JP2004184007A - Fine powder-like fuel combustion device - Google Patents

Fine powder-like fuel combustion device Download PDF

Info

Publication number
JP2004184007A
JP2004184007A JP2002353263A JP2002353263A JP2004184007A JP 2004184007 A JP2004184007 A JP 2004184007A JP 2002353263 A JP2002353263 A JP 2002353263A JP 2002353263 A JP2002353263 A JP 2002353263A JP 2004184007 A JP2004184007 A JP 2004184007A
Authority
JP
Japan
Prior art keywords
burner
furnace
burner nozzle
fine powder
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002353263A
Other languages
Japanese (ja)
Other versions
JP3752215B2 (en
Inventor
Akiyasu Okamoto
章泰 岡元
Hiroshi Tanigawa
浩 谷川
Koichi Sakamoto
康一 坂本
Tadashi Gengo
義 玄後
Hachiro Kawashima
八郎 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002353263A priority Critical patent/JP3752215B2/en
Publication of JP2004184007A publication Critical patent/JP2004184007A/en
Application granted granted Critical
Publication of JP3752215B2 publication Critical patent/JP3752215B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine powder-like fuel combustion device capable of providing excellent ignition and combustion performances by sufficiently developing the function of a concentrated/lean fuel separator to eliminate the unbalance of the concentration of fine powder-like fuel (fine powder coal) in the fine powder-like fuel combustion device such as a fine powder coal firing burner having an asymmetrical burner nozzle. <P>SOLUTION: This fine powder-like fuel combustion device comprises the burner nozzle 1, a fine powder coal supply tube 3, and a wind box 5 forming a combustion supporting air supply passage 4 around the fine powder-like fuel supply tube. A vertical plane passing the axis 8 of the jetting direction of the mixed flow A of fine powder coal and carrying air is tilted without crossing the side face of a furnace at a right angle. The shape of the burner nozzle is laterally asymmetrical with respect to the vertical plane, and a burner nozzle opening face 2 is positioned in the same plane as the side face of the furnace. The concentrated/lean fuel separator 31 is horizontally installed in the burner nozzle or the fine powder coal supply tube. The concentrated/lean fuel separator 31 is installed to be parallel with the side face of the furnace and laterally asymmetric with respect to the vertical plane. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は微粉状燃料燃焼装置に関し、火力発電用ボイラー火炉や化学工業炉等に適用される微粉炭炊きバーナーなどの微粉状燃料燃焼装置に適用して有用なものである。
【0002】
【従来の技術】
立型角筒状の火炉の側面に設けられ、微粉炭と空気の混合流を噴出するバーナーノズルと、このバーナーノズルに連結されて微粉炭と空気を供給する微粉炭供給管と、この微粉炭供給管の周囲に燃焼補助空気供給路を形成する風箱とを備え、且つ、前記混合流の噴出方向軸線を通る鉛直面が前記火炉の側面に直交せずに傾斜している微粉炭炊きバーナーにおいて、従来はバーナーノズルの形状が前記鉛直面に対して左右対称であった。
【0003】
ところが、この対称バーナーノズルを有する微粉炭炊きバーナーでは、火炉壁管パネルやバーナーパネルの工作が容易でない、火炉壁支持構造物が複雑な構造となる、メンテナンス性が悪いなどの問題があった。そこで、これらの問題を解決するため、バーナーノズルの形状が前記鉛直面に対して左右非対称であり、且つ、バーナーノズルの先端部開口面が火炉の側面と同一又は平行な平面内に位置する非対称バーナーノズルを備えた微粉炭炊きバーナーが開発された(特許文献1参照)。
【0004】
一方、従来は別々に設けられていたコンクバーナーとウイークバーナを1本のバーナにしてバーナー全体を簡略化することや、着火性能の向上、NOx低減、未燃分減少などを目的として、バーナーノズル内に濃淡分離器を備えた微粉炭炊きバーナーも開発された(特許文献2参照)。但し、このときのバーナーノズルは噴出方向軸線を通る鉛直面に対して左右対称なものであり、濃淡分離器も前記鉛直面に対して左右対称なものである。
【0005】
【特許文献1】
特開平9−49613号公報
【特許文献2】
特許第2781740号公報
【0006】
【発明が解決しようとする課題】
そこで、本願発明者等は、より高性能な微粉炭炊きバーナーを実現するため、特許文献1に示されているような非対称バーナーノズルを有する微粉炭炊きバーナーにおいて、特許文献2に示されているような濃淡分離器を備えることを検討した。ところが、この濃淡分離器を非対称バーナーノズル内に単に取り付けた場合、即ち、非対称バーナーノズル内に濃淡分離器を噴出方向軸線と直交するように配置した場合には濃淡分離器の機能が十分に発揮されず、微粉炭濃度がアンバランスになり、その結果、着火点不良、バーナーノズルへのスラグ(溶融灰)付着、NO・未燃分性能不良が生じてしまった(図6(a)参照、詳細後述)。
【0007】
従って本発明は上記の事情に鑑み、非対称バーナーノズルを有する微粉炭炊きバーナーなどの微粉状燃料燃焼装置において、濃淡分離器の機能が十分に発揮され、微粉状燃料(微粉炭)濃度のアンバランスが解消されて良好な着火燃焼性能が得られる微粉状燃料燃焼装置を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記課題を解決する本発明の微粉状燃料燃焼装置は、立型角筒状の火炉の側面に設けられ、微粉状燃料と空気の混合流を噴出するバーナーノズル又はバーナースロートと、このバーナーノズル又はバーナースロートに連結されて微粉状燃料と空気を供給する微粉状燃料供給管と、この微粉状燃料供給管の周囲に燃焼補助空気供給路を形成する風箱とを備えるとともに、前記混合流の噴出方向軸線を通る鉛直面が前記火炉の側面に直交せずに傾斜し、前記バーナーノズル又はバーナースロートの形状が前記鉛直面に対して左右非対称であり、前記バーナーノズル又はバーナースロートの先端部開口面が前記火炉の側面と同一又は平行な平面内に位置し、且つ、前記バーナーノズル又はバーナースロート内又は前記微粉炭供給管内に濃淡分離器が水平に設けられた微粉状燃料燃焼装置において、
前記濃淡分離器は、断面形状が、前記混合流の下流側に向かって徐々に上下方向に拡大し、その後、前記噴出方向軸線に平行となった後、鉛直方向の平面で終わり、且つ、前記混合流の噴出方向に貫通する切り欠きスリットを有する構造であって、前記火炉の側面に略平行となるように設けられ、前記鉛直面に対して左右非対称であることを特徴とする。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づき詳細に説明する。
【0010】
<実施の形態1>
図1は本発明の実施の形態1に係る微粉炭炊きバーナーを上方からみた構成を示す水平断面図、図2は本発明の実施の形態1に係る火炉壁管の構造概念図、図3は前記微粉炭炊きバーナーの近傍の流動状態を模試的に説明した図、図4は前記微粉炭炊きバーナーに備えた濃淡分離器の構成図である。また、図5及び図6は前記濃淡分離器の作用効果を示す説明図である。
【0011】
図1に示すように、立型角筒状の火炉30(図では一部を示している)の側面7にはバーナーノズル1が設けられており、このバーナーノズル1の後端部には微粉状燃料供給管としての微粉炭供給管3が連結されている。微粉状燃料としての微粉炭と搬送空気との混合流Aは、微粉炭供給管3を通過してバーナーノズル1に導かれ、バーナーノズル1の先端部開口面2から火炉30内に向かって噴出される。風箱5は微粉炭供給管3の周囲に燃焼補助空気供給路4を形成している。燃焼補助空気は、燃焼補助空気供給路4を通過してバーナーノズル1に導かれ、微粉炭や搬送空気と同様にバーナーノズル開口面2から火炉30内に向かって噴出される。
【0012】
前記混合流Aの噴出方向軸線(仮想線)8を通る(含む)鉛直面(仮想面)は、火炉30の側面7に直交せず、傾斜している。火炉30内に噴出された微粉炭と搬送空気ならびに燃焼補助空気は火炉30内で拡散・混合しながら火炎を形成する。なお、前記混合流Aの噴出方向軸線8は、燃焼補助空気の噴出方向軸線と同軸を成している。
【0013】
バーナーノズル2は噴出方向軸線8を通る鉛直面(仮想面)に対して左右非対称な非対称バーナーノズルとなっている。このようなバーナーノズル形状を採用することにより、図示のようにバーナーノズル開口面2を火炉側面7と同一平面内に位置させることができるため、従来の対称バーナーノズルを用いた場合のように火炉壁管を火炉側面と角度を持たせて風箱側に向けて配置する必要がなく、図1及び図2に示すような火炉壁管6の構造にしても、火炎が火炉壁管6に衝突したり、火炉壁管6を舐めたりする現象を生じさせずに燃焼させることができる。
【0014】
このため、火炉壁管6ならびにバーナーパネルの工作が容易になり、低コストで簡素な構造の火炉壁管支持構造物が採用できる。更に、大容量バーナー、大容量ボイラーの場合にも、火炉壁管周囲へのアクセスを容易にすることができ、また、バーナーノズルの位置を従来の対称バーナーノズルよりも火炉内部側に配置することができるため、メンテナンス性が良好となる。
【0015】
図3において、15は微粉炭供給管もしくは燃焼補助空気供給路の模式図、16はバーナーノズル様式図、17の矢印は微粉炭と搬送空気もしくは燃焼補助空気の火炉内部への噴出方向軸線方向の速度分布、18は火炉側面とαの角度で風箱側へ向かって配置された火炉壁管の模式図、19の矢印は火炉内旋回火炎の模式図である。
【0016】
本実施の形態1の微粉炭炊きバーナーは、対称バーナーノズルを用いた従来の微粉炭炊きバーナーに比べて、バーナー近傍における基本的な流動状態が異なる。まず、図3(a)に示すように微粉炭と搬送空気の火炉内部への噴出方向軸線8に垂直な面に対してバーナーノズル開口面2がβの角度を有する本実施の形態1においては、微粉炭と搬送空気もしくは燃焼補助空気の噴流の流路が長くなるバーナーノズル壁面20では、逆側の壁面、即ち、微粉炭と搬送空気もしくは燃焼補助空気の噴流の流路長が短くなるバーナーノズル壁面21よりも、噴流の圧力損失が大きくなるから、同噴流の噴出方向は噴出方向軸線8から逸れて壁面21側に矢印22のように偏向する。その偏向の度合は角度βならびに壁面20,21の摩擦抵抗係数によって異なる。
【0017】
また、図3(b)に示すように対称バーナーノズルを用いた従来の微粉炭炊きバーナーでは、火炉側面とαの角度で風箱側に向かって配置された火炉壁管18の影響によって、噴流が噴出方向軸線8から23で示すように偏向する傾向にあったが、本実施の形態1においては、そのような火炉壁管18とは火炉壁管の配置が異なるため、偏向の度合が小さくなり、噴流は24で示すようになる。
【0018】
このように従来の対称バーナーノズルを用いた微粉炭炊きバーナーとはバーナー近傍の流動様式が異なる影響に併せて、火炉旋回火炎19が噴流に与える影響によって、最終的に本実施の形態1における微粉炭炊きバーナーの噴流22の噴出方向は、実際には噴出方向軸線8から最大15度ないし20度偏向すると推定される。かかる非対称バーナーノズルを用いた微粉炭炊きバーナーは、対称バーナーノズルを用いた従来の微粉炭炊きバーナーに比べて、着火燃焼性能も良好なものである。
【0019】
そして、本実施の形態1では、このような非対称のバーナーノズル1を有する微粉炭炊きバーナーにおいて、中子式の濃淡分離器31を備えている。この濃淡分離器31は、図示しない固定金具などの取付部材により、バーナーノズル1内(図示例の場合)又は微粉炭供給管3内の中央部に水平に設けられている。しかも、濃淡分離器31は、火炉30の側面7に平行となるように設けられ、噴出方向軸線8を通る鉛直面に対して左右非対称となっている。
【0020】
ここで図4に基づき、濃淡分離器31の構造について詳述する。図4(a)は濃淡分離器の平面図、図4(b)は図4(a)のB方向矢視図、図4(c)は図4(a)のC−C線矢視断面図である。
【0021】
濃淡分離器31は、図4(c)のように断面形状が、微粉炭と搬送空気の混合流Aの下流側に向かって徐々に上下方向に拡大し(傾斜面31b,31c部分)、その後、前記混合流Aの噴出方向軸線8に平行(水平面31d,31e部分)となった後、鉛直方向の平面で終わり(鉛直面31f部分)、且つ、前記混合流Aの噴出方向に貫通する切り欠きスリット31aを有する構造となっている。
【0022】
更に詳述すると、図4(a)に示すように濃淡分離器31は、上面視において噴出方向軸線8と平行な左右両側の短辺と、噴出方向軸線8に対して傾斜している前後の長辺とを有する細長い平行四辺形状である。そして、濃淡分離器31は、その長手方向が水平になるようにバーナーノズル1内に配置され、且つ、前記長手方向が火炉30の側面7に平行(即ちバーナーノズル開口面2と平行)となるように設けられて噴出方向軸線8を通る鉛直面に対して左右非対称となっている。
【0023】
また、図4(c)に示すように濃淡分離器31は、前端側(混合流Aの上流側)には、混合流Aの下流側に向かって徐々に上下方向に広がる平面(傾斜面)31b,31cを有し、後端側(混合流Aの下流側)には、傾斜面31b,31cにそれぞれ連続し且つ噴出方向軸線8に平行な平面(水平面)31d,31eを有し、後面は水平面31d,31eに連続する鉛直方向の平面(鉛直面)31fとなっており、中心部には混合流Aの噴出方向に貫通し且つ水平方向の幅が広い(図4(b)参照)切り欠きスリット31aを有している。また、図4(b)に示すように濃淡分離器31の左右の側面31g,31hは湾曲している。
【0024】
この濃淡分離器31の作用により、微粉炭と搬送空気の混合流Aは、バーナーノズル1内で外周側の微粉炭濃度の高い混合流と、中央側の微粉炭濃度の低い混合流とに分離される。微粉炭濃度の高い混合流は燃焼補助空気と接触し、バーナーノズル1内の外周側で万遍なく着火して良好な火炎を形成する。一方、微粉炭濃度度の低い混合流はバーナーノズル1内の中央部を吹き抜け、バーナーノズル1の後流側(火炉内)で着火燃焼して、微粉炭濃度の低い火炎を形成する。ここで、主として着火に寄与する領域は、バーナーノズル1の内周面の循環渦にとり込まれる混合流(微粉炭流)である。中央部を吹き抜ける混合流(微粉炭流)は、これより遅れて火炎伝播する。このようにバーナーノズル1内で混合流に微粉炭の濃淡を形成することにより、従来以上の良好な燃焼火炎となり、更にバーナ火炎内でのNOx還元領域が増大する。
【0025】
ここで図5に基づき、更に具体的に濃淡分離器31の作用を説明する。図5(a)は図4(c)に相当する断面図であって濃淡分離の様子を示す説明図、図5(b)は図5(a)のD方向矢視図である。なお、図5中の点は微粉炭を表現している。
【0026】
これらの図に示すように、微粉炭供給管3内を流れてきた微粉炭と搬送空気の混合流Aが、濃淡分離器31の傾斜面31b,31cに衝突すると、混合流A内の微粉炭は慣性力が付与されてバーナーノズル1の内壁面近傍に集まる。一方、空気は濃淡分離器31で一旦分離された後、濃淡分離器31の後方でバーナーノズル1内の軸心部(中央部)に戻る。従って、バーナーノズル1内の外周部(E部)では微粉炭濃度が高く、軸心部(F部)では微粉炭濃度が低くなる。このとき濃淡分離器31の後流側に回り込んだ空気は渦流を発生し易いが、混合流Aの一部を切り欠きスリット31a内に導いて下流側に流すことにより、前記渦流の発生を防止して前記渦流による淀みを解消し、均一な流速分布を形成して、濃淡分離効果を促進することができる。
【0027】
次に、濃淡分離器31の形状寸法について説明する。ここで図4に示すように濃淡分離器31の幅をd、直管部長さをL、後面高さをh、混合流Aの流れ方向に対する角度をθとし、切り欠きスリット31aの幅をd、入口部高さをh、出口部高さをhとする。また、バーナーノズル1の高さをd、幅をdとし、バーナーノズル1の先端から濃淡分離器31までの長さをLとする。
【0028】
濃淡分離器31の設置位置については、L/dを1〜4、好ましくは2〜3とするが、最適値はL/d=3である。バーナーノズル開口面2では噴出流速が均一で、微粉炭の濃淡分布だけ生じるのが理想的である。L/dが小さいほど濃淡分布は生じるが、流速分布は不均一になる。逆にL/dが大きくなると、流速は均一になるが濃淡分布は生じなくなる。従って、L/d=1〜4の範囲が適正範囲である。また、濃淡分離器31の横幅dとバーナーノズル1の内幅dの関係は、d/d=0.9〜1.0が好ましい。
【0029】
濃淡分離器31の角度θは35°〜45°の範囲とすることができるが、θ=45°が最も好ましい。θが大きいほど分離効率は向上するが、圧力損失も増加する。また、濃淡分離器31の幅dと切り欠きスリット31aの幅dの関係はd/d=0.7〜1.0が望ましく、d/d=0.9が最も好ましい。d/dが小さいと濃淡分離器31の側面に渦が生じ、微粉炭の巻き込みが増大するからである。更に、濃淡分離器31の後面高さhと直管部長さLの関係はh/L=1〜2の範囲とするが、h/L=2が好ましい。h/Lが大き過ぎると濃淡分離器後流部の渦が大きくなり、微粉炭の巻き込みが増大して分離効率が低下するからである。また、切り欠きスリット31aの高さh,hと濃淡分離器31の後面高さhとの関係はh=2.5h,h=2hが好ましい。
【0030】
そして、本実施の形態1では、かかる濃淡分離器31を、噴出方向軸線8を通る鉛直面と直交するように配置するのではなく、上記のように火炉30の側面7に平行となるように設けて前記鉛直面に対して左右非対称としているため、微粉炭と搬送空気の混合流がバーナーノズル開口面2から火炉30内に噴出されるとき、外周側の微粉炭濃度の濃い領域における微粉炭濃度分布を均一にすることができる。
【0031】
つまり、図6(a)に示すように濃淡分離器31を噴出方向軸線8を通る鉛直面と直交するように配置した場合には、濃淡分離器31の左右両端部からバーナーノズル開口面2までの距離L,Lに大きな差があるため、バーナーノズル開口面2から微粉炭と搬送空気の混合流が噴出されるとき、外周側の微粉炭濃度の濃い領域における微粉炭濃度分布が、濃淡分離器31の左右両端部に対応する左右両側E,Eにおいてアンバランスとなってしまう。即ち、E側の方が微粉炭濃度が濃く、E側の方が微粉炭濃度が薄くなってしまう。このため、微粉炭濃度の薄いE側では着火点不良が生じ、バーナーノズル1へのスラグ(溶融灰)付着が生じる。また、NO・未燃分性能も不良となる。
【0032】
図6(b)に示すように濃淡分離器31を少し傾けた場合、即ち、図6(c)のように濃淡分離器31を火炉30の側面7と平行にしたときの濃淡分離器31と前記鉛直面との成す角度をθ(例えば38°)としたとき、θ/2(例えば19℃)だけ傾けた場合にも、多少の改善はみられたものの、あまりE側とE側の微粉炭濃度のアンバランスを解消することはできなっかた。
【0033】
これに対し、図6(c)のように濃淡分離器31を火炉30の側面7と平行にした場合、即ち、濃淡分離器31と前記鉛直面との成す角度を、バーナーノズル開口面2と前記鉛直面との成す角度θ(例えば38°)と同じにした場合には、濃淡分離器31の左右両端部からバーナーノズル開口面2までの距離L,Lが等しくなることから、E側とE側の微粉炭濃度のアンバランスが解消され、外周側の微粉炭濃度の濃い領域において均一な微粉炭濃度分布が得られる。その結果、着火点不良がなくなって良好な着火燃焼性能が得られ、バーナーノズル1へのスラグ(溶融灰)付着やNO・未燃分性能不良も解消された。
【0034】
<実施の形態2>
図7は本発明の実施の形態2に係る微粉炭炊きバーナーを上方からみた構成を示す水平断面図である。本実施の形態2の微粉炭炊きバーナーは、上記実施の形態1のバーナーノズル1の代わりにバーナースロートを採用した例である。図7において、9はバーナースロート、10はバーナースロート9の先端部開口面、11は火炉側面7の延長面(仮想面)であり、その他の符号は図1と同様に定義される。
【0035】
バーナースロート9は耐火材などで形成することができる。バーナースロート9の形状は、図1の場合と同様に噴出方向軸線8を通る鉛直面を対称面として左右非対称となっている。本実施の形態2はバーナースロート開口面10が火炉側面7ならびに火炉側面7の延長面11と同一平面内になく、これら両面近傍の平行平面内に位置するケースである。
【0036】
そして、この微粉炭炊きバーナーでも、図1の場合と同様に濃淡分離器31が、図示しない固定金具などの取付部材により、バーナースロート9内(図示例の場合)又は微粉炭供給管3内の中央部に水平に配置され、且つ、火炉側面7に平行となるように設けられて、噴出方向軸線8を通る鉛直面に対して左右非対称となっている。
【0037】
従って、本実施の形態2の微粉炭炊きバーナーにおいても、上記実施の形態1と同様の作用効果が得られる。
【0038】
<実施の形態3>
図8は本発明の実施の形態3に係る微粉炭炊きバーナーを上方からみた構成を示す水平断面図である。本実施の形態3の微粉炭炊きバーナーは、微粉炭供給管3に連結される屈曲部12もしくは屈曲部12のバーナーノズル1側にスワラ式分散器13を設置したものである。屈曲部12に矢印方向から流入してきた微粉炭と搬送空気の混合流は、屈曲部12における遠心力によって濃淡分布を生じ、屈曲部12の外周側において微粉炭の濃度が濃くなり、逆に内周側において微粉炭の濃度が薄くなるが、この濃淡分布が生じた混合流を、スワラ式分散器13の作用によって微粉炭濃度分布が均一になるように分散させる。
【0039】
そして、かかる微粉炭炊きバーナーでも、図1の場合と同様に濃淡分離器31が、図示しない固定金具などの取付部材により、バーナーノズル1内(図示例の場合)又は微粉炭供給管3内の中央部に水平に配置され、且つ、火炉側面7に平行となるように設けられて、噴出方向軸線8を通る鉛直面に対して左右非対称となっている。
【0040】
従って、本実施の形態3の微粉炭炊きバーナーにおいても、上記実施の形態1と同様の作用効果が得られる。
【0041】
なお、上記実施の形態にように濃淡分離器31は火炉側面7と平行にすることが最も好ましいと考えられるが、必ずしもこれに限定するもではなく、火炉側面7と略平行であればよい。即ち、濃淡分離器31の傾斜角度を、例えば図6(c)のようにθとした場合の他、θよりも少し小さくした場合やθよりも少し大きくした場合でも効果が期待できる。
【0042】
【発明の効果】
以上、実施の形態とともに具体的に説明したように、本発明の微粉状燃料燃焼装置によれば、立型角筒状の火炉の側面に設けられ、微粉状燃料と空気の混合流を噴出するバーナーノズル又はバーナースロートと、このバーナーノズル又はバーナースロートに連結されて微粉状燃料と空気を供給する微粉状燃料供給管と、この微粉状燃料供給管の周囲に燃焼補助空気供給路を形成する風箱とを備えるとともに、前記混合流の噴出方向軸線を通る鉛直面が前記火炉の側面に直交せずに傾斜し、前記バーナーノズル又はバーナースロートの形状が前記鉛直面に対して左右非対称であり、前記バーナーノズル又はバーナースロートの先端部開口面が前記火炉の側面と同一又は平行な平面内に位置し、且つ、前記バーナーノズル又はバーナースロート内又は前記微粉炭供給管内には濃淡分離器が水平に設けられた微粉状燃料燃焼装置において、前記濃淡分離器は、断面形状が、前記混合流の下流側に向かって徐々に上下方向に拡大し、その後、前記噴出方向軸線に平行となった後、鉛直方向の平面で終わり、且つ、前記混合流の噴出方向に貫通する切り欠きスリットを有する構造であって、前記火炉の側面に略平行となるように設けられ、前記鉛直面に対して左右非対称であることを特徴とするため、微粉炭と搬送空気の混合流がバーナーノズル開口面から火炉内に噴出されるとき、外周側の微粉炭濃度の濃い領域における微粉炭濃度分布を均一にすることができ、その結果、着火点不良がなくなって良好な着火燃焼性能が得られ、バーナーノズル又はバーナースロートへのスラグ(溶融灰)付着やNO・未燃分性能不良も解消することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る微粉炭炊きバーナーを上方からみた構成を示す水平断面図である。
【図2】本発明の実施の形態1に係る火炉壁管の構造概念図である。
【図3】前記微粉炭炊きバーナーの近傍の流動状態を模試的に説明した図である。
【図4】前記微粉炭炊きバーナーに備えた濃淡分離器の構成図である。
【図5】前記濃淡分離器の作用効果を示す説明図である。
【図6】前記濃淡分離器の作用効果を示す説明図である。
【図7】本発明の実施の形態2に係る微粉炭炊きバーナーを上方からみた構成を示す水平断面図である。
【図8】本発明の実施の形態3に係る微粉炭炊きバーナーを上方からみた構成を示す水平断面図である。
【符号の説明】
1 バーナーノズル
2 バーナーノズル開口面
3 微粉炭供給管
4 燃焼補助空気供給路
5 風箱
6 火炉壁管
7 火炉側面
8 混合流の噴出方向軸線
9 バーナースロート
10 バーナースロート開口面
11 火炉側面の延長面
12 屈曲部
13 スワラ式分散器
15 微粉炭供給管もしくは燃焼補助空気供給路の模式図
16 バーナーノズル様式図
17 速度分布
18 火炉壁管の模式図
19 火炉内旋回火炎の模式図
20,21 バーナーノズル壁面
22,23,24 噴流方向
30 火炉
31 濃淡分離器
31a 切り欠きスリット
31b,31c 傾斜面
31d,31e 水平面
31f 後面(鉛直方向の平面)
31g,31h 側面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pulverized fuel combustion apparatus, and is useful when applied to a pulverized fuel combustion apparatus such as a pulverized coal burning burner applied to a boiler furnace for thermal power generation, a chemical industrial furnace, or the like.
[0002]
[Prior art]
A burner nozzle that is provided on the side of a vertical rectangular tubular furnace and ejects a mixed flow of pulverized coal and air; a pulverized coal supply pipe connected to the burner nozzle to supply pulverized coal and air; A wind box forming a combustion auxiliary air supply path around a supply pipe, and a pulverized coal-burning burner in which a vertical plane passing through an axis of a direction in which the mixed flow is jetted is inclined without being orthogonal to a side surface of the furnace. In the prior art, the shape of the burner nozzle was symmetrical with respect to the vertical plane.
[0003]
However, the pulverized coal-burning burner having the symmetric burner nozzle has problems in that the furnace wall tube panel and the burner panel are not easily worked, the furnace wall support structure has a complicated structure, and maintenance is poor. Therefore, in order to solve these problems, the shape of the burner nozzle is asymmetrical with respect to the vertical plane, and the opening surface of the tip end of the burner nozzle is located in the same or parallel plane as the side surface of the furnace. A pulverized coal-burning burner equipped with a burner nozzle has been developed (see Patent Document 1).
[0004]
On the other hand, in order to simplify the entire burner by using a conc burner and a weak burner, which are conventionally provided separately, as a single burner, to improve ignition performance, reduce NOx, and reduce unburned fuel, a burner nozzle is used. A pulverized coal-cooked burner equipped with a concentration separator has also been developed (see Patent Document 2). However, the burner nozzle at this time is symmetrical with respect to a vertical plane passing through the ejection direction axis, and the density separator is also symmetrical with respect to the vertical plane.
[0005]
[Patent Document 1]
JP-A-9-49613 [Patent Document 2]
Japanese Patent No. 2781740 [0006]
[Problems to be solved by the invention]
Therefore, the present inventors have disclosed a pulverized coal-burning burner having an asymmetric burner nozzle as disclosed in Patent Literature 1, which is disclosed in Patent Literature 2, in order to realize a higher performance pulverized coal-burning burner. It was studied to provide such a density separator. However, when the density separator is simply installed in the asymmetric burner nozzle, that is, when the density separator is arranged in the asymmetric burner nozzle so as to be orthogonal to the ejection direction axis, the function of the density separator is sufficiently exhibited. However, the pulverized coal concentration became unbalanced, and as a result, poor ignition point, slag (molten ash) adhered to the burner nozzle, and poor performance of NO X and unburned components occurred (see FIG. 6A). Details will be described later).
[0007]
Accordingly, the present invention has been made in view of the above circumstances, and in a pulverized fuel combustion device such as a pulverized coal burning burner having an asymmetric burner nozzle, the function of the concentration separator is sufficiently exhibited, and the pulverized fuel (pulverized coal) concentration is unbalanced. It is an object of the present invention to provide a pulverized fuel combustion device which can solve the above problem and obtain good ignition combustion performance.
[0008]
[Means for Solving the Problems]
A pulverized fuel combustion device of the present invention that solves the above-mentioned problems is provided on a side surface of a furnace having a vertical rectangular tube shape, and a burner nozzle or a burner throat that ejects a mixed flow of pulverized fuel and air, and the burner nozzle or A pulverized fuel supply pipe connected to a burner throat to supply pulverized fuel and air; and a wind box forming a combustion auxiliary air supply path around the pulverized fuel supply pipe, and ejecting the mixed flow. The vertical plane passing through the direction axis is inclined not orthogonal to the side surface of the furnace, the shape of the burner nozzle or the burner throat is asymmetrical with respect to the vertical plane, and the opening surface of the tip of the burner nozzle or the burner throat. Is located in a plane that is the same or parallel to the side of the furnace, and, in the burner nozzle or burner throat or in the pulverized coal supply pipe, a density separator is provided. In earnestly pulverized fuel combustion apparatus provided,
The density separator has a cross-sectional shape that gradually expands in the vertical direction toward the downstream side of the mixed flow, and then becomes parallel to the ejection direction axis, and then ends in a vertical plane, and A structure having a notch slit penetrating in the direction of jetting the mixed flow, which is provided so as to be substantially parallel to the side surface of the furnace, and characterized in that it is asymmetrical with respect to the vertical plane.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0010]
<Embodiment 1>
FIG. 1 is a horizontal sectional view showing a configuration of a pulverized coal-burning burner according to Embodiment 1 of the present invention as viewed from above, FIG. 2 is a structural conceptual view of a furnace wall tube according to Embodiment 1 of the present invention, and FIG. FIG. 4 schematically illustrates a flow state in the vicinity of the pulverized coal burning burner, and FIG. 4 is a configuration diagram of a concentration separator provided in the pulverized coal burning burner. FIGS. 5 and 6 are explanatory views showing the operation and effect of the density separator.
[0011]
As shown in FIG. 1, a burner nozzle 1 is provided on a side surface 7 of a furnace 30 (partially shown in the figure) of a vertical prismatic tubular shape. A pulverized coal supply pipe 3 as a fuel supply pipe is connected. The mixed flow A of the pulverized coal as the pulverized fuel and the carrier air passes through the pulverized coal supply pipe 3, is guided to the burner nozzle 1, and is ejected into the furnace 30 from the opening 2 at the tip end of the burner nozzle 1. Is done. The wind box 5 forms a combustion auxiliary air supply path 4 around the pulverized coal supply pipe 3. The combustion auxiliary air passes through the combustion auxiliary air supply passage 4 and is guided to the burner nozzle 1, and is jetted out of the burner nozzle opening surface 2 into the furnace 30 in the same manner as pulverized coal and carrier air.
[0012]
A vertical plane (virtual plane) passing through (including) the axis (virtual line) 8 of the jet direction of the mixed flow A is not perpendicular to the side surface 7 of the furnace 30 but is inclined. The pulverized coal, the carrier air, and the combustion auxiliary air ejected into the furnace 30 form a flame while diffusing and mixing in the furnace 30. The jet direction axis 8 of the mixed flow A is coaxial with the jet direction axis of the combustion auxiliary air.
[0013]
The burner nozzle 2 is an asymmetric burner nozzle that is asymmetrical with respect to a vertical plane (virtual plane) passing through the ejection direction axis 8. By adopting such a burner nozzle shape, the burner nozzle opening surface 2 can be located in the same plane as the furnace side surface 7 as shown in the figure, so that the furnace furnace is used as in the case of using the conventional symmetric burner nozzle. There is no need to arrange the wall tube at an angle to the side of the furnace and toward the wind box side. Even if the furnace tube 6 is configured as shown in FIGS. 1 and 2, the flame collides with the furnace tube 6. It can be burned without causing the phenomenon of licking or licking the furnace wall tube 6.
[0014]
For this reason, the furnace wall tube 6 and the burner panel are easily manufactured, and a furnace wall tube support structure having a simple structure at low cost can be adopted. Furthermore, even in the case of a large-capacity burner or a large-capacity boiler, access to the periphery of the furnace wall tube can be facilitated, and the position of the burner nozzle should be located closer to the inside of the furnace than the conventional symmetric burner nozzle. , The maintenance is improved.
[0015]
In FIG. 3, 15 is a schematic diagram of a pulverized coal supply pipe or a combustion auxiliary air supply path, 16 is a burner nozzle style diagram, and 17 arrows indicate the pulverized coal and carrier air or combustion auxiliary air jetting into the furnace in the axial direction. Velocity distribution, 18 is a schematic diagram of a furnace wall tube arranged toward the wind box side at an angle α with respect to the furnace side, and an arrow 19 is a schematic diagram of a swirling flame in the furnace.
[0016]
The pulverized coal-burning burner of the first embodiment differs from the conventional pulverized coal-burning burner using a symmetric burner nozzle in a basic flow state near the burner. First, as shown in FIG. 3A, in the first embodiment in which the burner nozzle opening surface 2 has an angle of β with respect to a surface perpendicular to the axis 8 in which the pulverized coal and the carrier air are injected into the furnace. In the burner nozzle wall surface 20 where the flow path of the jet of pulverized coal and the carrier air or combustion auxiliary air is longer, the burner in which the flow path length of the opposite wall, that is, the flow path of the jet of the pulverized coal and the carrier air or combustion auxiliary air is shorter. Since the pressure loss of the jet is larger than that of the nozzle wall 21, the jet direction of the jet deviates from the jet direction axis 8 and is deflected toward the wall 21 as shown by an arrow 22. The degree of the deflection depends on the angle β and the coefficient of frictional resistance of the wall surfaces 20 and 21.
[0017]
In addition, as shown in FIG. 3 (b), in the conventional pulverized coal-burning burner using the symmetric burner nozzle, the jet flow is affected by the furnace wall tube 18 arranged toward the wind box side at an angle α with respect to the furnace side. Tended to deflect as shown by the ejection direction axes 8 to 23, but in the first embodiment, the degree of deflection was small because the arrangement of the furnace wall tube was different from that of the furnace wall tube 18. And the jet becomes as shown at 24.
[0018]
As described above, in addition to the influence of the different flow style near the burner from the pulverized coal-cooked burner using the conventional symmetric burner nozzle, the fine powder in the first embodiment is finally produced by the influence of the furnace swirling flame 19 on the jet. It is estimated that the jet direction of the jet 22 of the charcoal burner is actually deviated from the jet direction axis 8 by a maximum of 15 to 20 degrees. Pulverized coal-burning burners using such asymmetric burner nozzles also have better ignition and combustion performance than conventional pulverized coal-burning burners using symmetric burner nozzles.
[0019]
In the first embodiment, a pulverized coal-burning burner having such an asymmetric burner nozzle 1 is provided with a core-type light / dark separator 31. The density separator 31 is provided horizontally in the burner nozzle 1 (in the case of the illustrated example) or in the central portion of the pulverized coal supply pipe 3 by an attachment member such as a fixing bracket (not shown). Moreover, the density separator 31 is provided so as to be parallel to the side surface 7 of the furnace 30 and is asymmetrical with respect to a vertical plane passing through the ejection direction axis 8.
[0020]
Here, the structure of the density separator 31 will be described in detail with reference to FIG. 4 (a) is a plan view of the density separator, FIG. 4 (b) is a view in the direction of arrow B in FIG. 4 (a), and FIG. 4 (c) is a cross section in the direction of arrows CC in FIG. 4 (a). FIG.
[0021]
As shown in FIG. 4C, the cross-sectional shape of the concentration separator 31 gradually increases in the vertical direction toward the downstream side of the mixed flow A of the pulverized coal and the carrier air (the inclined surfaces 31b and 31c), and thereafter. After being parallel to the jetting direction axis 8 of the mixed flow A (portions 31 d and 31 e), it ends in a vertical plane (portion 31 f) and cuts through the jetting direction of the mixed flow A. It has a structure having a notch slit 31a.
[0022]
More specifically, as shown in FIG. 4A, the light and shade separator 31 includes short sides on both the left and right sides parallel to the ejection direction axis 8 in a top view, and front and rear sides inclined with respect to the ejection direction axis 8. It is an elongated parallelogram having long sides. The density separator 31 is disposed in the burner nozzle 1 so that its longitudinal direction is horizontal, and the longitudinal direction is parallel to the side surface 7 of the furnace 30 (that is, parallel to the burner nozzle opening surface 2). And is asymmetrical with respect to a vertical plane passing through the ejection direction axis 8.
[0023]
As shown in FIG. 4 (c), the density separator 31 has a flat surface (inclined surface) that gradually spreads vertically toward the downstream side of the mixed flow A on the front end side (upstream of the mixed flow A). At the rear end side (downstream of the mixed flow A), there are planes (horizontal planes) 31d and 31e continuous with the inclined surfaces 31b and 31c, respectively, and parallel to the ejection direction axis 8. Is a vertical plane (vertical surface) 31f that is continuous with the horizontal planes 31d and 31e, and penetrates in the center in the direction in which the mixed flow A is ejected and has a wide horizontal width (see FIG. 4B). It has a notch slit 31a. Further, as shown in FIG. 4 (b), the left and right side surfaces 31g and 31h of the density separator 31 are curved.
[0024]
By the action of the concentration separator 31, the mixed flow A of the pulverized coal and the carrier air is separated into a mixed flow having a high pulverized coal concentration on the outer peripheral side and a mixed flow having a low pulverized coal concentration on the central side in the burner nozzle 1. Is done. The mixed stream having a high pulverized coal concentration comes into contact with the combustion auxiliary air and ignites uniformly on the outer peripheral side in the burner nozzle 1 to form a good flame. On the other hand, the mixed flow having a low pulverized coal concentration blows through the central portion in the burner nozzle 1 and ignites and burns on the downstream side (in the furnace) of the burner nozzle 1 to form a flame having a low pulverized coal concentration. Here, the region mainly contributing to the ignition is the mixed flow (pulverized coal flow) taken into the circulation vortex on the inner peripheral surface of the burner nozzle 1. The mixed stream (pulverized coal stream) that blows through the center propagates the flame later. By forming the density of the pulverized coal in the mixed flow in the burner nozzle 1 in this manner, the combustion flame becomes better than before, and the NOx reduction region in the burner flame is further increased.
[0025]
Here, the operation of the density separator 31 will be described more specifically with reference to FIG. FIG. 5A is a cross-sectional view corresponding to FIG. 4C, and is an explanatory view showing a state of shading, and FIG. 5B is a view as seen in the direction of arrow D in FIG. 5A. The dots in FIG. 5 represent pulverized coal.
[0026]
As shown in these figures, when the mixed flow A of the pulverized coal and the carrier air flowing in the pulverized coal supply pipe 3 collides with the inclined surfaces 31b and 31c of the concentration separator 31, the pulverized coal in the mixed flow A Are gathered near the inner wall surface of the burner nozzle 1 due to the inertial force. On the other hand, after the air is once separated by the density separator 31, the air returns to the axial portion (center portion) in the burner nozzle 1 behind the density separator 31. Therefore, the pulverized coal concentration is high in the outer peripheral portion (E portion) in the burner nozzle 1 and low in the axial center portion (F portion). At this time, the air that has flowed to the downstream side of the density separator 31 is likely to generate a vortex, but the vortex is generated by guiding a part of the mixed flow A into the notch slit 31a and flowing it downstream. By preventing the stagnation caused by the eddy current, a uniform flow velocity distribution can be formed, and the density separation effect can be promoted.
[0027]
Next, the shape and dimensions of the density separator 31 will be described. Here, as shown in FIG. 4, the width of the density separator 31 is d 1 , the length of the straight pipe portion is L 1 , the height of the rear surface is h 1 , the angle of the mixed flow A with respect to the flow direction is θ, and the notch slit 31 a The width is d 2 , the entrance height is h 2 , and the exit height is h 3 . The height of the burner nozzle 1 is d 3 , the width is d 4, and the length from the tip of the burner nozzle 1 to the density separator 31 is L 2 .
[0028]
The installation position of the shade separator 31, L 2 / d 3 1-4, preferably 2 to 3, the optimum value is L 2 / d 3 = 3. Ideally, the jet flow velocity is uniform at the burner nozzle opening surface 2 and only the density distribution of pulverized coal is generated. The smaller the value of L 2 / d 3 , the more the density distribution occurs, but the flow velocity distribution becomes non-uniform. Conversely, when L 2 / d 3 increases, the flow velocity becomes uniform, but no light / dark distribution occurs. Accordingly, the scope of the L 2 / d 3 = 1~4 is proper range. The relationship between the width d 1 and the inner width d 4 of the burner nozzle 1 shades separator 31, d 1 / d 4 = 0.9 to 1.0 is preferred.
[0029]
The angle θ of the density separator 31 can be in the range of 35 ° to 45 °, but θ = 45 ° is most preferable. The larger θ is, the higher the separation efficiency is, but the higher the pressure loss is. The relationship width d 2 of the width d 1 and notch slit 31a of the shading separator 31 is desirably d 2 / d 1 = 0.7~1.0, d 2 / d 1 = 0.9 is most preferred . This is because if d 2 / d 1 is small, a vortex is generated on the side surface of the density separator 31 and entrainment of the pulverized coal increases. Further, rear surface relationship height h 1 and the straight portion length L 1 of the gray separator 31 is in the range of h 1 / L 1 = 1~2, h 1 / L 1 = 2 is preferable. This is because if h 1 / L 1 is too large, the vortex in the downstream part of the concentration separator becomes large, the entrainment of pulverized coal increases, and the separation efficiency decreases. The relationship between rear surface height h 1 of the height h 2, h 3 and shades separator 31 of the notched slit 31a is h 1 = 2.5h 3, h 3 = 2h 2 is preferred.
[0030]
In the first embodiment, instead of disposing the density separator 31 so as to be orthogonal to the vertical plane passing through the ejection direction axis 8, the concentration separator 31 is set so as to be parallel to the side surface 7 of the furnace 30 as described above. When the mixed flow of pulverized coal and carrier air is injected into the furnace 30 from the burner nozzle opening surface 2 in the furnace 30, the pulverized coal in the region where the pulverized coal concentration is high on the outer peripheral side is asymmetric with respect to the vertical plane. The concentration distribution can be made uniform.
[0031]
That is, as shown in FIG. 6A, when the density separator 31 is arranged so as to be orthogonal to the vertical plane passing through the ejection direction axis 8, from the left and right ends of the density separator 31 to the burner nozzle opening surface 2. When there is a large difference between the distances L 3 and L 4 , when a mixed flow of pulverized coal and carrier air is ejected from the burner nozzle opening surface 2, the pulverized coal concentration distribution in the region where the pulverized coal concentration is high on the outer peripheral side is: Imbalance will occur at the left and right sides E 1 and E 2 corresponding to the left and right ends of the density separator 31. In other words, those of E 1 side is denser pulverized coal concentration, those of E 2 side becomes thinner pulverized coal concentration. Therefore, the ignition point defects occur in the thin E 2 side of the pulverized coal concentration, slag to the burner nozzle 1 (molten ash) deposition occurs. In addition, NO X · unburned performance becomes defective.
[0032]
When the density separator 31 is slightly tilted as shown in FIG. 6B, that is, when the density separator 31 is parallel to the side surface 7 of the furnace 30 as shown in FIG. when the angle between the vertical plane theta (e.g. 38 °), θ / 2 (e.g., 19 ° C.) when tilted only be, although observed some improvement, so E 1 side and E 2 side It was not possible to eliminate the imbalance in pulverized coal concentration.
[0033]
On the other hand, as shown in FIG. 6C, when the density separator 31 is made parallel to the side surface 7 of the furnace 30, that is, the angle formed between the density separator 31 and the vertical plane is determined by the burner nozzle opening surface 2. When the angle θ with respect to the vertical plane is the same as the angle θ (for example, 38 °), the distances L 3 and L 4 from the left and right ends of the density separator 31 to the burner nozzle opening surface 2 become equal. imbalance of the pulverized coal concentration of 1 side and E 2 side is eliminated, uniform pulverized coal concentration distribution is obtained in the dark regions of the pulverized coal concentration on the outer peripheral side. As a result, good ignition combustion performance is obtained gone ignition point defects, slag to the burner nozzle 1 (molten ash) adhesion and NO X · unburnt poor performance was also eliminated.
[0034]
<Embodiment 2>
FIG. 7 is a horizontal sectional view showing a configuration of a pulverized coal-burning burner according to Embodiment 2 of the present invention as viewed from above. The pulverized coal-burner of the second embodiment is an example in which a burner throat is used instead of the burner nozzle 1 of the first embodiment. In FIG. 7, 9 is a burner throat, 10 is an opening surface at the tip end of the burner throat 9, 11 is an extension surface (virtual surface) of the furnace side surface 7, and other symbols are defined as in FIG.
[0035]
The burner throat 9 can be formed of a refractory material or the like. The shape of the burner throat 9 is asymmetrical with respect to the vertical plane passing through the ejection direction axis 8 as a symmetrical surface, as in the case of FIG. Embodiment 2 is a case where the burner throat opening surface 10 is not in the same plane as the furnace side surface 7 and the extension surface 11 of the furnace side surface 7, but is located in a parallel plane near these surfaces.
[0036]
Also in this pulverized coal-burning burner, similarly to the case of FIG. 1, the density separator 31 is mounted in the burner throat 9 (in the case of the illustrated example) or in the pulverized coal supply pipe 3 by an attachment member such as a fixing bracket (not shown). It is arranged horizontally at the center and is provided so as to be parallel to the furnace side surface 7, and is asymmetrical with respect to a vertical plane passing through the ejection direction axis 8.
[0037]
Therefore, also in the pulverized coal-burning burner of the second embodiment, the same operation and effect as in the first embodiment can be obtained.
[0038]
<Embodiment 3>
FIG. 8 is a horizontal sectional view showing a configuration of a pulverized coal-burning burner according to Embodiment 3 of the present invention as viewed from above. The pulverized coal-burning burner of the third embodiment has a swirler-type disperser 13 installed on the bent portion 12 connected to the pulverized coal supply pipe 3 or on the burner nozzle 1 side of the bent portion 12. The mixed flow of the pulverized coal and the carrier air that has flowed into the bent portion 12 from the direction of the arrow causes a density distribution due to the centrifugal force at the bent portion 12, and the concentration of the pulverized coal increases on the outer peripheral side of the bent portion 12, and conversely, Although the concentration of the pulverized coal becomes thinner on the peripheral side, the mixed flow having the density distribution is dispersed by the operation of the swirler type disperser 13 so that the pulverized coal concentration distribution becomes uniform.
[0039]
In this pulverized coal-burning burner as well, as in the case of FIG. 1, the concentration separator 31 is mounted in the burner nozzle 1 (in the case of the illustrated example) or in the pulverized coal supply pipe 3 by an attachment member such as a fixture (not shown). It is arranged horizontally at the center and is provided so as to be parallel to the furnace side surface 7, and is asymmetrical with respect to a vertical plane passing through the ejection direction axis 8.
[0040]
Therefore, also in the pulverized coal-burning burner of the third embodiment, the same operation and effect as those of the first embodiment can be obtained.
[0041]
It is considered that the concentration separator 31 is most preferably parallel to the furnace side 7 as in the above embodiment, but is not necessarily limited to this, and may be substantially parallel to the furnace side 7. That is, the effect can be expected even when the inclination angle of the density separator 31 is set to θ as shown in FIG. 6C, for example, when the inclination angle is slightly smaller than θ or slightly larger than θ.
[0042]
【The invention's effect】
As described above in detail with the embodiments, according to the pulverized fuel combustion apparatus of the present invention, the pulverized fuel combustion apparatus is provided on the side surface of a vertical rectangular furnace, and ejects a mixed flow of pulverized fuel and air. A burner nozzle or burner throat, a pulverized fuel supply pipe connected to the burner nozzle or burner throat to supply pulverized fuel and air, and a wind forming a combustion auxiliary air supply path around the pulverized fuel supply pipe With a box, the vertical plane passing through the jet direction axis of the mixed flow is inclined not orthogonal to the side surface of the furnace, and the shape of the burner nozzle or burner throat is left-right asymmetric with respect to the vertical plane, The tip opening surface of the burner nozzle or burner throat is located in the same or parallel plane as the side surface of the furnace, and in the burner nozzle or burner throat. In the pulverized fuel combustion device in which a concentration separator is provided horizontally in the pulverized coal supply pipe, the concentration separator has a cross-sectional shape gradually expanding in the vertical direction toward the downstream side of the mixed flow. After that, after being parallel to the ejection direction axis, the structure has a notch slit that ends in a vertical plane and penetrates in the ejection direction of the mixed flow, and is substantially parallel to the side surface of the furnace. When the mixed flow of pulverized coal and carrier air is injected into the furnace from the burner nozzle opening surface, the pulverized coal on the outer peripheral side is characterized in that the pulverized coal is The distribution of pulverized coal concentration in the region of high concentration can be made uniform, and as a result, good ignition performance is obtained without ignition point failure, and slag (molten ash) to the burner nozzle or burner throat Wear and NO X · unburned poor performance can also be eliminated.
[Brief description of the drawings]
FIG. 1 is a horizontal cross-sectional view showing a configuration of a pulverized coal-burning burner according to Embodiment 1 of the present invention as viewed from above.
FIG. 2 is a structural conceptual diagram of a furnace wall tube according to Embodiment 1 of the present invention.
FIG. 3 is a diagram schematically illustrating a flow state in the vicinity of the pulverized coal burning burner.
FIG. 4 is a configuration diagram of a concentration separator provided in the pulverized coal burning burner.
FIG. 5 is an explanatory view showing the operation and effect of the concentration separator.
FIG. 6 is an explanatory diagram showing the operation and effect of the density separator.
FIG. 7 is a horizontal sectional view showing a configuration of a pulverized coal burning burner according to Embodiment 2 of the present invention as viewed from above.
FIG. 8 is a horizontal sectional view showing a configuration of a pulverized coal-burning burner according to Embodiment 3 of the present invention as viewed from above.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Burner nozzle 2 Burner nozzle opening surface 3 Pulverized coal supply pipe 4 Combustion auxiliary air supply path 5 Wind box 6 Furnace wall tube 7 Furnace side surface 8 Axis direction of jet of mixed flow 9 Burner throat 10 Burner throat opening surface 11 Extension surface of furnace side surface 12 Bent portion 13 Swirler type disperser 15 Schematic diagram of pulverized coal supply pipe or combustion auxiliary air supply channel 16 Burner nozzle style diagram 17 Speed distribution 18 Schematic diagram of furnace wall tube 19 Schematic diagram of swirl flame in furnace 20 and 21 burner nozzle Wall surfaces 22, 23, 24 Jet direction 30 Furnace 31 Shade separator 31a Notch slits 31b, 31c Inclined surfaces 31d, 31e Horizontal surface 31f Rear surface (vertical plane)
31g, 31h side

Claims (1)

立型角筒状の火炉の側面に設けられ、微粉状燃料と空気の混合流を噴出するバーナーノズル又はバーナースロートと、このバーナーノズル又はバーナースロートに連結されて微粉状燃料と空気を供給する微粉状燃料供給管と、この微粉状燃料供給管の周囲に燃焼補助空気供給路を形成する風箱とを備えるとともに、前記混合流の噴出方向軸線を通る鉛直面が前記火炉の側面に直交せずに傾斜し、前記バーナーノズル又はバーナースロートの形状が前記鉛直面に対して左右非対称であり、前記バーナーノズル又はバーナースロートの先端部開口面が前記火炉の側面と同一又は平行な平面内に位置し、且つ、前記バーナーノズル又はバーナースロート内又は前記微粉炭供給管内に濃淡分離器が水平に設けられた微粉状燃料燃焼装置において、
前記濃淡分離器は、断面形状が、前記混合流の下流側に向かって徐々に上下方向に拡大し、その後、前記噴出方向軸線に平行となった後、鉛直方向の平面で終わり、且つ、前記混合流の噴出方向に貫通する切り欠きスリットを有する構造であって、前記火炉の側面に略平行となるように設けられ、前記鉛直面に対して左右非対称であることを特徴とする微粉状燃料燃焼装置。
A burner nozzle or burner throat provided on a side surface of a vertical prismatic furnace for ejecting a mixed flow of pulverized fuel and air, and fine powder connected to the burner nozzle or burner throat to supply pulverized fuel and air Fuel supply pipe, and a wind box forming a combustion auxiliary air supply path around the fine powder fuel supply pipe, and the vertical plane passing through the jet direction axis of the mixed flow is not orthogonal to the side surface of the furnace. And the shape of the burner nozzle or burner throat is asymmetrical with respect to the vertical plane, and the tip opening surface of the burner nozzle or burner throat is located in the same or parallel plane as the side surface of the furnace. And, in the pulverized fuel combustion device in which a concentration separator is provided horizontally in the burner nozzle or burner throat or in the pulverized coal supply pipe,
The density separator has a cross-sectional shape that gradually expands in the vertical direction toward the downstream side of the mixed flow, and then becomes parallel to the ejection direction axis, and then ends in a vertical plane, and A pulverized fuel having a notch slit penetrating in a direction in which the mixed flow is ejected, provided so as to be substantially parallel to a side surface of the furnace, and being asymmetrical with respect to the vertical plane; Combustion equipment.
JP2002353263A 2002-12-05 2002-12-05 Fine powder fuel combustion system Expired - Fee Related JP3752215B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002353263A JP3752215B2 (en) 2002-12-05 2002-12-05 Fine powder fuel combustion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002353263A JP3752215B2 (en) 2002-12-05 2002-12-05 Fine powder fuel combustion system

Publications (2)

Publication Number Publication Date
JP2004184007A true JP2004184007A (en) 2004-07-02
JP3752215B2 JP3752215B2 (en) 2006-03-08

Family

ID=32754589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002353263A Expired - Fee Related JP3752215B2 (en) 2002-12-05 2002-12-05 Fine powder fuel combustion system

Country Status (1)

Country Link
JP (1) JP3752215B2 (en)

Also Published As

Publication number Publication date
JP3752215B2 (en) 2006-03-08

Similar Documents

Publication Publication Date Title
JP2544662B2 (en) Burner
JP3344694B2 (en) Pulverized coal combustion burner
JP3716096B2 (en) Pulverized coal separator
KR100537700B1 (en) Pulverized coal combustion burner and combustion method thereby
JP3884596B2 (en) Premixing device
KR20090080506A (en) Burner, and combustion equipment and boiler comprising burner
KR101560076B1 (en) Solid fuel burner
JP2000130710A (en) Pulverized coal combustion burner
JP3924089B2 (en) Pulverized coal burner and combustion apparatus using pulverized coal burner
JP2020030037A (en) Solid fuel burner
JP4353619B2 (en) Furnace heating burner
JP2781740B2 (en) Pulverized coal fired burner
JP3686250B2 (en) Pulverized coal burner
JP3670752B2 (en) Pulverized coal separator
JP2004184007A (en) Fine powder-like fuel combustion device
JP2000055319A (en) LOW NOx BURNER
US6409502B2 (en) Gas burners for heating a gas flowing in a duct
JP2001355832A (en) Air port structure
JPH09196314A (en) Pulverized coal burner
JP3524682B2 (en) Pulverized fuel combustion device
JP3388951B2 (en) Pulverized fuel combustion device
JP2006125692A (en) Combustion device implementing swirl combustion
JP3016947B2 (en) Premix pulse burner
JP2004183984A (en) Fine powder solid fuel firing burner and method and boiler for burning fine powder solid fuel
JP4628922B2 (en) After airport

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051209

R151 Written notification of patent or utility model registration

Ref document number: 3752215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees