JP2004185954A - Insulated core wire manufacturing device and its manufacturing method - Google Patents

Insulated core wire manufacturing device and its manufacturing method Download PDF

Info

Publication number
JP2004185954A
JP2004185954A JP2002350860A JP2002350860A JP2004185954A JP 2004185954 A JP2004185954 A JP 2004185954A JP 2002350860 A JP2002350860 A JP 2002350860A JP 2002350860 A JP2002350860 A JP 2002350860A JP 2004185954 A JP2004185954 A JP 2004185954A
Authority
JP
Japan
Prior art keywords
extrusion head
core wire
molten resin
insulator
extrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350860A
Other languages
Japanese (ja)
Inventor
Itsuro Kasabo
逸郎 笠坊
Katsuhisa Kimura
勝久 木村
Nobuhiro Umeo
信博 梅尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP2002350860A priority Critical patent/JP2004185954A/en
Publication of JP2004185954A publication Critical patent/JP2004185954A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated core wire manufacturing device used for manufacturing an insulated core wire, capable of improving bonding force between an internal conductor and a spiral insulator, and of improving bonding force to an external conductor externally fitted and overlaid in another process. <P>SOLUTION: This insulated core wire manufacturing device is equipped with: a first extrusion head 4 for forming the spiral insulator 5 by extruding a first molten resin R<SB>1</SB>from a rotary extrusion nozzle 3 to spirally winding the molten resin R1 around the internal conductor 1 pushed out from a center hole part 2; and a second extrusion head 7 installed on the downstream side of the extrusion head 4 for extruding a second molten resin R2 from an annular extrusion nozzle 6 to overlay and form an insulating tube 9 on the spiral insulator 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は同軸ケーブルの絶縁コア線の製造装置及びその製造方法に関する。
【0002】
【従来の技術】
陸上移動体通信システム等に使用される同軸ケーブルにおいて、アルミパイプ又は銅パイプ等の内部導体と、内部導体に外嵌する螺旋状の絶縁体(コルデル紐)と、さらにその外周の絶縁チューブとを有する絶縁コア線に、外部導体を被覆させたものがある。
この絶縁チューブを製造する従来の装置は、図5に示すように、回転クロスヘッド43が用いられており、溶融樹脂Rを押し出して、内部導体42にコルデル紐40を螺旋状に巻設し、それと同時に、溶融樹脂Rを押し出して、絶縁チューブ41をその外周に被覆させるよう構成されている(例えば、特許文献1参照)。なお、溶融樹脂Rは、ポリエチレン等の熱可塑性樹脂を使用している。
そして、絶縁チューブ41が被覆された後、回転クロスヘッド43の下流側に配設した冷却用水槽45にて絶縁コア線46は冷却され、溶融樹脂Rによるコルデル紐40と絶縁チューブ41とを固化させている。
【0003】
【特許文献1】
特開平11−165340号公報
【0004】
【発明が解決しようとする課題】
図5に示すように、従来の製造装置では、絶縁チューブ41及びコルデル紐40は、その外周面側から順に中心に向かって冷却されていくため、絶縁チューブ41が先行して固化し始めるため、遅れて固化するコルデル紐40が収縮する時に、コルデル紐40全体が絶縁チューブ41側(外方側)へ引っ張られ、図6と図7の矢印gに示すように、内部導体42とコルデル紐40との間に隙間が生じるという問題がある。これにより、内部導体42とコルデル紐40との密着度が低下し不良品となってしまう。さらに、図7に示すように一対のコルデル紐40が180 °離れて反対側に配置される場合にこの隙間は顕著に現れ、内部導体42の拘束力を低下させている。
また、冷却固化するコルデル紐40は、同時に絶縁チューブ41を内方へ引っ張り、絶縁コア線46は図7に示すように、絶縁チューブ41とコルデル紐40との接着部に凹み47が発生する。これにより、図8に示すように別の後工程において外部導体44を絶縁コア線46に被覆させ、(図外の)ガラス糸にてバインドした際に引っ掛かりがなく、拘束力が低下する(外部導体44から絶縁コア線が抜け出る)という問題がある。
【0005】
そこで本発明は、内部導体と螺旋状絶縁体との結合力を向上させ、さらに、他工程にて外嵌被覆させる外部導体との結合力を向上させることができる絶縁コア線を製造する絶縁コア線製造装置及びその製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上述の目的を達成するために、本発明に係る絶縁コア線製造装置は、第一溶融樹脂を回転押出口から押し出して中心孔部から繰り出される内部導体の外周に該第一溶融樹脂を螺旋状に巻設させ螺旋状絶縁体を形成する第一押出ヘッドと、該第一押出ヘッドの下流側に配設され第二溶融樹脂を円環押出口から押し出して絶縁チューブを上記螺旋状絶縁体に被覆形成させる第二押出ヘッドと、を備えたものである。
また、上記第一押出ヘッドと上記第二押出ヘッドとの間に、上記第一押出ヘッドから押し出されてくる上記螺旋状絶縁体を冷却する冷却手段を配設している。
【0007】
また、上述の目的を達成するために、本発明に係る絶縁コア線製造方法は、第一押出ヘッドと第二押出ヘッドとを列設し、該第一押出ヘッドの回転押出口から第一溶融樹脂を押し出しつつ、内部導体の外周に該第一溶融樹脂を螺旋状に巻設して螺旋状絶縁体を形成し、該螺旋状絶縁体を冷却し、引き続いて上記第二押出ヘッドを通過させて、該第二押出ヘッドの円環押出口から第二溶融樹脂を押し出して絶縁チューブを該螺旋状絶縁体に被覆形成し、絶縁コア線を連続的に製造する。
【0008】
【発明の実施の形態】
以下、図示の実施の形態に基づき、本発明を詳説する。
【0009】
図1は、本発明に係る絶縁コア線製造装置の実施の一形態を示す側面断面図であり、この装置により製造される絶縁コア線は、図2の斜視図に示すように、同軸ケーブル(漏洩同軸ケーブル)のコア部材となるものである。
同軸ケーブルについて説明すると、同軸ケーブルは、図2に示すように絶縁コア線10に外部導体(波付ラミネートテープ)11が外嵌被覆され、さらにその外周に(図外の)被覆材が被覆されて形成されるものである。
【0010】
そして、絶縁コア線10は、アルミパイプや銅パイプ、銅単線等の内部導体1と、内部導体1の外周に螺旋状に巻設状とされる螺旋状絶縁体(コルデル紐)5と、さらにその外周の絶縁チューブ9と、を有している。
外部導体11は、例えばアルミニウム製等のラミネートテープを巻き付けて形成されるものであり、図示省略するがスロットが長手方向に複数所定ピッチで形成されている。また、螺旋状絶縁体5及び絶縁チューブ9とは同一の熱可塑性樹脂とされ、例えばポリエチレンとしている。
【0011】
そして、図1の絶縁コア線製造装置について説明すると、この装置は、連続的に送られる内部導体1の送り方向上流側と下流側とに、第一押出ヘッド4と第二押出ヘッド7とを列設している。第一押出ヘッド4は、第一溶融樹脂R を回転押出口3から押し出して中心孔部2から繰り出される内部導体1の外周に第一溶融樹脂R を螺旋状に巻設させ螺旋状絶縁体5を形成する型部材である。また、第二押出ヘッド7は、第一押出ヘッド4の下流側に配設され、第二溶融樹脂R を円環押出口6から押し出して絶縁チューブ9を螺旋状絶縁体5に被覆形成させる型部材である。
【0012】
具体的に説明すると、第一押出ヘッド4は、図外の樹脂押出機と、内部導体1を挿通させる中心孔部2と中心孔部2より外径側位置において所定断面形状に開口する回転押出口3とを形成する回転ダイス12と、回転ダイス12をその外方側から回転可能に保持する本体金型15と、を具備している。
そして、樹脂押出機から供給される第一溶融樹脂R が回転ダイス12内を通過して回転押出口3から押し出され、中心孔部2から繰り出される内部導体1の外周面に、回転ダイス12の回転により第一溶融樹脂R が螺旋状に巻設され螺旋状絶縁体5が形成される。つまり、回転ダイス12の回転軸心と中心孔部2の軸心とは一致しており、矩形状等に開口する回転押出口3が、その軸心を回転軸心として中心孔部2から繰り出される内部導体1の廻りを回転し、第一溶融樹脂R が押し出され、螺旋状に巻設される。
【0013】
回転押出口3は、図1に示すように、回転ダイス12の端面に中心孔部2の開口端孔を中心として180 °の位相差をもって2箇所に形成されており、180 °位相がずれた2条の螺旋状絶縁体5,5が形成される。回転押出口3によって、図2及び図3の絶縁コア線10の側面断面図に示すような絶縁体5を形成する。
また、回転押出口3の数を1乃至複数としてもよいが、本発明においては、特に複数(2箇所)の場合に、後に説明するが優れた効果を奏する。
【0014】
従って、第一押出ヘッド4において、第一押出ヘッド4の回転押出口3から第一溶融樹脂R を押し出しつつ、内部導体1の外周に第一溶融樹脂R を螺旋状に巻設して螺旋状絶縁体5を形成する。
これにより、第一押出ヘッド4を通過した内部導体1の外周面に螺旋状絶縁体5が巻設状とされるのみであるため(絶縁チューブ9が固化する際の影響を未だ受けないため)、内部導体1の外周面と螺旋状絶縁体5の内周面とは完全に接着され、螺旋状絶縁体5による内部導体1の拘束力は大きくなる。
さらに、内部導体1を 100℃以上に予熱を行い、第一溶融樹脂R の温度を高め(160 ℃〜200 ℃)に設定することで、螺旋状絶縁体5と内部導体1との密着度を向上させることができる。
【0015】
次に、図1により説明すると、第二押出ヘッド7は、図外の樹脂押出機と、螺旋状絶縁体5が被覆された内部導体1を挿通させる中心ガイド孔部13と中心ガイド孔部13より外径側位置においてリング状に開口する円環押出口6とを形成する固定ダイス14と、を具備している。
そして、この樹脂押出機から供給される第二溶融樹脂R が固定ダイス14内を通過して円環押出口6から押し出され、中心ガイド孔部13から繰り出される内部導体1に密着する螺旋状絶縁体5の外周面に第二溶融樹脂R が押し出され、絶縁チューブ9が被覆形成される。
【0016】
つまり、固定ダイス14の円環押出口6の軸心と中心ガイド孔部13の軸心とは一致しており、連続的に中心ガイド孔部13から繰り出される内部導体1と螺旋状絶縁体5とによる結合体を、絶縁チューブ9により被覆する。
また、第一押出ヘッド4の中心孔部2の軸心と、第二押出ヘッド7の中心ガイド孔部13の軸心とは、一直線上に配置され、内部導体1は連続して直線的に搬送される。
【0017】
また、第一押出ヘッド4と第二押出ヘッド7との間に、第一押出ヘッド4から押し出されてくる螺旋状絶縁体5を冷却する冷却手段8が配設されている。
冷却手段8は、気体を吹きつけて冷却する空冷式の装置であり、例えば圧縮空気を吹きつけるエアノズルがある。水冷式では錆の原因となるおそれがあり、本発明においては、第一押出ヘッド4と第二押出ヘッド7との間の冷却は、空冷式が好ましい。
【0018】
そして、第一押出ヘッド4から押し出された螺旋状絶縁体5と内部導体1との結合体は、冷却手段8により冷却され、引き続いて第二押出ヘッド7を通過させて、第二押出ヘッド7の円環押出口6から第二溶融樹脂R を押し出して、絶縁チューブ9を螺旋状絶縁体5の外周に被覆形成し、絶縁コア線10を連続的に製造する。
【0019】
また、第二押出ヘッド7により、絶縁チューブ9を外嵌被覆させるのは、螺旋状絶縁体5の外形状が決まる程度に固まった状態で、絶縁チューブ9を被覆させる。
なお、第二押出ヘッド7を通過させることにより、螺旋状絶縁体5と絶縁チューブ9とは同じ材質であるため、絶縁チューブ9被覆時に、絶縁チューブ9と螺旋状絶縁体5とは融着され一体となる。つまり、絶縁チューブ9と螺旋状絶縁体5との接触部は連結されて連結部16とされる。
【0020】
これにより、絶縁チューブ9はその後冷却に伴い収縮するが、螺旋状絶縁体5は第二押出ヘッド7から脱するまでに略固まって形状が決定されており、絶縁チューブ9と螺旋状絶縁体5との連結部16においてそれ以上絶縁チューブ9は内方へ収縮できず突条の節部18を形成し、図4に示すように連結部16以外の筒状部17が縮径状に収縮し、竹節状の絶縁コア線10を得ることができる。従って、図4に示すように、その外方に外嵌させる外部導体11は、その節部18に引っ掛かり、さらに、図示省略のバインドするガラス紐も引っ掛かり、外部導体11の拘束力を大きくすることができ、品質のよい完成品を製造することができる。
【0021】
そして、第二押出ヘッド7により絶縁チューブ9が被覆された後、図外の第二の冷却手段により冷却され、絶縁コア線10をドラムに巻き取る。
なお、第二の冷却手段は、水冷式及び空冷式のどちらを採用してもよい。
【0022】
【発明の効果】
本発明は上述の構成により次のような効果を奏する。
【0023】
(請求項1又は3によれば)先に内部導体1に螺旋状絶縁体5を巻設させ、螺旋状絶縁体5がある程度(乃至完全に)固化して形状が安定してから、その外周に絶縁チューブ9を外嵌させることができるため、螺旋状絶縁体5が絶縁チューブ9に引っ張られて内部導体1から引き剥がされることがない。つまり、内部導体1と螺旋状絶縁体5との密着性を良くすることができる。
さらに、螺旋状絶縁体5が固化する際にその収縮により絶縁チューブ9を中心方向へ引っ張るおそれがないため、絶縁コア線10を竹節形状とすることができる。従って、外部導体11を絶縁コア線10に被覆させた際、外部導体11が節部18に引っ掛かり、外部導体11の拘束力を大きくすることができ、品質のよい完成品を製造することができる。
【0024】
(請求項2によれば)螺旋状絶縁体5の固化が促進でき、所望する形状の絶縁コア線10を確実に得ることができると共に、製品第一押出ヘッド4と第二押出ヘッド7との間隔を小さくすることが可能となり、製造設備(ライン)を小さく(短く)することができる。
【図面の簡単な説明】
【図1】本発明の絶縁コア線製造装置の実施の一形態を示す側面断面図である。
【図2】絶縁コア線の斜視図である。
【図3】絶縁コア線の側面断面図である。
【図4】絶縁コア線に外部導体を被覆させた状態の拡大断面図である。
【図5】従来の絶縁コア線製造装置の側面断面図である。
【図6】従来の絶縁コア線製造装置により製造される絶縁コア線の側面断面図である。
【図7】従来の絶縁コア線製造装置により製造される絶縁コア線の横断面図である。
【図8】従来の絶縁コア線製造装置により製造される絶縁コア線に外部導体を被覆させた状態の拡大断面図である。
【符号の説明】
1 内部導体
2 中心孔部
3 回転押出口
4 第一押出ヘッド
5 螺旋状絶縁体
6 円環押出口
7 第二押出ヘッド
8 冷却手段
9 絶縁チューブ
10 絶縁コア線
第一溶融樹脂
第二溶融樹脂
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for manufacturing an insulated core wire of a coaxial cable.
[0002]
[Prior art]
In a coaxial cable used for a land mobile communication system, etc., an inner conductor such as an aluminum pipe or a copper pipe, a helical insulator (a cordel string) externally fitted to the inner conductor, and an insulating tube on an outer periphery thereof are used. Some insulated core wires have an outer conductor coated.
As shown in FIG. 5, a conventional apparatus for manufacturing this insulating tube uses a rotary crosshead 43, extrudes a molten resin R, spirally winds a cordel string 40 around an internal conductor 42, At the same time, the configuration is such that the molten resin R is extruded to cover the outer circumference of the insulating tube 41 (for example, see Patent Document 1). The molten resin R uses a thermoplastic resin such as polyethylene.
Then, after the insulating tube 41 is covered, the insulating core wire 46 is cooled in the cooling water tank 45 disposed downstream of the rotary crosshead 43, and the cordel string 40 and the insulating tube 41 made of the molten resin R are solidified. Let me.
[0003]
[Patent Document 1]
JP-A-11-165340
[Problems to be solved by the invention]
As shown in FIG. 5, in the conventional manufacturing apparatus, the insulating tube 41 and the cordel string 40 are sequentially cooled from the outer peripheral surface toward the center, so that the insulating tube 41 starts to solidify in advance. When the Cordel string 40 that solidifies with a delay contracts, the entire Cordel string 40 is pulled toward the insulating tube 41 side (outward side), and as shown by the arrow g in FIGS. There is a problem that a gap is generated between the first and second. As a result, the degree of adhesion between the inner conductor 42 and the cordel string 40 is reduced, resulting in a defective product. Further, as shown in FIG. 7, when the pair of cordel cords 40 are arranged 180 ° apart on the opposite side, this gap appears remarkably, reducing the binding force of the inner conductor 42.
Further, the Cordel string 40 that cools and solidifies simultaneously pulls the insulating tube 41 inward, and the insulating core wire 46 has a dent 47 at the bonding portion between the insulating tube 41 and the Cordel string 40 as shown in FIG. As a result, as shown in FIG. 8, the outer conductor 44 is covered with the insulating core wire 46 in another post-process, and is not caught when bound with a glass thread (not shown), so that the binding force is reduced (externally). There is a problem that the insulating core wire comes off from the conductor 44).
[0005]
Accordingly, the present invention provides an insulating core for manufacturing an insulating core wire capable of improving the bonding force between an inner conductor and a helical insulator and further improving the bonding force with an outer conductor to be externally covered in another process. An object of the present invention is to provide a wire manufacturing apparatus and a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, an insulated core wire manufacturing apparatus according to the present invention is configured such that the first molten resin is spirally formed on the outer periphery of an internal conductor that is extruded from a rotary extrusion port and fed out from a center hole. A first extrusion head that is wound around to form a spiral insulator, and a second molten resin that is disposed downstream of the first extrusion head and extrudes a second molten resin from an annular extrusion port to form an insulating tube on the spiral insulator. And a second extrusion head for forming a coating.
Further, cooling means for cooling the spiral insulator extruded from the first extrusion head is provided between the first extrusion head and the second extrusion head.
[0007]
Further, in order to achieve the above-mentioned object, a method for manufacturing an insulated core wire according to the present invention includes arranging a first extrusion head and a second extrusion head in a row, While extruding the resin, the first molten resin is spirally wound around the inner conductor to form a spiral insulator, the spiral insulator is cooled, and subsequently passed through the second extrusion head. Then, the second molten resin is extruded from the annular extrusion port of the second extrusion head to form an insulating tube on the helical insulator, thereby continuously producing an insulating core wire.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail based on the illustrated embodiments.
[0009]
FIG. 1 is a side sectional view showing an embodiment of an insulated core wire manufacturing apparatus according to the present invention. As shown in a perspective view of FIG. It becomes a core member of a leaky coaxial cable).
The coaxial cable will be described. In the coaxial cable, as shown in FIG. 2, an outer conductor (corrugated laminated tape) 11 is externally coated on an insulated core wire 10, and a coating material (not shown) is coated on the outer periphery thereof. It is formed by
[0010]
The insulated core wire 10 includes an internal conductor 1 such as an aluminum pipe, a copper pipe, or a single copper wire, a spiral insulator (cordel string) 5 spirally wound around the inner conductor 1, and And an outer peripheral insulating tube 9.
The external conductor 11 is formed by winding a laminate tape made of, for example, aluminum. Although not shown, a plurality of slots are formed in the longitudinal direction at a predetermined pitch. The spiral insulator 5 and the insulating tube 9 are made of the same thermoplastic resin, for example, polyethylene.
[0011]
Then, the insulated core wire manufacturing apparatus of FIG. 1 will be described. This apparatus includes a first extrusion head 4 and a second extrusion head 7 on the upstream side and the downstream side in the feed direction of the continuously fed internal conductor 1. They are lined up. The first extrusion head 4, the first molten resin R 1 extruded from a rotating extrusion port 3 is wound around the first molten resin R 1 to the outer periphery of the internal conductor 1 spirally drawn out from the central hole 2 spiral insulating A mold member forming the body 5. The second extrusion head 7 is disposed downstream of the first extrusion head 4, extrudes the second molten resin R 2 from the annular extrusion port 6, and forms the insulating tube 9 on the spiral insulator 5. It is a mold member.
[0012]
More specifically, the first extrusion head 4 is provided with a resin extruder (not shown), a center hole 2 through which the internal conductor 1 is inserted, and a rotary pusher having a predetermined cross-sectional shape at a position on the outer diameter side of the center hole 2. The rotary die 12 that forms the outlet 3 and a main body mold 15 that rotatably holds the rotary die 12 from the outside thereof are provided.
Then, the first molten resin R 1 supplied from the resin extruder passes through the rotary die 12, is extruded from the rotary extrusion port 3, and is provided on the outer peripheral surface of the internal conductor 1 fed from the center hole 2 by the rotary die 12. The first molten resin R <b> 1 is spirally wound by the rotation of, and the spiral insulator 5 is formed. That is, the rotation axis of the rotary die 12 and the axis of the center hole 2 coincide with each other, and the rotary extrusion port 3 opening in a rectangular shape or the like is fed out of the center hole 2 with the axis as the rotation axis. rotates around the internal conductor 1 which, first molten resin R 1 is extruded, is wound around in a spiral.
[0013]
As shown in FIG. 1, the rotary extrusion port 3 is formed at two positions on the end surface of the rotary die 12 with a phase difference of 180 ° around the opening end hole of the center hole 2 and is 180 ° out of phase. Two spiral insulators 5, 5 are formed. The rotary extrusion port 3 forms an insulator 5 as shown in a side sectional view of the insulated core wire 10 in FIGS. 2 and 3.
In addition, the number of the rotary extrusion ports 3 may be one or more. In the present invention, in particular, in the case of a plurality (two places), excellent effects can be obtained as described later.
[0014]
Accordingly, in a first extrusion head 4, while the rotary extrusion port 3 of the first extrusion head 4 extruding a first molten resin R 1, and wound around the first molten resin R 1 in a spiral manner around the circumference of the internal conductor 1 The spiral insulator 5 is formed.
Thus, the spiral insulator 5 is merely wound around the outer peripheral surface of the inner conductor 1 that has passed through the first extrusion head 4 (because the solidification of the insulating tube 9 is not yet affected). The outer peripheral surface of the inner conductor 1 and the inner peripheral surface of the helical insulator 5 are completely adhered to each other, and the helical insulator 5 increases the binding force of the inner conductor 1.
Furthermore, the inner conductor 1 is preheated to 100 ° C. or higher, and the temperature of the first molten resin R 1 is set to a higher temperature (160 ° C. to 200 ° C.), whereby the degree of adhesion between the spiral insulator 5 and the inner conductor 1 is increased. Can be improved.
[0015]
Next, referring to FIG. 1, the second extrusion head 7 includes a resin extruder (not shown), a center guide hole 13 through which the inner conductor 1 covered with the helical insulator 5 is inserted, and a center guide hole 13. And a fixed die 14 that forms a ring-shaped extrusion port 6 that opens in a ring shape at a position on the outer diameter side.
Then, the second molten resin R 2 supplied from the resin extruder passes through the inside of the fixed die 14, is extruded from the annular extrusion opening 6, and comes into close contact with the inner conductor 1 fed from the center guide hole 13. second molten resin R 2 is extruded on the outer circumferential surface of the insulator 5, an insulating tube 9 is covered formed.
[0016]
That is, the axis of the annular extrusion opening 6 of the fixed die 14 and the axis of the center guide hole 13 coincide with each other, and the inner conductor 1 and the helical insulator 5 continuously fed out from the center guide hole 13. Is covered with an insulating tube 9.
In addition, the axis of the center hole 2 of the first extrusion head 4 and the axis of the center guide hole 13 of the second extrusion head 7 are arranged on a straight line, and the inner conductor 1 is continuously and linearly arranged. Conveyed.
[0017]
Further, between the first extrusion head 4 and the second extrusion head 7, cooling means 8 for cooling the spiral insulator 5 extruded from the first extrusion head 4 is provided.
The cooling means 8 is an air-cooled type device that blows gas to cool it, and for example, has an air nozzle that blows compressed air. Water cooling may cause rust, and in the present invention, cooling between the first extrusion head 4 and the second extrusion head 7 is preferably air cooling.
[0018]
Then, the combined body of the helical insulator 5 and the internal conductor 1 extruded from the first extrusion head 4 is cooled by the cooling means 8, and subsequently passes through the second extrusion head 7, so that the second extrusion head 7 from annular extrusion port 6 by extruding the second molten resin R 2, the insulating tube 9 formed by coating the outer periphery of the spiral-shaped insulator 5, the continuous production of insulated core wire 10.
[0019]
The outer tube 9 is covered with the second extrusion head 7 in a state where the outer shape of the spiral insulator 5 is hardened so as to be determined.
Since the spiral insulator 5 and the insulating tube 9 are made of the same material by passing through the second extrusion head 7, the insulating tube 9 and the spiral insulator 5 are fused when the insulating tube 9 is covered. Become one. That is, the contact portions between the insulating tube 9 and the helical insulator 5 are connected to form the connecting portion 16.
[0020]
As a result, the insulating tube 9 shrinks with cooling thereafter, but the spiral insulator 5 is substantially solidified and removed by the time it comes off from the second extrusion head 7, and the insulating tube 9 and the spiral insulator 5 are determined. At the connecting portion 16 with the connecting portion 16, the insulating tube 9 cannot be further contracted inward and forms a protruding ridge portion 18, and as shown in FIG. 4, the cylindrical portion 17 other than the connecting portion 16 contracts in a reduced diameter. Thus, the bamboo-shaped insulating core wire 10 can be obtained. Therefore, as shown in FIG. 4, the outer conductor 11 fitted to the outside is caught by the node portion 18, and further, a binding glass string (not shown) is also caught, thereby increasing the binding force of the outer conductor 11. And a high quality finished product can be manufactured.
[0021]
Then, after the insulating tube 9 is covered by the second extrusion head 7, the insulating tube 9 is cooled by a second cooling means (not shown), and the insulating core wire 10 is wound around a drum.
In addition, any of a water-cooled type and an air-cooled type may be adopted as the second cooling means.
[0022]
【The invention's effect】
The present invention has the following effects by the above configuration.
[0023]
First, the spiral insulator 5 is wound around the inner conductor 1, and after the spiral insulator 5 is solidified to some extent (or completely) and the shape is stabilized, the outer periphery thereof is Since the insulating tube 9 can be fitted to the outside, the helical insulator 5 is not pulled off from the inner conductor 1 by the insulating tube 9. That is, the adhesion between the internal conductor 1 and the spiral insulator 5 can be improved.
Furthermore, when the helical insulator 5 is solidified, there is no possibility of pulling the insulating tube 9 toward the center due to its contraction, so that the insulating core wire 10 can have a bamboo node shape. Therefore, when the outer conductor 11 is covered with the insulating core wire 10, the outer conductor 11 is hooked on the node 18, so that the binding force of the outer conductor 11 can be increased, and a high-quality finished product can be manufactured. .
[0024]
(According to claim 2) The solidification of the spiral insulator 5 can be promoted, the insulating core wire 10 having a desired shape can be reliably obtained, and the product first extrusion head 4 and the second extrusion head 7 can be connected to each other. The interval can be reduced, and the manufacturing equipment (line) can be reduced (shortened).
[Brief description of the drawings]
FIG. 1 is a side sectional view showing an embodiment of an insulated core wire manufacturing apparatus according to the present invention.
FIG. 2 is a perspective view of an insulating core wire.
FIG. 3 is a side sectional view of an insulating core wire.
FIG. 4 is an enlarged cross-sectional view showing a state where an insulating core wire is covered with an external conductor.
FIG. 5 is a side sectional view of a conventional insulated core wire manufacturing apparatus.
FIG. 6 is a side sectional view of an insulated core wire manufactured by a conventional insulated core wire manufacturing apparatus.
FIG. 7 is a cross-sectional view of an insulated core wire manufactured by a conventional insulated core wire manufacturing apparatus.
FIG. 8 is an enlarged cross-sectional view showing a state where an outer conductor is coated on an insulated core wire manufactured by a conventional insulated core wire manufacturing apparatus.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 internal conductor 2 center hole 3 rotary extrusion port 4 first extrusion head 5 spiral insulator 6 annular extrusion port 7 second extrusion head 8 cooling means 9 insulating tube 10 insulating core wire R 1 first molten resin R 2nd Two molten resin

Claims (3)

第一溶融樹脂(R )を回転押出口(3)から押し出して中心孔部(2)から繰り出される内部導体(1)の外周に該第一溶融樹脂(R )を螺旋状に巻設させ螺旋状絶縁体(5)を形成する第一押出ヘッド(4)と、該第一押出ヘッド(4)の下流側に配設され第二溶融樹脂(R )を円環押出口(6)から押し出して絶縁チューブ(9)を上記螺旋状絶縁体(5)に被覆形成させる第二押出ヘッド(7)と、を備えたことを特徴とする絶縁コア線製造装置。First wound around said first molten resin (R 1) in a spiral manner around the circumference of the molten resin (R 1) a rotation extrusion port center hole portion extruded from (3) (2) internal conductor (1) fed from the A first extrusion head (4) for forming a spiral insulator (5), and a second molten resin (R 2 ) disposed downstream of the first extrusion head (4) through an annular extrusion port (6). And a second extrusion head (7) for extruding the insulating tube (9) onto the spiral insulator (5) by extruding from the helical insulator (5). 上記第一押出ヘッド(4)と上記第二押出ヘッド(7)との間に、上記第一押出ヘッド(4)から押し出されてくる上記螺旋状絶縁体(5)を冷却する冷却手段(8)を配設した請求項1記載の絶縁コア線製造装置。Cooling means (8) between the first extrusion head (4) and the second extrusion head (7) for cooling the spiral insulator (5) extruded from the first extrusion head (4). 2. The insulated core wire manufacturing apparatus according to claim 1, further comprising: 第一押出ヘッド(4)と第二押出ヘッド(7)とを列設し、該第一押出ヘッド(4)の回転押出口(3)から第一溶融樹脂(R )を押し出しつつ、内部導体(1)の外周に該第一溶融樹脂(R )を螺旋状に巻設して螺旋状絶縁体(5)を形成し、該螺旋状絶縁体(5)を冷却し、引き続いて上記第二押出ヘッド(7)を通過させて、該第二押出ヘッド(7)の円環押出口(6)から第二溶融樹脂(R )を押し出して絶縁チューブ(9)を該螺旋状絶縁体(5)に被覆形成し、絶縁コア線(10)を連続的に製造することを特徴とする絶縁コア線製造方法。A first extrusion head (4) and a second extrusion head (7) are arranged side by side, and while extruding a first molten resin (R 1 ) from a rotary extrusion port (3) of the first extrusion head (4), the inside thereof is extruded. The first molten resin (R 1 ) is spirally wound around the outer periphery of the conductor (1) to form a spiral insulator (5), and the spiral insulator (5) is cooled. After passing through the second extrusion head (7), the second molten resin (R 2 ) is extruded from the annular extrusion port (6) of the second extrusion head (7), and the insulating tube (9) is spirally insulated. A method for manufacturing an insulated core wire, comprising forming a coating on a body (5) and continuously manufacturing an insulated core wire (10).
JP2002350860A 2002-12-03 2002-12-03 Insulated core wire manufacturing device and its manufacturing method Pending JP2004185954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350860A JP2004185954A (en) 2002-12-03 2002-12-03 Insulated core wire manufacturing device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350860A JP2004185954A (en) 2002-12-03 2002-12-03 Insulated core wire manufacturing device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004185954A true JP2004185954A (en) 2004-07-02

Family

ID=32752932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350860A Pending JP2004185954A (en) 2002-12-03 2002-12-03 Insulated core wire manufacturing device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004185954A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147545A (en) * 2004-10-18 2006-06-08 Ube Nitto Kasei Co Ltd Manufacturing method for insulated core body for coaxial cable, insulated core body for coaxial cable and coaxial cable using insulated core body
JP2011217560A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Insulated coating conductor manufacturing method and stator
CN101800098B (en) * 2009-12-31 2012-06-27 刘德鸿 Winding method of high-pressure ignition wire core and equipment thereof
CN105845280A (en) * 2016-06-01 2016-08-10 安徽环瑞电热器材有限公司 Two-core three-layer heat tracing cable manufacturing device
CN108777196A (en) * 2018-05-29 2018-11-09 山东泰开特种电缆科技有限公司 Automatic centring device based on cable plastic extrusion machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147545A (en) * 2004-10-18 2006-06-08 Ube Nitto Kasei Co Ltd Manufacturing method for insulated core body for coaxial cable, insulated core body for coaxial cable and coaxial cable using insulated core body
CN101800098B (en) * 2009-12-31 2012-06-27 刘德鸿 Winding method of high-pressure ignition wire core and equipment thereof
JP2011217560A (en) * 2010-04-01 2011-10-27 Toyota Motor Corp Insulated coating conductor manufacturing method and stator
CN105845280A (en) * 2016-06-01 2016-08-10 安徽环瑞电热器材有限公司 Two-core three-layer heat tracing cable manufacturing device
CN108777196A (en) * 2018-05-29 2018-11-09 山东泰开特种电缆科技有限公司 Automatic centring device based on cable plastic extrusion machine
CN108777196B (en) * 2018-05-29 2020-03-24 山东泰开特种电缆科技有限公司 Automatic centering device based on cable extruding machine

Similar Documents

Publication Publication Date Title
JP4121557B2 (en) Extruded thermoplastic insulation on stator bar
JPH1069826A (en) Manufacture of coaxial cable
JP2004185954A (en) Insulated core wire manufacturing device and its manufacturing method
US4378267A (en) Apparatus for manufacturing coaxial cable
US11794429B2 (en) Hose extrusion mandrel and method for manufacturing a hose
CN109483846B (en) Manufacturing process of flat mobile phone data line
WO2016127562A1 (en) Optical fibre, and manufacturing system and manufacturing method therefor
JP4111764B2 (en) Thin coaxial cable and manufacturing method thereof
US4229238A (en) Process for manufacturing coaxial cable
CN110993194A (en) Cable and production process thereof
US20100065196A1 (en) Method for the production of a cylindrical, strand-shaped part
JP2000215741A (en) Water tight strand electric wire and its manufacture
JP2868068B2 (en) Method for manufacturing self-supporting optical cable
JPS596010B2 (en) Coaxial cable insulator manufacturing method
JP3335393B2 (en) Coaxial cable manufacturing method
CN217306207U (en) Insulated cable production facility
JP2001301008A (en) Sizing device for extruded moldings and controlling method for outside diameter
JP3083888B2 (en) Extrusion coating method of coated wire
JPH11250750A (en) Tubular cable manufacturing equipment
KR20100007163A (en) Duct for protecting optical fiber cable and method for producing the same
JP2022124071A (en) Wiring harness and manufacturing method thereof
JPH0376211B2 (en)
JP3266345B2 (en) Manufacturing method of self-supporting cable with slack
JPH03152811A (en) Manufacture of heat resisting thin insulated wire
CN114613553A (en) Method for producing insulated cable