剤を超臨界流体に拡散させ、下部室12aと上部室12bとを遮断することにより添加剤の拡散を停止する。
この遮断した状態で、上部室12bに純水の超臨界流体を流入させることにより、上部室12b内の添加剤を溶解した超臨界流体を純粋の超臨界流体で置換させ、純粋の超臨界流体で被洗浄体をリンス洗浄することができる。
操作装置20は、仕切り板18を昇降させるリンク機構(図示せず)を備え、圧力容器12の内側周囲に設けられたリング状部材28からリンク機構により仕切り板18を上昇させると、下部室12aと上部室12bとを連通させることができ、逆に仕切り板18を下降させてリング状部材28に接触させると、下部室12aと上部室12bとを遮断して、添加剤が超臨界流体に拡散しないようにすることができる。
【0023】
また、圧力容器12の頂部には、超臨界流体に光を照射して、レジスト残渣物等の解離対象物を被洗浄体から解離する添加剤の解離性を高め、かつ超臨界流体の洗浄効果を高めるために、光照射窓30が設けてある。圧力容器12の底部には、添加剤の拡散を促進するために、添加剤に超音波を印加する超音波印加装置32が設けてある。
更に、ウエハを保持するウエハステージ22にはウエハを加熱するウエハ加熱手段34が設けてある。ウエハ加熱手段34は、ウエハを加熱することにより、ウエハと超臨界流体との温度差によりウエハ上に結露が生じるのを防止することができる。
加熱手段14、温調手段16、及びウエハ加熱手段34は、それぞれ、電熱線等の発熱体を備えた加熱手段である。
【0024】
洗浄装置10には、温調手段16と連動して、圧力容器12内の超臨界流体の温度を制御する温度制御装置36が設けてある。
また、圧力容器12から超臨界流体を流出させる流出管26に圧力制御弁を備え、圧力容器12内の超臨界流体の圧力を制御する圧力制御装置38が設けられている。
【0025】
本洗浄装置10では、圧力容器12の下部室12aに添加剤を予め収容し、加熱手段14により加熱しておき、次いで、超臨界流体CO等の超臨界流体を圧力容器12の上部室12aに導入して、添加剤の対流により添加剤を超臨界流体と混合させると共に、温度制御装置34及び圧力制御装置36により超臨界流体の温度及び圧力を制御する。
また、本洗浄装置10では、超臨界流体の導入に代えて、相転移により超臨界流体になる特定物質を上部室12bに導入し、圧力及び温度を調節して、上部室12b内で特定物質を超臨界流体に相転移させるようにしても良い。
本洗浄装置10では、添加剤を加熱することにより、添加剤が超臨界流体CO等の超臨界流体中へ対流により一様に拡散し、溶解する。また、圧力容器12内に流入する超臨界流体の流れ、或いは超臨界流体生成物質、例えばCOの流れと、添加剤の加熱により生じた添加剤の対流の流れとにより、添加剤が圧力容器12内の超臨界流体中に均一な分布で分散する。
更には、対流により添加剤を徐々に超臨界流体に拡散、溶解しているので、従来のように添加剤を加えた瞬間に臨界点が変動し、超臨界流体の超臨界状態が不安定になることも無く、圧力容器12内の超臨界状態を安定して保持することができる。
【0026】
洗浄方法の実施形態例
本実施形態例は、上述の洗浄装置10を使い、かつ超臨界流体として超臨界流体COを使ってエッチング残渣を有するウエハを洗浄する洗浄方法に本発明に係る洗浄方法を適用した実施形態の一例である。
本実施形態例では、先ず、圧力容器12の下部室12aに添加剤と解離溶媒との混合液を収容し、圧力容器12の上部室12bに配置されたウエハステージ22上にウエハWを被洗浄体として載置する。
本実施形態例では、添加剤として例えばHFを使用し、解離溶媒として例えば水を使用する。
【0027】
次いで、操作装置20を操作して仕切り板18を上昇させ、圧力容器12の下部室12aと上部室12bとを連通できる状態に仕切り板18を維持しつつ、加熱手段14により添加剤と解離溶液の混合液を加熱する。
混合液の加熱と共に、超臨界流体COを圧力容器12の上部室12bに流入させ、圧力容器12の上部室12bの温度を温度制御装置36により31℃以上の温度、例えば40℃に維持すると共に、圧力容器12の上部室12bの圧力を圧力制御装置38により7.38MPa以上の圧力、例えば10MPaに維持する。
そして、添加剤と解離溶媒を溶解させた超臨界流体COにウエハWを所定時間接触させて、ウエハWを洗浄する。
ウエハWの洗浄中、光照射窓30を介して光を超臨界流体COに照射して、添加剤の解離性能と、超臨界流体COの洗浄能力とを高める。また、ウエハW上に結露が生じないように、ウエハ加熱手段34によりウエハWを加熱する。更に、添加剤と解離溶媒が超臨界流体COに速やかに拡散するように、超音波印加装置32を起動して添加剤と解離溶媒に超音波を印加する。
【0028】
所定時間、仕切り板18をリング状部材28から離隔した状態で圧力容器12の上部室12bの超臨界流体COにウエハWを接触させ、洗浄した後、操作装置20を操作して仕切り板18を下降させてリング状部材28に接触させて、圧力容器12の下部室12aと上部室12bとを遮断すると共に、引き続き、超臨界流体COを圧力容器12の上部室12bに流入させる。
これにより、圧力容器12の上部室12bに存在した添加剤と解離溶媒を含む超臨界流体COを純粋の超臨界流体COで置換し、純粋の超臨界流体COによりウエハWをリンス洗浄することができる。
次いで、超臨界流体COを気化させて、ウエハWを乾燥する。
【0029】
本実施形態例では、添加剤を加熱することにより、超臨界流体CO中へ対流により添加剤及び解離溶媒を一様に拡散させ、溶解させることができる。また、圧力容器12内に流入する超臨界流体COの流れと、添加剤及び解離溶媒の加熱により生じた対流の流れとにより、添加剤及び解離溶媒を圧力容器12内の超臨界流体CO中に均一な分布で分散させ、溶解させることができる。
更には、添加剤及び解離溶媒が対流により徐々に超臨界流体COに拡散、溶解しているので、従来のように添加剤を加えた瞬間に臨界点が変動し、圧力容器12内の超臨界流体の超臨界状態が不安定になることも無く、圧力容器12内の超臨界状態を安定して保持することができる。
【0030】
本実施形態例では、圧力容器12に超臨界流体COを流入させているが、超臨界流体COに代えてCOガスを流入させ、圧力及び温度を調節して、圧力容器12内で超臨界流体COに相転移させるようにして良い。
【0031】
【発明の効果】
本発明によれば、下部室に添加剤を、上部室に超臨界流体を収容し、かつ超臨界流体中に被洗浄体を保持する縦型圧力容器と、添加剤を加熱する加熱手段と、超臨界流体の温度を調節する温調手段と、下部室と上部室とを自在に連通させ、かつ遮断する仕切り板と、圧力容器の外部から仕切り板を操作する操作装置とを備え、圧力容器の下部室に添加剤を予め収容し、加熱手段により加熱しておき、次いで超臨界流体を導入して、添加剤の対流により添加剤を超臨界流体に拡散、溶解させつつ超臨界流体の圧力と温度を制御して、被洗浄体を洗浄する。次いで、仕切り板により圧力容器の上部室と下部室との連通を遮断して添加剤が拡散しないようにしながら、上部室に超臨界流体を導入して、純粋の超臨界流体により被洗浄体をリンス洗浄する。
本発明では、添加剤を加熱することにより、添加剤を超臨界流体に中に一様に拡散させ、溶解させることができる。これにより、従来のように添加剤を加えた瞬間に臨界点が変動し、超臨界状態が不安定になることも無く、圧力容器内の超臨界流体を超臨界状態に安定して保持することができる。
本発明方法は、超臨界流体により被洗浄体を洗浄する際、超臨界流体に添加剤を均一に分散、溶解させると共に超臨界状態を安定して維持できる洗浄方法を実現している。
【図面の簡単な説明】
【図1】実施形態例の洗浄装置の構成を示す模式的断面図である。
【符号の説明】
10……実施形態例の洗浄装置、12……縦型圧力容器、14……加熱手段、16……温調手段、18……仕切り板、20……操作装置、22……ウエハステージ、24……流入管、26……流出管、28……リング状部材、30……光照射窓、32……超音波印加装置、34……ウエハ加熱手段、36……温度制御装置、38……圧力制御装置。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cleaning apparatus and a cleaning method for cleaning an object to be cleaned using a supercritical fluid as a cleaning liquid, and more particularly, when using a supercritical fluid as a cleaning liquid, an additive is uniformly dispersed in the supercritical fluid. TECHNICAL FIELD The present invention relates to a cleaning apparatus and a cleaning method which can be easily dispersed and dissolved in water and can stably maintain a supercritical state.
[0002]
[Prior art]
In a manufacturing process of a semiconductor device, an electrode, a wiring pattern, a contact hole, and the like having a desired planar shape are formed by performing pattern etching on an electrode layer, a wiring layer, an insulating film, and the like formed on a substrate. Is performed.
In pattern etching, for example, a resist film is formed on a wiring layer formed on a substrate, and then the resist film is patterned to form a resist mask having a resist pattern having the same shape as a desired wiring pattern. Next, the wiring layer is etched using the resist mask as an etching mask to form a wiring pattern.
After etching the wiring layer, the process proceeds to a mask removing step of removing the resist mask remaining on the wiring pattern.
[0003]
In the mask removing step, conventionally, a substrate on which a resist mask is mounted is immersed in the resist removing liquid for a predetermined time using a sulfuric acid peroxide solution, an amine-based resist / polymer removing agent, a fluorine-based resist / polymer removing agent, etc. as a resist removing liquid. To remove the resist mask.
[0004]
By the way, the wiring width of wiring patterns has become finer with the increase in scale and integration of semiconductor devices, and in recent LSIs (large-scale integrated circuits), the line width is now approaching 100 nm or less. Accordingly, the aspect ratio (height / width) of the wiring pattern is also increasing.
As a result, in the conventional method of removing the resist mask by immersing the substrate in a resist removing liquid, a large suction force is generated at a gas-liquid interface due to a large surface tension of the resist removing liquid, and the formed high aspect ratio is removed. The pattern may be damaged. That is, pattern collapse may occur.
[0005]
The damage to the fine structure such as the pattern collapse occurring in the resist mask removing process is performed by cleaning the micromachine having the hollow structure in the manufacturing process of the micromachine having the hollow structure having the gap between the movable portion and the substrate (MEMS). This also occurs when the porous low dielectric constant interlayer insulating film is cleaned in the process of forming the wiring structure by the damascene method, which is performed in the process of manufacturing the semiconductor device.
In other words, when cleaning an object to be cleaned having a fine structure, it is difficult to clean the object to be cleaned without damaging the fine structure by a conventional cleaning method using a cleaning liquid having a large surface tension.
[0006]
Therefore, a “supercritical fluid technology” that uses a supercritical fluid that does not generate surface tension as a resist removing liquid or a cleaning liquid has been developed. Until now, JP-A-01-200828, JP-A-01-286314, Various proposals have been made in JP-A-09-43857 and JP-A-08-181050.
[0007]
Supercritical fluid technology is a supercritical fluid that has an intermediate property between a liquid and a solid and does not generate surface tension when the material is heated or pressurized above the critical temperature and critical pressure of the material. This is a technique in which such a supercritical fluid is used for a treatment such as a cleaning treatment since it becomes a fluid.
In particular, CO 2 becomes a supercritical fluid at 31 ° C. and 7.38 MPa, and is industrially easy to use. However, even if the object to be cleaned is washed using the supercritical fluid CO 2 as a cleaning liquid, the ability to dissociate the resist or the resist residue from the object to be cleaned is poor, and therefore the resist or the resist residue is completely removed from the object to be cleaned. Difficult to remove.
Therefore, it is attempted to easily remove the resist mask from the object to be cleaned by adding a stripping chemical (hereinafter referred to as an additive) for removing the resist or the resist residue from the object to be cleaned or a dissociation solvent thereof. Attempts have been made to do so.
Here, the dissociation solvent is a dissolution aid of the additive, and is a solvent used when the solubility of the additive in the supercritical fluid CO 2 is not good.
[0008]
In the following, U.S. Patent Publication, Pub No. A method of removing a photoresist film or a photoresist residue from a semiconductor substrate (hereinafter, referred to as a wafer) by applying a supercritical fluid technology will be specifically described based on US 2002/0048731 A1.
First, a wafer having a photoresist film or a photoresist residue attached on the wafer surface is placed in a pressure chamber of a cleaning apparatus. Then, by adjusting the pressure in the pressure chamber, introducing a supercritical fluid CO 2 and additives to the pressure chamber. Until the photoresist film or the photoresist residue is removed from the wafer, the supercritical fluid containing the additive is dissolved so that the supercritical fluid CO 2 is in contact with the photoresist film or the photoresist residue. maintaining the wafer in the fluid CO 2. After the photoresist film or photoresist residue is removed from the wafer, the pressure chamber is opened and the wafer is rinsed.
[0009]
According to the above-mentioned publication, it is evaluated that not only the photoresist film and the photoresist residue but also other particles and metal contaminants on the wafer can be similarly removed.
Further, when the additive is hardly soluble in the supercritical fluid CO 2, in addition to the additives, there may be added to dissociate the solvent in the supercritical fluid CO 2 as connecting a solvent of additive and the supercritical fluid CO 2 .
[0010]
[Non-patent document 1]
U.S. Patent Publication, Pub No. US2002 / 0048731 A1 (FIG. 1)
[0011]
[Problems to be solved by the invention]
However, the resist removal process with supercritical fluid CO 2 as disclosed supra publications, has the following problems.
First, in order to improve the performance of removing supercritical fluid CO 2 from a photoresist film or an etching residue, it is desired to dissolve as much additive as possible in supercritical fluid CO 2. it is difficult problem to be dissolved in the fluid CO 2.
Second, when the additive and dissociating solvent and the supercritical fluid CO 2 are mixed in the pressure chamber of the removing device, uniform dispersion or diffusion is difficult, and distribution unevenness is likely to occur.
Third, since the critical point at which a substance enters the supercritical state varies depending on the substance, for example, even if CO 2 is in a supercritical state, another substance such as an additive or a dissociation solvent is added to the supercritical fluid CO 2 . At the moment of addition, a phenomenon occurs in which the supercritical state of the supercritical fluid CO 2 becomes unstable, and it is difficult to clean the object to be cleaned in a stable state and remove the photoresist film or the etching residue. It is.
[0012]
Therefore, an object of the present invention is to provide a cleaning agent that can easily disperse and dissolve additives uniformly in a supercritical fluid and cleanly maintain a supercritical state when cleaning an object to be cleaned with a supercritical fluid. It is to provide an apparatus and a cleaning method.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a cleaning apparatus according to the present invention includes a lower chamber, and an upper chamber continuously provided above the lower chamber, wherein the lower chamber contains an additive or an additive and a dissociation solvent. A vertical pressure vessel containing a mixed liquid (hereinafter collectively referred to as an additive), containing a supercritical fluid in the upper chamber, and holding the object to be cleaned in the supercritical fluid;
Heating means provided along the lower chamber of the pressure vessel, for heating the additive,
Temperature regulating means provided along the upper chamber of the pressure vessel, heating the supercritical fluid to adjust the temperature of the supercritical fluid,
A partition plate that is provided between the lower chamber and the upper chamber of the pressure vessel, allows the lower chamber and the upper chamber to freely communicate with each other, and shuts off;
An operating device is provided for operating the partition plate from the outside of the pressure vessel to freely connect and disconnect the lower chamber and the upper chamber of the pressure vessel.
[0014]
The heating means provided in the lower chamber of the pressure vessel heats the additive to cause convection of the additive, thereby uniformly diffusing and dissolving the additive in the supercritical fluid. Temperature control means provided in the upper chamber of the pressure vessel heats the supercritical fluid and adjusts the temperature of the supercritical fluid.
The partition plate is provided between the lower chamber and the upper chamber of the pressure vessel, and allows the lower chamber and the upper chamber to freely communicate with each other and shut off by an operation from the outside of the pressure vessel by the operating device. The partition plate allows the additive to diffuse into the supercritical fluid by connecting the lower chamber and the upper chamber, and conversely stops the diffusion of the additive by shutting off the lower chamber and the upper chamber. The chamber can be replaced with pure supercritical fluid, and the object to be cleaned can be rinsed.
[0015]
In a preferred embodiment of the present invention, a light irradiation window for irradiating the supercritical fluid with light is provided with a pressure vessel in order to enhance the dissociation property of the additive to the dissociation target attached to the object to be cleaned and the cleaning effect of the supercritical fluid. In the upper room. In a further preferred embodiment, an ultrasonic wave application device is provided at the bottom of the pressure vessel to apply ultrasonic waves to the additive to facilitate diffusion into the supercritical fluid.
Further, a cleaning member heating means is provided on a holding member for holding the cleaning target. By heating the object to be cleaned, dew formation on the object to be cleaned due to a temperature difference between the object to be cleaned and the supercritical fluid can be prevented.
Furthermore, a temperature control device that controls the temperature of the supercritical fluid in the pressure vessel by adjusting the temperature control means, and an outlet pipe that allows the supercritical fluid to flow out of the pressure device, or allows the supercritical fluid to flow into the pressure device. The inflow pipe is provided with a pressure control device for controlling the pressure of the supercritical fluid in the pressure vessel.
[0016]
In the present invention, the additive is stored in the lower chamber of the pressure vessel in advance, the body to be cleaned is stored in the upper chamber, and then the additive is heated by a heating means and a supercritical fluid is introduced. The object to be cleaned is cleaned by controlling the pressure and temperature of the supercritical fluid while diffusing and dissolving the additive in the supercritical fluid. Next, the communication between the upper chamber and the lower chamber of the pressure vessel is interrupted by the partition plate, and the supercritical fluid is introduced into the upper chamber. The object to be cleaned can be rinse-cleaned while being replaced.
In the present invention, the additive can be uniformly diffused and dissolved in a supercritical fluid such as the supercritical fluid CO 2 by heating the additive to cause convection of the additive.
Further, the additive is pressurized by a supercritical fluid flowing into the pressure vessel, or a substance that undergoes a phase transition to a supercritical fluid (supercritical fluid generating substance), for example, a flow of CO 2 and a convective flow of the additive by heating. It can be dispersed with a uniform distribution in the supercritical fluid in the container.
Furthermore, since the additive is gradually dissolved in the supercritical fluid by convection and diffusion, the critical point fluctuates as soon as the additive is added, and the supercritical state becomes unstable, as in the past. And the supercritical fluid in the pressure vessel can be stably maintained in the supercritical state.
[0017]
In the cleaning method according to the present invention, an additive or a liquid mixture of an additive and a dissociation solvent (hereinafter, collectively referred to as an additive) is contained in a lower chamber of a pressure vessel, and an object to be cleaned is placed in an upper chamber of the pressure vessel. A preprocessing step to retain;
Then, while the lower chamber and the upper chamber of the pressure vessel are in communication with each other, the lower chamber and the upper chamber of the pressure vessel are maintained in communication with each other, and a partition plate for partitioning and shutting off is maintained. A cleaning step of introducing the fluid into the upper chamber, diffusing and dissolving the additive in the supercritical fluid, and washing the body to be cleaned by contacting the body to be cleaned with the supercritical fluid in which the additive is dissolved for a predetermined time,
Operate the partition plate to shut off the lower chamber and upper chamber of the pressure vessel, introduce the supercritical fluid into the upper chamber, and convert the supercritical fluid in the upper chamber, in which the additive is dissolved, with pure supercritical fluid. A rinsing cleaning step of rinsing and cleaning the body to be cleaned by replacement.
[0018]
In the cleaning step of the preferred embodiment of the method of the present invention, the supercritical fluid in contact with the object to be cleaned is irradiated with light. Thereby, the dissociation property of the additive to the dissociation target adhered to the object to be cleaned and the cleaning effect of the supercritical fluid can be enhanced. Further, in the washing step, ultrasonic waves are applied to the additive contained in the lower chamber of the pressure vessel. Thereby, the diffusion of the additive into the supercritical fluid can be promoted.
In the washing step, a specific substance that changes phase into a supercritical fluid flows into the upper chamber of the pressure vessel, and the pressure and the temperature are adjusted to change the specific substance to a supercritical fluid in the upper chamber of the pressure vessel. You may do it.
[0019]
In the method of the present invention, any substance that can undergo a phase transition to a supercritical fluid can be applied as a supercritical fluid without limitation, but carbon dioxide gas that can be converted to a supercritical fluid at a relatively low pressure at almost normal temperature is used as a supercritical fluid generating substance. It is suitable.
In the method of the present invention, at least one of HF, hydroxyamine, alkanolamine, alkylamine, and ammonium fluoride is used as an additive, and water, IPA, methanol, ethanol, isopropanol, ethylene Glycol, acetone, methyl ethyl ketone, dimethyl sulfoxide, and / or N-methylpyrrolidine are used.
In the method of the present invention, one type of additive may be used, or a plurality of types of additives may be mixed and used. Further, one kind of dissociation solvent may be used, or a mixture of plural kinds of dissociation solvents may be used.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described specifically and in detail with reference to the accompanying drawings by way of example embodiments.
Embodiment of cleaning apparatus This embodiment is an example of an embodiment of the cleaning apparatus according to the present invention, and FIG. 1 is a schematic cross-sectional view showing a configuration of the cleaning apparatus of the embodiment. .
The cleaning apparatus 10 of this embodiment is a cleaning apparatus for cleaning a wafer with a supercritical fluid, and is provided along a vertical pressure vessel 12 and a lower chamber 12a of the pressure vessel 12, as shown in FIG. Heating means 14, temperature control means 16 provided along upper chamber 12b of pressure vessel 12, and lower chamber 12a and upper chamber 12b provided between lower chamber 12a and upper chamber 12b of pressure vessel 12. And an operating device 20 for operating the partition plate 18 from the outside of the pressure vessel 12 to allow the lower chamber 12a and the upper chamber 12b to freely communicate and shut off, A wafer stage 22 is provided in the upper chamber 12b and holds the wafer W.
[0021]
The pressure vessel 12 is a pressure vessel that contains an additive or a mixture of an additive and a dissociation solvent (hereinafter, collectively referred to as an additive) in a lower chamber 12a and a supercritical fluid in an upper chamber 12b. An inflow pipe 24 through which the supercritical fluid flows into the pressure vessel 12 and an outflow pipe 26 through which the supercritical fluid flows out of the pressure vessel 12 are provided on the side wall of the upper chamber 12b.
Instead of the supercritical fluid, a substance (supercritical fluid generating substance) that undergoes a phase transition in the pressure vessel 12 to become a supercritical fluid is caused to flow into the pressure vessel, and the temperature is controlled by a temperature control device 36 and a pressure control device 38 described later. Alternatively, the temperature and pressure in the pressure vessel 12 may be adjusted to cause the supercritical fluid-producing substance to undergo a phase transition in the pressure vessel 12 to a supercritical fluid.
The heating means 14 heats the additive contained in the lower chamber 12a to generate convection of the additive, and the additive is uniformly diffused and dissolved in the supercritical fluid by the convection of the additive.
The temperature control means 16 heats the supercritical fluid contained in the upper chamber 12b to adjust the temperature of the supercritical fluid.
[0022]
The partition plate 18 is operated by the operating device 20 from the outside of the pressure vessel 12, and freely connects and disconnects the lower chamber 12a and the upper chamber 12b. The partition plate 18 diffuses the additive into the supercritical fluid by connecting the lower chamber 12a and the upper chamber 12b, and stops diffusion of the additive by shutting off the lower chamber 12a and the upper chamber 12b.
In this interrupted state, a supercritical fluid of pure water is caused to flow into the upper chamber 12b, thereby replacing the supercritical fluid in which the additive in the upper chamber 12b is dissolved with the pure supercritical fluid, and The object to be cleaned can be rinse-cleaned.
The operating device 20 includes a link mechanism (not shown) for moving the partition plate 18 up and down. When the partition mechanism 18 is raised by a link mechanism from a ring-shaped member 28 provided around the inside of the pressure vessel 12, the lower chamber 12a And the upper chamber 12b can be communicated. Conversely, when the partition plate 18 is lowered and brought into contact with the ring-shaped member 28, the lower chamber 12a and the upper chamber 12b are shut off, and the additive becomes supercritical fluid. It can be prevented from spreading.
[0023]
The top of the pressure vessel 12 is irradiated with light to the supercritical fluid to increase the dissociation of an additive that dissociates an object to be dissociated from the object to be dissociated, such as a resist residue, and to clean the supercritical fluid. A light irradiation window 30 is provided in order to increase the power. At the bottom of the pressure vessel 12, there is provided an ultrasonic wave applying device 32 for applying ultrasonic waves to the additive in order to promote the diffusion of the additive.
Further, the wafer stage 22 for holding the wafer is provided with a wafer heating means 34 for heating the wafer. By heating the wafer, the wafer heating means 34 can prevent the occurrence of dew condensation on the wafer due to the temperature difference between the wafer and the supercritical fluid.
The heating unit 14, the temperature control unit 16, and the wafer heating unit 34 are heating units each including a heating element such as a heating wire.
[0024]
The cleaning device 10 is provided with a temperature control device 36 that controls the temperature of the supercritical fluid in the pressure vessel 12 in conjunction with the temperature control unit 16.
Further, a pressure control valve is provided in the outflow pipe 26 that allows the supercritical fluid to flow out of the pressure vessel 12, and a pressure control device 38 that controls the pressure of the supercritical fluid in the pressure vessel 12 is provided.
[0025]
In the cleaning device 10, the additive is stored in the lower chamber 12a of the pressure vessel 12 in advance and heated by the heating means 14, and then the supercritical fluid such as the supercritical fluid CO 2 is supplied to the upper chamber 12a of the pressure vessel 12. And the additive is mixed with the supercritical fluid by the convection of the additive, and the temperature and pressure of the supercritical fluid are controlled by the temperature control device 34 and the pressure control device 36.
Further, in the present cleaning apparatus 10, instead of introducing a supercritical fluid, a specific substance that becomes a supercritical fluid due to phase transition is introduced into the upper chamber 12b, and the pressure and temperature are adjusted, and the specific substance is introduced into the upper chamber 12b. May be caused to undergo phase transition to a supercritical fluid.
In the cleaning apparatus 10, by heating the additive, the additive is uniformly diffused by convection to the supercritical fluid such as supercritical fluid CO 2, dissolved. In addition, due to the flow of the supercritical fluid flowing into the pressure vessel 12 or the flow of the supercritical fluid generating substance, for example, CO 2 , and the convection flow of the additive generated by heating the additive, the additive is added to the pressure vessel. And dispersed in the supercritical fluid within 12 with a uniform distribution.
Furthermore, since the additive is gradually diffused and dissolved in the supercritical fluid by convection, the critical point fluctuates at the moment the additive is added as in the conventional case, and the supercritical state of the supercritical fluid becomes unstable. The supercritical state in the pressure vessel 12 can be stably maintained without any problem.
[0026]
Embodiment of cleaning method This embodiment is directed to a cleaning method of cleaning a wafer having an etching residue using the above-described cleaning apparatus 10 and using a supercritical fluid CO 2 as a supercritical fluid. 1 is an example of an embodiment to which the cleaning method according to the above is applied.
In the present embodiment, first, a mixed solution of an additive and a dissociation solvent is accommodated in the lower chamber 12a of the pressure vessel 12, and the wafer W is cleaned on the wafer stage 22 disposed in the upper chamber 12b of the pressure vessel 12. Place as a body.
In this embodiment, for example, HF is used as an additive, and water is used as a dissociation solvent.
[0027]
Next, the operating device 20 is operated to raise the partition plate 18, and while maintaining the partition plate 18 in a state where the lower chamber 12 a and the upper chamber 12 b of the pressure vessel 12 can communicate with each other, the additive and the dissociated solution are heated by the heating means 14. Heat the mixture.
Along with the heating of the mixture, the supercritical fluid CO 2 is caused to flow into the upper chamber 12b of the pressure vessel 12, and the temperature of the upper chamber 12b of the pressure vessel 12 is maintained at a temperature of 31 ° C. or more, for example, 40 ° C., by the temperature control device 36. At the same time, the pressure in the upper chamber 12b of the pressure vessel 12 is maintained at a pressure of 7.38 MPa or more, for example, 10 MPa by the pressure control device 38.
Then, the wafer W is brought into contact with the supercritical fluid CO 2 in which the additive and the dissociation solvent are dissolved for a predetermined time to clean the wafer W.
During the cleaning of the wafer W, the supercritical fluid CO 2 is irradiated with light through the light irradiation window 30 to enhance the dissociation performance of the additive and the cleaning ability of the supercritical fluid CO 2 . Further, the wafer W is heated by the wafer heating means 34 so that dew condensation does not occur on the wafer W. Furthermore, dissociation solvent and additive to diffuse rapidly in the supercritical fluid CO 2, ultrasonic waves are applied to the dissociation solvent and additives to launch an ultrasonic application device 32.
[0028]
The wafer W is brought into contact with the supercritical fluid CO 2 in the upper chamber 12b of the pressure vessel 12 in a state where the partition plate 18 is separated from the ring-shaped member 28 for a predetermined time, and after cleaning, the operating device 20 is operated to operate the partition plate 18. Is lowered to contact the ring-shaped member 28 to shut off the lower chamber 12 a and the upper chamber 12 b of the pressure vessel 12, and then to allow the supercritical fluid CO 2 to flow into the upper chamber 12 b of the pressure vessel 12.
Thus, it replaced with a supercritical fluid CO 2 pure supercritical fluid CO 2 containing the additive was present in the upper chamber 12b of the pressure vessel 12 a dissociation solvent, rinse the wafers W by pure supercritical fluid CO 2 can do.
Next, the wafer W is dried by vaporizing the supercritical fluid CO 2 .
[0029]
In this embodiment, by heating the additive, the additive and the dissociation solvent can be uniformly diffused and dissolved in the supercritical fluid CO 2 by convection. Further, the flow of the supercritical fluid CO 2 flowing into the pressure vessel 12, the additive and by the convection flow produced by the heat of dissociation solvents, additives and supercritical fluid dissociation solvent pressure vessel 12 CO 2 It can be dispersed and dissolved in a uniform distribution therein.
Further, since the additive and the dissociated solvent are gradually diffused and dissolved in the supercritical fluid CO 2 by convection, the critical point fluctuates at the moment when the additive is added as in the conventional case, The supercritical state in the pressure vessel 12 can be stably maintained without the supercritical state of the critical fluid becoming unstable.
[0030]
In the present embodiment, the supercritical fluid CO 2 is allowed to flow into the pressure vessel 12. However, instead of the supercritical fluid CO 2 , CO 2 gas is caused to flow, the pressure and the temperature are adjusted, and the pressure Phase transition to supercritical fluid CO 2 may be performed.
[0031]
【The invention's effect】
According to the present invention, an additive in the lower chamber, a supercritical fluid is accommodated in the upper chamber, and a vertical pressure vessel holding the object to be cleaned in the supercritical fluid, and a heating means for heating the additive, A pressure vessel comprising: a temperature control means for controlling the temperature of the supercritical fluid; a partition plate for freely communicating and blocking the lower chamber and the upper chamber; and an operating device for operating the partition plate from outside the pressure vessel. The additive is stored in advance in the lower chamber of the supercritical fluid, heated by a heating means, and then the supercritical fluid is introduced, and the additive is diffused and dissolved in the supercritical fluid by the convection of the additive while the pressure of the supercritical fluid is increased. The temperature is controlled to clean the object to be cleaned. Then, a supercritical fluid is introduced into the upper chamber while the communication between the upper chamber and the lower chamber of the pressure vessel is blocked by the partition plate so that the additive is not diffused, and the object to be cleaned is purely supercritical fluid. Rinse and clean.
In the present invention, the additive can be uniformly diffused and dissolved in the supercritical fluid by heating the additive. As a result, the critical point fluctuates at the moment the additive is added as in the conventional case, and the supercritical state does not become unstable, and the supercritical fluid in the pressure vessel is stably maintained in the supercritical state. Can be.
The method of the present invention realizes a cleaning method capable of uniformly dispersing and dissolving an additive in a supercritical fluid and stably maintaining a supercritical state when cleaning an object to be cleaned with a supercritical fluid.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view illustrating a configuration of a cleaning apparatus according to an embodiment.
[Explanation of symbols]
Reference Signs List 10 cleaning apparatus of embodiment, 12 vertical pressure vessel, 14 heating means, 16 temperature control means, 18 partition plate, 20 operating device, 22 wafer stage, 24 ... Inflow pipe, 26... Outflow pipe, 28... Ring-shaped member, 30... Light irradiation window, 32... Pressure control device.

Claims (11)

下部室と、下部室の上方に連続して設けられた上部室とを備え、下部室に添加剤又は添加剤と解離溶媒との混合液(以下、添加剤と総称する)を収容すると共に上部室に超臨界流体を収容し、かつ超臨界流体中に被洗浄体を保持する縦型圧力容器と、
圧力容器の下部室に沿って設けられ、添加剤を加熱する加熱手段と、
圧力容器の上部室に沿って設けられ、超臨界流体を加熱して超臨界流体の温度を調節する温調手段と、
圧力容器の下部室と上部室との間に設けられ、下部室と上部室とを自在に連通させ、かつ遮断する仕切り板と、
圧力容器の外部から仕切り板を操作して圧力容器の下部室と上部室とを自在に連通させ、かつ遮断する操作装置と
を備えていることを特徴とする洗浄装置。
A lower chamber, and an upper chamber continuously provided above the lower chamber, wherein the lower chamber accommodates an additive or a mixture of the additive and the dissociating solvent (hereinafter, collectively referred to as an additive), and A vertical pressure vessel containing a supercritical fluid in the chamber, and holding the object to be cleaned in the supercritical fluid,
Heating means provided along the lower chamber of the pressure vessel, for heating the additive,
Temperature regulating means provided along the upper chamber of the pressure vessel, heating the supercritical fluid to adjust the temperature of the supercritical fluid,
A partition plate that is provided between the lower chamber and the upper chamber of the pressure vessel, allows the lower chamber and the upper chamber to freely communicate with each other, and shuts off;
A cleaning device, comprising: an operating device for operating a partition plate from the outside of a pressure vessel to freely communicate and shut off a lower chamber and an upper chamber of the pressure vessel.
被洗浄体に付着した解離対象物に対する添加剤の解離性及び超臨界流体の洗浄効果を高めるために、超臨界流体に光照射を行う光照射窓を圧力容器の上部室に設けていることを特徴とする請求項1に記載の洗浄装置。A light irradiation window for irradiating the supercritical fluid with light should be provided in the upper chamber of the pressure vessel in order to enhance the dissociation property of the additive to the dissociation target adhered to the object to be cleaned and the cleaning effect of the supercritical fluid. The cleaning device according to claim 1, wherein 圧力容器の底部に超音波印加装置を設けていることを特徴とする請求項1又は2に記載の洗浄装置。The cleaning device according to claim 1, wherein an ultrasonic applying device is provided at a bottom of the pressure vessel. 被洗浄体を保持する保持部材に被洗浄体加熱手段を設けていることを特徴とする請求項1から3のいずれか1項に記載の洗浄装置。The cleaning device according to any one of claims 1 to 3, wherein a cleaning member heating unit is provided on a holding member that holds the cleaning target. 温調手段を調節して圧力容器内の超臨界流体の温度を制御する温度制御装置と、圧力装置から超臨界流体を流出させる流出管に、又は圧力装置に超臨界流体を流入させる流入管に、圧力容器内の超臨界流体の圧力を制御する圧力制御装置を備えていることを特徴とする請求項1から4のいずれか1項に記載の洗浄装置。A temperature control device that controls the temperature of the supercritical fluid in the pressure vessel by adjusting the temperature control means, and an outlet pipe that allows the supercritical fluid to flow out of the pressure device, or an inflow pipe that allows the supercritical fluid to flow into the pressure device. The cleaning apparatus according to any one of claims 1 to 4, further comprising a pressure control device that controls a pressure of the supercritical fluid in the pressure vessel. 圧力容器の下部室に添加剤又は添加剤と解離溶媒との混合液(以下、添加剤と総称する)を収容し、かつ圧力容器の上部室に被洗浄体を保持する前処理ステップと、
次いで、圧力容器の下部室と上部室とを連通させた状態に、圧力容器の下部室と上部室とを連通、遮断自在に仕切る仕切り板を維持して、添加剤を加熱すると共に、超臨界流体を上部室に導入し、添加剤を超臨界流体に拡散、溶解させつつ、添加剤を溶解した超臨界流体に被洗浄体を所定時間接触させて被洗浄体を洗浄する洗浄ステップと、
仕切り板を操作して圧力容器の下部室と上部室とを遮断し、超臨界流体を上部室に導入して、添加剤を溶解している上部室の超臨界流体を純粋の超臨界流体で置換して被洗浄体をリンス洗浄するリンス洗浄ステップと
を有することを特徴とする洗浄方法。
A pretreatment step of storing an additive or a mixture of an additive and a dissociation solvent (hereinafter, collectively referred to as an additive) in a lower chamber of the pressure vessel, and holding a body to be cleaned in an upper chamber of the pressure vessel;
Then, while the lower chamber and the upper chamber of the pressure vessel are in communication with each other, the lower chamber and the upper chamber of the pressure vessel are maintained in communication with each other, and a partition plate for partitioning and shutting off is maintained. A cleaning step of introducing the fluid into the upper chamber, diffusing and dissolving the additive in the supercritical fluid, and washing the body to be cleaned by contacting the body to be cleaned with the supercritical fluid in which the additive is dissolved for a predetermined time,
Operate the partition plate to shut off the lower chamber and upper chamber of the pressure vessel, introduce the supercritical fluid into the upper chamber, and convert the supercritical fluid in the upper chamber, in which the additive is dissolved, with pure supercritical fluid. A rinsing cleaning step of rinsing the object to be cleaned by replacement.
洗浄ステップでは、被洗浄体に付着した解離対象物に対する添加剤の解離性及び超臨界流体の洗浄効果を高めるために、被洗浄体と接触している超臨界流体に光を照射することを特徴とする請求項6に記載の洗浄方法。In the cleaning step, light is applied to the supercritical fluid in contact with the object to be cleaned in order to enhance the dissociation property of the additive to the object to be dissociated attached to the object to be cleaned and the cleaning effect of the supercritical fluid. The cleaning method according to claim 6, wherein: 洗浄ステップでは、圧力容器の下部室に収容されている添加剤に超音波を印加して、添加剤の超臨界流体への拡散を促進することを特徴とする請求項6又は7に記載の洗浄方法。The cleaning according to claim 6, wherein in the cleaning step, ultrasonic waves are applied to the additive contained in the lower chamber of the pressure vessel to promote diffusion of the additive into the supercritical fluid. Method. 洗浄ステップでは、超臨界流体に相転移可能な特定物質を圧力容器の上部室に流入させ、圧力容器の上部室の圧力及び温度を調節して、上部室内の特定物質を超臨界流体に相転移させることを特徴とする請求項6又は7に記載の洗浄方法。In the cleaning step, a specific substance capable of phase transition to the supercritical fluid flows into the upper chamber of the pressure vessel, and the pressure and temperature of the upper chamber of the pressure vessel are adjusted to change the specific substance in the upper chamber to the supercritical fluid. The cleaning method according to claim 6, wherein the cleaning is performed. 超臨界流体として超臨界流体COを使用することを特徴とする請求項6から9のうちのいずれか1項に記載の洗浄方法。The method of cleaning according to any one of the claims 6 9, characterized by using supercritical fluid CO 2 as the supercritical fluid. 添加剤として、HF、ヒドロキシアミン系、アルカノールアミン系、アルキシルアミン系、及び弗化アンモニウムの少なくともいずれかを用い、
解離溶媒として、水、イソプロピルアルコール(IPA)、メタノール、エタノール、イソプロパノール、エチレングリコール、アセトン、メチルエチルケトン、ジメチルスルホキシド、及びN−メチルピロリジンの少なくともいずれかを用いることを特徴とする請求項10に記載の洗浄方法。
As an additive, HF, hydroxyamine-based, alkanolamine-based, alkylamine-based, and at least one of ammonium fluoride,
The method according to claim 10, wherein at least one of water, isopropyl alcohol (IPA), methanol, ethanol, isopropanol, ethylene glycol, acetone, methyl ethyl ketone, dimethyl sulfoxide, and N-methylpyrrolidine is used as the dissociation solvent. Cleaning method.
JP2002353350A 2002-12-05 2002-12-05 Cleaning apparatus and cleaning method Pending JP2004186530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353350A JP2004186530A (en) 2002-12-05 2002-12-05 Cleaning apparatus and cleaning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353350A JP2004186530A (en) 2002-12-05 2002-12-05 Cleaning apparatus and cleaning method

Publications (1)

Publication Number Publication Date
JP2004186530A true JP2004186530A (en) 2004-07-02

Family

ID=32754654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353350A Pending JP2004186530A (en) 2002-12-05 2002-12-05 Cleaning apparatus and cleaning method

Country Status (1)

Country Link
JP (1) JP2004186530A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147654A (en) * 2004-11-16 2006-06-08 Tokyo Electron Ltd Method, apparatus and program for washing substrate, substrate treatment system, and storing medium
US20090020068A1 (en) * 2007-05-09 2009-01-22 Elpida Memory, Inc. Method of manufacturing of substrate
US7913702B2 (en) 2004-11-16 2011-03-29 Tokyo Electron Limited Substrate cleaning method, substrate cleaning apparatus, substrate processing system, substrate cleaning program and storage medium
CN101628288B (en) * 2008-07-17 2012-03-21 富葵精密组件(深圳)有限公司 Cleaning device and cleaning system
JP2013033962A (en) * 2011-07-29 2013-02-14 Semes Co Ltd Substrate processing apparatus and substrate processing method
CN103480609A (en) * 2013-06-09 2014-01-01 青岛科技大学 Device for cleaning precise part by supercritical carbon dioxide
CN106345753A (en) * 2016-09-06 2017-01-25 浙江晶科能源有限公司 Method for cleaning silicon wafer without damage
CN111570415A (en) * 2020-05-25 2020-08-25 深圳市洲明科技股份有限公司 Maintenance method of LED glue filling module
CN112263687A (en) * 2020-10-30 2021-01-26 江苏中慧元通生物科技有限公司 High-efficient inactivation device of bacterin
US10998185B2 (en) 2018-03-21 2021-05-04 Samsung Electronics Co., Ltd. Substrate cleaning method, substrate cleaning apparatus, and method for fabricating a semiconductor device using the apparatus
CN117490268A (en) * 2023-12-29 2024-02-02 广州广钢气体能源股份有限公司 Carbon dioxide cooling system for chip cleaning and conveying system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147654A (en) * 2004-11-16 2006-06-08 Tokyo Electron Ltd Method, apparatus and program for washing substrate, substrate treatment system, and storing medium
JP4610308B2 (en) * 2004-11-16 2011-01-12 東京エレクトロン株式会社 Substrate cleaning method, substrate cleaning apparatus, substrate processing system, substrate cleaning program, and storage medium
US7913702B2 (en) 2004-11-16 2011-03-29 Tokyo Electron Limited Substrate cleaning method, substrate cleaning apparatus, substrate processing system, substrate cleaning program and storage medium
US20090020068A1 (en) * 2007-05-09 2009-01-22 Elpida Memory, Inc. Method of manufacturing of substrate
CN101628288B (en) * 2008-07-17 2012-03-21 富葵精密组件(深圳)有限公司 Cleaning device and cleaning system
US9984902B2 (en) 2011-07-29 2018-05-29 Semes Co., Ltd. Apparatus and method for treating substrate
JP2013033962A (en) * 2011-07-29 2013-02-14 Semes Co Ltd Substrate processing apparatus and substrate processing method
US11735437B2 (en) 2011-07-29 2023-08-22 Semes Co., Ltd. Apparatus and method for treating substrate
CN103480609A (en) * 2013-06-09 2014-01-01 青岛科技大学 Device for cleaning precise part by supercritical carbon dioxide
CN106345753A (en) * 2016-09-06 2017-01-25 浙江晶科能源有限公司 Method for cleaning silicon wafer without damage
US10998185B2 (en) 2018-03-21 2021-05-04 Samsung Electronics Co., Ltd. Substrate cleaning method, substrate cleaning apparatus, and method for fabricating a semiconductor device using the apparatus
CN111570415A (en) * 2020-05-25 2020-08-25 深圳市洲明科技股份有限公司 Maintenance method of LED glue filling module
CN111570415B (en) * 2020-05-25 2021-04-13 深圳市洲明科技股份有限公司 Maintenance method of LED glue filling module
CN112263687A (en) * 2020-10-30 2021-01-26 江苏中慧元通生物科技有限公司 High-efficient inactivation device of bacterin
CN117490268A (en) * 2023-12-29 2024-02-02 广州广钢气体能源股份有限公司 Carbon dioxide cooling system for chip cleaning and conveying system
CN117490268B (en) * 2023-12-29 2024-03-26 广州广钢气体能源股份有限公司 Carbon dioxide cooling system for chip cleaning and conveying system

Similar Documents

Publication Publication Date Title
US6962161B2 (en) Method of high pressure treatment
JP5450494B2 (en) Supercritical drying method for semiconductor substrates
JP5622675B2 (en) Substrate processing method and substrate processing apparatus
US20040154641A1 (en) Substrate processing apparatus and method
JP2008541479A (en) A method to remove polar fluid from the surface using supercritical fluid
US20020164873A1 (en) Process and apparatus for removing residues from the microstructure of an object
KR20050097514A (en) Methods for transferring supercritical fluids in microelectronic and other industrial processes
KR101044408B1 (en) Substrate treating method
JP2011249454A (en) Supercritical drying method
JP2004186530A (en) Cleaning apparatus and cleaning method
US20040259357A1 (en) Surface treatment method, semiconductor device, method of fabricating semiconductor device, and treatment apparatus
JP2002110611A (en) Method and apparatus for cleaning semiconductor wafer
KR100720249B1 (en) Method for cleaning microstructure
KR100505693B1 (en) Cleaning method of photoresist or organic material from microelectronic device substrate
JP2008021673A (en) Cleaning method and cleaning apparatus
US20060130966A1 (en) Method and system for flowing a supercritical fluid in a high pressure processing system
US20210166939A1 (en) Substrate treating apparatus and substrate treating method
JP2005228790A (en) Resist removal method, resist-removing apparatus, and semiconductor wafer
JP2008078322A (en) Method and device for treating semiconductor wafer
WO2006039321A1 (en) Method and system for injecting chemistry into a supercritical fluid
KR20190002060A (en) Apparatus and Method for processing substrate
JP2000091180A (en) Super-critical drying device and method
JP4008900B2 (en) Supercritical processing method
KR20120041014A (en) Method treating a substrate
JP2006113102A (en) Substrate treatment method, substrate treatment device and computer program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20040604

Free format text: JAPANESE INTERMEDIATE CODE: A7424