JP3884596B2 - Premixing device - Google Patents

Premixing device Download PDF

Info

Publication number
JP3884596B2
JP3884596B2 JP17603599A JP17603599A JP3884596B2 JP 3884596 B2 JP3884596 B2 JP 3884596B2 JP 17603599 A JP17603599 A JP 17603599A JP 17603599 A JP17603599 A JP 17603599A JP 3884596 B2 JP3884596 B2 JP 3884596B2
Authority
JP
Japan
Prior art keywords
gas
mixing
angle
supply duct
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17603599A
Other languages
Japanese (ja)
Other versions
JP2001000849A (en
Inventor
孝一 松井
八立 仲埜
功 桑垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma KK
Original Assignee
Takuma KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma KK filed Critical Takuma KK
Priority to JP17603599A priority Critical patent/JP3884596B2/en
Publication of JP2001000849A publication Critical patent/JP2001000849A/en
Application granted granted Critical
Publication of JP3884596B2 publication Critical patent/JP3884596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Gas Burners (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、温水ボイラや煙管式ボイラ、サイクロン式灰溶融装置等の燃焼装置に用いられるものであり、ガス燃料と燃焼用空気とを予め混合させる予混合装置に関し、更に詳細には、ガス燃料と燃焼用空気とをミクロな領域にまで均一に混合する予混合装置に関する。
【0002】
【従来の技術】
一般に、燃料ガスと燃焼用空気を別々に供給して燃焼用バーナで混合させる先混合燃焼方式では、燃料ガスと燃焼用空気が拡散しながら混合する結果、両者の均一な混合が得にくかった。従って、濃混合気と淡混合気が形成されながら燃焼するため、局所的に燃焼温度の高い所ができる。NOxの中でも特にサーマルNOxは温度に大きく影響されるため、局所的に高温部が存在すると、燃焼中でのNOx生成率が高くなる。
【0003】
そこで、温水ボイラや煙管式ボイラ、サイクロン式灰溶融装置等の燃焼装置では、燃焼前に燃料ガスと燃焼用空気とを予め混合させる予混合方式が採用されてきた。この予混合方式では、燃料ガスと燃焼用空気とが予め均一に混合されているので、燃焼の最高温度も低く、生成するNoxも低く押えることができる。
【0004】
ところが、従来の予混合装置では、燃料ガスと燃焼用空気とを相当均一に混合することができているが、更により高度なレベルまで均一に混合させることは困難であった。その結果、燃焼温度が安定せず、燃焼領域における局部的な高温部の発生がNOxの低減化の限界となっていた。
【0005】
例えば、図11は特開平8−86417号公報に開示の予混合燃焼装置である。送風機80により供給される燃焼用空気82に対し、直交状に燃料ガス84が燃料ガス供給管86より噴出される。この流体衝突により燃焼用空気82と燃料ガス84が1次混合され、矢印方向に流送後、1次混合気88の燃焼が行われる。この装置では流体衝突による均一な混合(以下、流体衝突による混合の均一さのレベルをマクロな混合と呼ぶ)は行われても、燃焼用空気と燃料ガスとの前記流体衝突による均一な混合よりもより均一な混合(以下、このレベルでのより均一な混合を分子レベルでのミクロ混合と呼ぶ)は行われず、NOx低減化の限界となっていた。また、混合の不均一性の残留が逆火、即ち、火炎が燃焼ノズルの中に逆流してくる現象の原因にもなっていた。
【0006】
図12は特開平6−74423号公報開示の予混合装置である。送風機80により供給される燃焼用空気82は旋回流形成手段81により旋回流となり、この旋回流に対し燃料ガス供給管86の噴出孔90から燃料ガスが直交状に噴出される。この噴出でマクロ混合された1次混合気88は大径部92に到達する。
【0007】
しかし、この大径部92では、周辺部で図示の如き過流によるマクロ混合が行なわれるが、ミクロ混合は行なわれていない。つまり、1次混合気88の形成時点でマクロ混合は既に行なわれているのであり、次に行うべきは、流体各所における局部的ミクロ混合である。このミクロ混合が行なわれていない点で、この従来技術はまだ不十分であると云わざるを得ない。
【0008】
図13は特開平5−231615号公報開示の予混合燃焼装置である。燃料ガスと燃焼用空気が既に混合された1次混合気が管路94を通して導入口95から流入する。1次混合気は立設された平板状の乱流発生部材96に衝突し、図示のように上下端縁からカルマン渦97が発生し、乱流領域98を形成する。この乱流混合気をイグナイタ99で燃焼させる。
【0009】
この乱流発生部材96では図示のような大きなカルマン渦が発生し、1次混合気を分子レベルでミクロ混合することは不可能に近い。乱流を利用して再度、混合攪拌する点は前進しているが、ミクロ混合の水準に到達していない。
【0010】
図14は同じく上記特開平5−231615号公報開示の他の予混合燃焼装置である。
図13と異なる点は、乱流発生部材96として円錐体が用いられていることである。ところが、このように大きな円錐体では、周縁により大きなカルマン渦列が生起し、マクロ混合ができてもミクロ混合が無理な点は図13と同様である。
【0011】
【発明が解決しようとする課題】
上述したように、燃焼用空気流に燃料ガスを直交状に噴出衝突させて両者をマクロ的に混合させる技術はほぼ確立してきた。ところが、この1次混合気ではマクロな混合攪拌は行なわれているが、空気とガスを分子レベルで攪拌するミクロ混合は行なわれていない。
【0012】
また、この1次混合気を更に混合攪拌して2次混合気を得る技術が開発されてきた。しかし、2次混合する手段が大渦や大カルマン渦を生成することを目的としているため、ミクロ混合することはできなかった。ミクロ混合化するために流速を大きくすることも試みられたが、圧力損失が急速に増大し、ミクロ混合を十分に行うことができなかった。流速の増大化については送風機の限界もあった。
【0013】
従って、この発明の目的はマクロ混合した1次混合気を均一にミクロ混合する予混合装置を提供することである。このことにより、2次混合気の燃焼温度を下げてNOxの生成量を低減させ、また燃焼炎が燃焼装置内に逆流してくる逆火を防止できる予混合装置を提供することである。
【0014】
【課題を解決するための手段】
本願請求項1の発明は、燃料ガスと燃焼用空気を燃焼させる前に予め混合する予混合装置において、空気を送風供給する供給ダクトと、当該供給ダクトの周方向に穿設された多数のガス噴出孔とこれらのガス噴出孔を気密に蔽うガス環状体からなり、このガス環状体内にガスを供給してガス噴出孔から前記供給ダクト内の空気流に対し燃料ガスを直交状に噴出して両者を1次混合させる燃料ガス供給手段と、この1次混合点より距離L 0 だけ下流位置に1次混合気流に対して直交状に間隔L 3 で等間隔に配置された2枚の幅L 1 の形片をアングル角度θで断面略V字状に配置したアングル幅L 2 のアングルから成る複数本の混合促進体とから構成され、且つ前記距離L 0 をL 0 >0.5D 0 (但し、D 0 は空気供給ダクトの直径)に、前記アングル角度θを60°〜100°に、前記形片の幅L 1 を10〜30mmに夫々規制すると共に、当該混合促進体の頂線を上流側に向け、両形片により前記1次混合気流をより均一に混合して2次混合気を形成することを発明の基本構成とするものである。
【0015】
請求項2の発明は、燃料ガスと燃焼用空気を燃焼させる前に予め混合する予混合装置において、空気を送風供給する供給ダクトと、当該供給ダクトの直径方向に内設されたガス供給筒とこのガス供給筒の壁面に多数穿設されたガス噴出孔からなり、ガス噴出方向が空気流に直交するように配置されて、供給ダクト内の空気流に対し燃料ガスを直交状に噴出して両者を1次混合させる燃料ガス供給手段と、この1次混合点より距離L 0 だけ下流位置に1次混合気流に対して直交状に間隔L 3 で等間隔に配置された2枚の幅L 1 の形片をアングル角度θで断面略V字状に配置したアングル幅L 2 のアングルから成る複数本の混合促進体とから構成され、且つ前記距離L 0 をL 0 >0.5D 0 (但し、D 0 は空気供給ダクトの直径)に、前記アングル角度θを60°〜100°に、前記形片の幅L 1 を10〜30mmに夫々規制すると共に、当該混合促進体の頂線を上流側に向け、両形片により前記1次混合気流をより均一に混合して2次混合きを形成することを発明の基本構成とするものである。
【0016】
請求項3の発明は、請求項1又は請求項2の発明において、前記混合促進体を、形片の端縁にジグザグ状の刻みを入れて複数の切込片を形成した混合促進体としたものである。
【0017】
【発明の実施の形態】
以下に、本発明の実施の形態を図1〜図10に基づいて具体的に詳述する。
図1〜図3は本発明に係る予混合装置の第1実施形態を示し、特に図1はその縦断面図、図2は混合促進体の斜視図および図3は図1のC−C線断面図である。断面円形の供給ダクト2を通して図示しない送風機から燃焼用空気が矢印a方向に供給される。供給ダクト2の周方向には多数のガス噴出孔4が穿設され、これらのガス噴出孔4を外部から気密に蔽うガス環状体6が設けられている。燃料ガスはガス管8から矢印b方向に供給され、ガス環状体6がガス溜りとなってガス噴出孔4を介して矢印c方向に吹き出す。
【0018】
供給ダクト2には混合促進体10が配置されている。
【0019】
図2から分るように、混合促進体10は2枚の形片28、28がアングル角度θで開いたアングルであり、アングル角度θは60°〜100°、望ましくは80°〜100°である。形片28の幅L1は30mm以下で、望ましくは10〜20mmである。
【0020】
このアングル状の混合促進体10は、その頂線30が上流を向くように、供給ダクト2の断面部全長に渡って複数本が等間隔に並べられる。間隔L3はアングル幅をL2とすると、0.5L2<L3<2L2に設定される。また、L2を小さくして混合促進体10をできるだけ多数本配置するとミクロ混合の効率が上昇する。
【0021】
ガス噴出孔4と混合促進体10までの距離L0はできるだけ長い方がよいが、円形の供給ダクトの直径D0と比較すると、L0<0.5D0とすることが望まれる。また、2次混合(ミクロ混合)を確実に行うために、混合促進体28位置での混合気の流速は10m/s以上に設定することが望まれる。この流速が速いときには、前記間隔L3を大きくとると、2次混合が効果的である。
【0022】
次に、第1実施形態の作用について説明する。図1および図3から分かるように、燃料ガスはガス環状体6を介して噴出口4から矢印c方向に噴出する。矢印a方向の燃焼用空気は直交状に流体衝突する燃料ガスと大乱流状態で1次混合する。1次混合気は大乱流状態から次第に安定した流れになり、この過程をマクロ混合という。
【0023】
矢印fで示すように、この1次混合気は混合促進体10の頂線30から左右に分流し、形片28を上りながら、その端縁28a、28aで微小なカルマン渦を形成する。このカルマン渦は微小であるため、下流への流動過程の中で次第に安定し、一様に均一な2次混合流gとなる。混合促進体10より後の混合がミクロ混合で、混合促進体10のアングル幅L2をより小さくし、配列本数をより多くすると、ミクロ混合がよりキメ細かく行われる。
【0024】
図4〜図7は本発明に係る予混合装置の第2実施形態を示している。図4は縦断面図、図5は混合促進体の斜視図、図6は他の混合促進体の斜視図および図7は図4のE−E線断面図である。
この第2実施形態を説明するに当って、第1実施形態と同一部分には同一符号を付してその説明を省略し、異なる部分を説明する。
【0025】
第2実施形態が第1実施形態と異なるのは、供給ダクト2の断面が矩形であること、およびアングル状の混合促進体10形状がやや異なることの2点である。供給ダクト2の断面が矩形である点は第1実施形態と同一であるからその説明を省略する。
【0026】
図5に示す混合促進体10は、端縁28aにジグザグ状の刻みを入れることにより多数の切込片32を形成している。この切込片32の両端はエッジ32aとなっており、結局、切込片32の2倍の数のエッジ32aが1つの形片28に形成されることになる。この例では、切込片32に端縁28aを残しているから、エッジ32aの数は少ない。
【0027】
図6に示す混合促進体10では、端縁28aを完全に失くすまで刻みを入れているので、極めて多数の切込片32が形成でき、その結果エッジ32aの個数が急増できる。
【0028】
図5又は図6で示す混合促進体10に1次混合気がやってくると、矢印fに示されるように、形片28、28でまず上下に分流し、各々の分流が切込片32のエッジ32a、32aにより更に左右に分流して微小なカルマン渦を形成する。多数の切込片32があると、極めて微小なカルマン渦が多数形成されるため、少し流下した段階では一様で均一な2次混合流gが形成されることになる。
【0029】
図8〜図10は本発明に係る予近具装置の第3実施形態を示している。図8は縦断面図、図9は図8のF−F線断面図および図10は図8のG−G線断面図である。この第3実施形態を説明するに当って、第2実施形態と同一部分には同一符号を付してその説明を省略し、異なる部分を説明する。
【0030】
この第3実施形態は、燃料ガス供給手段の他の実施例を示しており、ガス環状体6とは異なって、供給ダクト2の直径方向にガス供給筒7を内設して構成する。このガス供給筒7の側面で空気供給方向aと直交する位置には、多数のガス噴出孔4がその軸方向に穿設され、燃料ガスを矢印c方向に噴出する。
【0031】
この実施形態では、ガス供給筒7が供給ダクト2内の中央に位置するから、燃焼用空気の流れが乱される面を有するが、燃料ガスとの1次混合はガス供給筒7の両サイドで行われる。両サイドの1次混合流も少し流下すると相互に融合し、混合促進体10による2次混合の後は、第2実施形態とほぼ同一の作用効果を奏するので、その説明を省略する。
【0032】
本発明は、上記実施例に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例、設計変更等をその技術的範囲内に包含するものである。
【0033】
【発明の効果】
本発明によれば、燃料ガスと燃焼用空気をマクロに1次混合した後、この1次混合気をミクロに2次混合できるから一様で均一な混合気を生成できる。従って、この混合気を燃焼しても燃焼温度のムラが無くなり、NOxを減少できると同時に逆火を防止することができ、低圧力損失での均一混合が可能となる。
【0034】
請求項3の発明によれば、より高効率化することができる。
【0035】
請求項1の発明によれば、燃料ガス供給手段が供給ダクト内にないので、燃料ガスと燃焼用空気との1次混合が広い場所で行え、しかも機械的な擾乱を受けることがないので、1次混合の高効率化を達成できる。
【0036】
請求項2の発明によれば、燃料ガス供給手段の構造がシンプルで製作が容易である。また、ガス噴出部付近の空気流速が速いから、燃料ガスの供給圧が低くても、1次混合と2次混合を確実に行うことができる。
【図面の簡単な説明】
【図1】 本発明の第1実施形態に係る予混合装置の縦断面図である。
【図2】 第1実施形態の混合促進体の斜視図である。
【図3】 図1のC−C線断面図である。
【図4】 本発明の第2実施形態に係る予混合装置の縦断面図である。
【図5】 第2実施形態の混合促進体の斜視図である。
【図6】 第2実施形態の他の混合促進体の斜視図である。
【図7】 図4のE−E線断面図である。
【図8】 本発明の第3実施形態に係る予混合装置の縦断面図である。
【図9】 図8のF−F線断面図である。
【図10】 図8のG−G線断面図である。
【図11】 予混合燃焼装置の第1従来例の斜視図である。
【図12】 予混合燃焼装置の第2従来例の要部断面図である。
【図13】 予混合燃焼装置の第3従来例の断面図である。
【図14】 予混合燃焼装置の第4従来例の断面図である。
【符号の説明】
2は供給ダクト、4はガス噴出孔、6はガス環状体、8はガス管、10は混合促進体、28は形片、28aは端縁、30は頂線、32は切込片、32aはエッジ、80は送風機、82は燃焼用空気、84は燃料ガス、86は燃料ガス供給管、88は1次混合気、90は噴出孔、92は大径部、94は管路、95は導入口、96は乱流発生部材、97はカルマン渦、98は乱流領域、99はイグナイタ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a premixing device for mixing gas fuel and combustion air in advance, which is used in a combustion device such as a hot water boiler, a flue tube boiler, a cyclone ash melting device, etc. The present invention relates to a premixing device that uniformly mixes combustion air and combustion air into a microscopic region.
[0002]
[Prior art]
In general, in the premixed combustion method in which the fuel gas and the combustion air are separately supplied and mixed by the combustion burner, the fuel gas and the combustion air are mixed while being diffused. Therefore, the combustion is carried out while the rich mixture and the light mixture are formed, so that a place where the combustion temperature is locally high can be formed. Among NOx, especially thermal NOx is greatly affected by temperature, and if a high temperature portion exists locally, the NOx generation rate during combustion increases.
[0003]
Therefore, in a combustion apparatus such as a hot water boiler, a flue tube boiler, and a cyclone ash melting apparatus, a premixing system in which fuel gas and combustion air are mixed in advance before combustion has been adopted. In this premixing system, the fuel gas and the combustion air are uniformly mixed in advance, so that the maximum combustion temperature is low and the generated Nox can be kept low.
[0004]
However, in the conventional premixing device, the fuel gas and the combustion air can be mixed fairly uniformly, but it has been difficult to uniformly mix to a higher level . As a result, the combustion temperature is not stable, and the generation of a local high temperature portion in the combustion region has become the limit for reducing NOx.
[0005]
For example, FIG. 11 shows a premixed combustion apparatus disclosed in JP-A-8-86417. The fuel gas 84 is ejected from the fuel gas supply pipe 86 in a direction orthogonal to the combustion air 82 supplied by the blower 80. By this fluid collision, the combustion air 82 and the fuel gas 84 are primarily mixed, and after flowing in the direction of the arrow, the primary mixture 88 is combusted. Even if uniform mixing by fluid collision (hereinafter, the level of uniformity of mixing by fluid collision is referred to as macro mixing) is performed in this apparatus, the uniform mixing by the fluid collision of combustion air and fuel gas is performed. However, more uniform mixing (hereinafter, more uniform mixing at this level is called micro-mixing at the molecular level) was not performed, and this was the limit of NOx reduction. In addition, residual non-uniformity of mixing has also caused a backfire, that is, a phenomenon in which the flame flows back into the combustion nozzle.
[0006]
FIG. 12 shows a premixing device disclosed in JP-A-6-74423. The combustion air 82 supplied by the blower 80 is turned into a swirl flow by the swirl flow forming means 81, and the fuel gas is blown out orthogonally from the discharge holes 90 of the fuel gas supply pipe 86 with respect to the swirl flow. The primary mixture 88 macro-mixed by this ejection reaches the large diameter portion 92.
[0007]
However, in the large-diameter portion 92, macro-mixing is performed in the peripheral portion by overflow as shown in the figure, but micro-mixing is not performed. In other words, the macro mixing has already been performed at the time of forming the primary air-fuel mixture 88, and what should be performed next is local micro mixing at various points in the fluid. It must be said that this prior art is still insufficient in that this micromixing is not performed.
[0008]
FIG. 13 shows a premixed combustion apparatus disclosed in JP-A-5-231615. A primary air-fuel mixture in which fuel gas and combustion air have already been mixed flows from the inlet 95 through the conduit 94. The primary air-fuel mixture collides with an upright flat plate-like turbulent flow generating member 96, and Karman vortex 97 is generated from the upper and lower end edges as shown in the figure to form a turbulent flow region 98. This turbulent gas mixture is burned by the igniter 99.
[0009]
The turbulent flow generating member 96 generates a large Karman vortex as shown in the figure, and it is almost impossible to micromix the primary mixture at the molecular level. The point of mixing and stirring again using turbulent flow has advanced, but has not reached the level of micromixing.
[0010]
FIG. 14 also shows another premixed combustion apparatus disclosed in Japanese Patent Laid-Open No. 5-231615.
A difference from FIG. 13 is that a cone is used as the turbulent flow generation member 96. However, in such a large cone, a large Karman vortex street is generated at the periphery, and even if macro-mixing is possible, micro-mixing is impossible, as in FIG.
[0011]
[Problems to be solved by the invention]
As described above, a technique has been almost established in which a fuel gas is jetted and collided with a combustion air flow in an orthogonal shape to mix them both macroscopically. However, in this primary gas mixture, macro-mixing and stirring are performed, but micro-mixing that stirs air and gas at the molecular level is not performed.
[0012]
In addition, a technique for further mixing and stirring the primary gas mixture to obtain a secondary gas mixture has been developed. However, since the purpose of secondary mixing is to generate large vortices and large Karman vortices, micro-mixing cannot be performed. Although an attempt was made to increase the flow rate for micromixing, the pressure loss increased rapidly, and micromixing could not be performed sufficiently. There was also a blower limit for increasing the flow rate.
[0013]
Accordingly, an object of the present invention is to provide a premixing device for uniformly micromixing a macromixed primary mixture. Accordingly, it is an object of the present invention to provide a premixing device that can reduce the amount of NOx produced by lowering the combustion temperature of the secondary air-fuel mixture and prevent backfire of the combustion flame flowing back into the combustion device.
[0014]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a premixing device for premixing fuel gas and combustion air before burning, a supply duct for supplying air and a large number of gases perforated in the circumferential direction of the supply duct It consists of a gas annular body that airtightly covers the gas ejection holes and these gas ejection holes. Gas is supplied into the gas annular body, and fuel gas is ejected perpendicularly to the air flow in the supply duct from the gas ejection holes. a fuel gas supply means for mixing both the primary, perpendicularly to the equally spaced intervals L 3 the two to the primary mixture flow in the downstream position by a distance L 0 from the primary mixing point width L 1 is composed of a plurality of mixing accelerators having an angle width L 2 and an angle angle θ arranged in a substantially V-shaped cross section , and the distance L 0 is set to L 0 > 0.5D 0 ( However, D 0 to the diameter of the air supply duct), the Ang An angle θ to 60 ° to 100 °, the width L 1 of the form piece with respectively regulated to 10 to 30 mm, toward the top line of the mixing promotion body on the upstream side, the primary mixture flow by both form piece The basic structure of the invention is to form a secondary gas mixture by mixing more uniformly.
[0015]
According to a second aspect of the present invention, there is provided a premixing device for premixing fuel gas and combustion air before combustion, a supply duct for supplying air and a gas supply tube provided in the diameter direction of the supply duct; The gas supply tube is made up of a number of gas injection holes perforated on the wall surface, and is arranged so that the gas injection direction is orthogonal to the air flow. The fuel gas is injected orthogonally to the air flow in the supply duct. a fuel gas supply means for mixing both the primary, perpendicularly to the equally spaced intervals L 3 the two to the primary mixture flow in the downstream position by a distance L 0 from the primary mixing point width L 1 is composed of a plurality of mixing accelerators having an angle width L 2 and an angle angle θ arranged in a substantially V-shaped cross section , and the distance L 0 is set to L 0 > 0.5D 0 ( However, D 0 to the diameter of the air supply duct), the angle angle The θ to 60 ° to 100 °, the width L 1 with respectively regulating the 10~30mm of the form piece, directed to the top line of the mixing promotion body on the upstream side, and more said primary mixture flow by both form piece The basic structure of the invention is to form a secondary mixture by mixing uniformly.
[0016]
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the mixing accelerator is a mixing accelerator in which a plurality of cut pieces are formed by making zigzag notches on the edge of the shape piece. Is.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described in detail with reference to FIGS.
1 to 3 show a first embodiment of a premixing device according to the present invention, in particular FIG. 1 is a longitudinal sectional view thereof, FIG. 2 is a perspective view of a mixing accelerator, and FIG. 3 is a CC line of FIG. It is sectional drawing. Combustion air is supplied in the direction of arrow a from a blower (not shown) through the supply duct 2 having a circular cross section. A large number of gas ejection holes 4 are formed in the circumferential direction of the supply duct 2, and a gas annular body 6 is provided to airtightly cover these gas ejection holes 4 from the outside. The fuel gas is supplied from the gas pipe 8 in the direction of the arrow b, and the gas annular body 6 becomes a gas reservoir and blows out in the direction of the arrow c through the gas ejection hole 4.
[0018]
A mixing accelerator 10 is disposed in the supply duct 2.
[0019]
As can be seen from FIG. 2, the mixing accelerator 10 is an angle in which the two shaped pieces 28, 28 are opened at an angle angle θ, and the angle angle θ is 60 ° to 100 °, preferably 80 ° to 100 °. is there. The width L 1 of the shape piece 28 is 30 mm or less, preferably 10 to 20 mm.
[0020]
A plurality of the angle-shaped mixing accelerators 10 are arranged at equal intervals over the entire length of the cross section of the supply duct 2 so that the top line 30 faces upstream. The interval L 3 is set to 0.5L 2 <L 3 <2L 2 where the angle width is L 2 . Also, the efficiency of micromixing is increased when as many as possible the placing mixing promotion body 10 by reducing the L 2.
[0021]
The distance L 0 between the gas ejection hole 4 and the mixing accelerator 10 is preferably as long as possible, but it is desirable that L 0 <0.5D 0 compared to the diameter D 0 of the circular supply duct. Further, in order to surely perform the secondary mixing (micro mixing), it is desirable that the flow rate of the air-fuel mixture at the position of the mixing accelerator 28 is set to 10 m / s or more. When this flow rate is fast, secondary mixing is effective if the interval L 3 is large.
[0022]
Next, the operation of the first embodiment will be described. As can be seen from FIG. 1 and FIG. 3, the fuel gas is ejected from the ejection port 4 in the direction of arrow c through the gas annular body 6. Combustion air in the direction of arrow a is primarily mixed in a large turbulent state with fuel gas that collides with fluid in an orthogonal shape. The primary mixture gradually becomes a stable flow from a large turbulent state, and this process is called macro mixing.
[0023]
As indicated by an arrow f, this primary air-fuel mixture is diverted from the top line 30 of the mixing accelerator 10 to the left and right, and forms a minute Karman vortex at its edges 28a and 28a while going up the shape piece 28. Since the Karman vortex is very small, it gradually becomes stable in the downstream flow process, and becomes a uniformly mixed secondary mixed flow g. Mixing after the mixing promotion body 10 with micromixing, the angle width L 2 of the mixing promotion body 10 and smaller when more sequences number, micromixing takes place more granular.
[0024]
4 to 7 show a second embodiment of the premixing device according to the present invention. 4 is a longitudinal sectional view, FIG. 5 is a perspective view of a mixing accelerator, FIG. 6 is a perspective view of another mixing accelerator, and FIG. 7 is a sectional view taken along line EE of FIG.
In describing the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, the description thereof is omitted, and different parts are described.
[0025]
The second embodiment is different from the first embodiment in that the cross section of the supply duct 2 is rectangular and the shape of the angle-shaped mixing promoting body 10 is slightly different. The point that the cross section of the supply duct 2 is rectangular is the same as that of the first embodiment, and thus the description thereof is omitted.
[0026]
The mixing promoting body 10 shown in FIG. 5 forms a large number of cut pieces 32 by making zigzag notches on the edge 28a. Both ends of the cut piece 32 are edges 32 a, and as a result, twice as many edges 32 a as the cut pieces 32 are formed in one shape piece 28. In this example, since the edge 28a is left in the cut piece 32, the number of the edges 32a is small.
[0027]
In the mixing promoting body 10 shown in FIG. 6, since the notches are formed until the end edge 28a is completely lost, an extremely large number of cut pieces 32 can be formed, and as a result, the number of edges 32a can be increased rapidly.
[0028]
When the primary air-fuel mixture arrives at the mixing accelerator 10 shown in FIG. 5 or FIG. 6, as shown by the arrow f, first, the divided pieces 28 and 28 are first divided up and down, and each divided flow is the edge of the cut piece 32. A small Karman vortex is formed by further diverging left and right by 32a and 32a. When there are a large number of cut pieces 32, a large number of very small Karman vortices are formed, and therefore a uniform and uniform secondary mixed flow g is formed at the stage of a slight flow down.
[0029]
8-10 has shown 3rd Embodiment of the near-earing apparatus which concerns on this invention. 8 is a longitudinal sectional view, FIG. 9 is a sectional view taken along line FF in FIG. 8, and FIG. 10 is a sectional view taken along line GG in FIG. In the description of the third embodiment, the same parts as those of the second embodiment are denoted by the same reference numerals, the description thereof is omitted, and different parts are described.
[0030]
This third embodiment shows another example of the fuel gas supply means. Unlike the gas annular body 6, the third embodiment includes a gas supply cylinder 7 provided in the diameter direction of the supply duct 2. A large number of gas ejection holes 4 are formed in the axial direction on the side surface of the gas supply cylinder 7 at a position orthogonal to the air supply direction a, and fuel gas is ejected in the direction of arrow c.
[0031]
In this embodiment, since the gas supply cylinder 7 is located in the center of the supply duct 2, it has a surface where the flow of combustion air is disturbed, but the primary mixing with the fuel gas is performed on both sides of the gas supply cylinder 7. Done in If the primary mixed flow on both sides also flows down a little, they merge with each other, and after the secondary mixing by the mixing accelerator 10, there are almost the same effects as in the second embodiment, so the description thereof is omitted.
[0032]
The present invention is not limited to the above-described embodiments, and includes various modifications, design changes and the like within the technical scope without departing from the technical idea of the present invention.
[0033]
【The invention's effect】
According to the present invention, after the fuel gas and the combustion air are primarily mixed macroscopically, the primary mixed gas can be secondarily mixed microscopically, so that a uniform and uniform mixed gas can be generated. Therefore, even if this air-fuel mixture is combusted, there is no unevenness in the combustion temperature, NOx can be reduced, and at the same time backfire can be prevented, and uniform mixing with low pressure loss becomes possible.
[0034]
According to the invention of claim 3, higher efficiency can be achieved.
[0035]
According to the invention of claim 1, since the fuel gas supply means is not in the supply duct, the primary mixing of the fuel gas and the combustion air can be performed in a wide place and is not subject to mechanical disturbance. High efficiency of primary mixing can be achieved.
[0036]
According to the invention of claim 2, the structure of the fuel gas supply means is simple and easy to manufacture. In addition, since the air flow velocity in the vicinity of the gas ejection portion is fast, primary mixing and secondary mixing can be reliably performed even when the supply pressure of the fuel gas is low.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a premixing device according to a first embodiment of the present invention.
FIG. 2 is a perspective view of a mixing accelerator according to the first embodiment.
FIG. 3 is a cross-sectional view taken along the line CC of FIG.
FIG. 4 is a longitudinal sectional view of a premixing device according to a second embodiment of the present invention.
FIG. 5 is a perspective view of a mixing accelerator according to a second embodiment.
FIG. 6 is a perspective view of another mixing accelerator according to the second embodiment.
7 is a cross-sectional view taken along line EE in FIG.
FIG. 8 is a longitudinal sectional view of a premixing device according to a third embodiment of the present invention.
9 is a cross-sectional view taken along line FF in FIG.
10 is a cross-sectional view taken along the line GG of FIG.
FIG. 11 is a perspective view of a first conventional example of a premixed combustion apparatus.
FIG. 12 is a cross-sectional view of a main part of a second conventional example of a premix combustion apparatus.
FIG. 13 is a cross-sectional view of a third conventional example of the premixed combustion apparatus.
FIG. 14 is a cross-sectional view of a fourth conventional example of the premixed combustion apparatus.
[Explanation of symbols]
2 is a supply duct, 4 is a gas ejection hole, 6 is a gas annular body, 8 is a gas pipe, 10 is a mixing accelerator, 28 is a shape piece, 28a is an edge, 30 is a top line, 32 is a cut piece, 32a Is an edge, 80 is a blower, 82 is a combustion air, 84 is a fuel gas, 86 is a fuel gas supply pipe, 88 is a primary gas mixture, 90 is an ejection hole, 92 is a large diameter portion, 94 is a pipe line, and 95 is 96 is a turbulent flow generating member, 97 is a Karman vortex, 98 is a turbulent flow region, and 99 is an igniter.

Claims (3)

燃料ガスと燃焼用空気を燃焼させる前に予め混合する予混合装置において、空気を送風供給する供給ダクトと、当該供給ダクトの周方向に穿設された多数のガス噴出孔とこれらのガス噴出孔を気密に蔽うガス環状体からなり、このガス環状体内にガスを供給してガス噴出孔から前記供給ダクト内の空気流に対し燃料ガスを直交状に噴出して両者を1次混合させる燃料ガス供給手段と、この1次混合点より距離L 0 だけ下流位置に1次混合気流に対して直交状に間隔L 3 で等間隔に配置された2枚の幅L 1 の形片をアングル角度θで断面略V字状に配置したアングル幅L 2 のアングルから成る複数本の混合促進体とから構成され、且つ前記距離L 0 をL 0 >0.5D 0 (但し、D 0 は空気供給ダクトの直径)に、前記アングル角度θを60°〜100°に、前記形片の幅L 1 を10〜30mmに夫々規制すると共に、当該混合促進体の頂線を上流側に向け、両形片により前記1次混合気流をより均一に混合して2次混合気を形成することを特長とする予混合装置。In a premixing device that premixes fuel gas and combustion air before burning, a supply duct for supplying air is supplied, a number of gas ejection holes formed in the circumferential direction of the supply duct, and these gas ejection holes A gas annular body that hermetically covers the gas, and a gas that supplies gas into the gas annular body and jets the fuel gas perpendicularly to the air flow in the supply duct from the gas ejection holes to primarily mix them. An angle angle θ is formed between the supply means and two pieces of width L 1 arranged at equal intervals at an interval L 3 perpendicular to the primary mixed airflow at a position downstream from the primary mixing point by a distance L 0. in is composed of a plurality of mixing promotion of consisting angle of the angle width L 2 which is arranged in a substantially V-shaped cross section, and wherein the distance L 0 L 0> 0.5D 0 (where, D 0 is the air supply duct The angle θ is 60 ° to 100 ° , The width L 1 of the form piece with respectively regulated to 10 to 30 mm, 2 a top line of the mixing promotion body toward the upstream side, a mixture of the primary mixture flow more uniformly by both type Single order A premixing device characterized by forming a mixture. 燃料ガスと燃焼用空気を燃焼させる前に予め混合する予混合装置において、空気を送風供給する供給ダクトと、当該供給ダクトの直径方向に内設されたガス供給筒とこのガス供給筒の壁面に多数穿設されたガス噴出孔からなり、ガス噴出方向が空気流に直交するように配置されて、供給ダクト内の空気流に対し燃料ガスを直交状に噴出して両者を1次混合させる燃料ガス供給手段と、この1次混合点より距離L 0 だけ下流位置に1次混合気流に対して直交状に間隔L 3 で等間隔に配置された2枚の幅L 1 の形片をアングル角度θで断面略V字状に配置したアングル幅L 2 のアングルから成る複数本の混合促進体から構成され、且つ前記距離L 0 をL 0 >0.5D 0 (但し、D 0 は空気供給ダクトの直径)に、前記アングル角度θを60°〜100°に、前記形片の幅L 1 を10〜30mmに夫々規制すると共に、当該混合促進体の頂線を上流側に向け、両形片により前記1次混合気流をより均一に混合して2次混合気を形成することを特長とする予混合装置。In a premixing device that premixes fuel gas and combustion air before burning, a supply duct that blows air, a gas supply cylinder installed in a diameter direction of the supply duct, and a wall surface of the gas supply cylinder A fuel which is composed of a large number of gas ejection holes and is arranged so that the gas ejection direction is perpendicular to the air flow, and the fuel gas is ejected orthogonally to the air flow in the supply duct to primarily mix them. An angle angle is formed between the gas supply means and two pieces of the width L 1 arranged at equal intervals at an interval L 3 perpendicular to the primary mixed airflow at a position downstream from the primary mixing point by a distance L 0. consists plurality mixing promotion of consisting angle of substantially V-shaped section angle width is arranged in L 2 in theta, and the distance L 0 L 0> 0.5D 0 (where, D 0 is the air supply duct The angle θ is 60 ° to 100 °. The width L 1 with respectively regulating the 10~30mm of the form piece, directed to the top line of the mixing promotion body on the upstream side, more uniformly mixed to secondary mixing the primary mixture flow by both form piece A premixing device characterized by forming a gas. 前記混合促進体の形片の端縁にジグザグ状の刻みを入れて複数の切込片を形成した請求項1又は2記載の予混合装置。  The premixing device according to claim 1 or 2, wherein a zigzag notch is formed at an edge of the shape piece of the mixing accelerator to form a plurality of cut pieces.
JP17603599A 1999-06-22 1999-06-22 Premixing device Expired - Fee Related JP3884596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17603599A JP3884596B2 (en) 1999-06-22 1999-06-22 Premixing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17603599A JP3884596B2 (en) 1999-06-22 1999-06-22 Premixing device

Publications (2)

Publication Number Publication Date
JP2001000849A JP2001000849A (en) 2001-01-09
JP3884596B2 true JP3884596B2 (en) 2007-02-21

Family

ID=16006596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17603599A Expired - Fee Related JP3884596B2 (en) 1999-06-22 1999-06-22 Premixing device

Country Status (1)

Country Link
JP (1) JP3884596B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4580580B2 (en) * 2001-04-12 2010-11-17 関西電力株式会社 Fluid mixing device
RU2005136880A (en) * 2003-04-28 2006-03-20 Индиго Текнолоджиз Груп Пти Лтд. (Au) METHOD AND DEVICE FOR MIXING FLUIDS FOR PARTICLES AGLOMERATION
CA2460292C (en) * 2003-05-08 2011-08-23 Sulzer Chemtech Ag A static mixer
JP2005021885A (en) * 2003-06-10 2005-01-27 Yoshiro Wakimura Stirring apparatus
CN100468826C (en) * 2004-02-17 2009-03-11 燃料电池能有限公司 Mixer/educator for high temperature fuel cells
JP4989062B2 (en) * 2005-04-28 2012-08-01 バブコック日立株式会社 Fluid mixing device
JP4813242B2 (en) * 2006-04-21 2011-11-09 リンナイ株式会社 All primary combustion burners
US9310076B2 (en) 2007-09-07 2016-04-12 Turbulent Energy Llc Emulsion, apparatus, system and method for dynamic preparation
US8715378B2 (en) 2008-09-05 2014-05-06 Turbulent Energy, Llc Fluid composite, device for producing thereof and system of use
US9144774B2 (en) 2009-09-22 2015-09-29 Turbulent Energy, Llc Fluid mixer with internal vortex
US9708185B2 (en) 2007-09-07 2017-07-18 Turbulent Energy, Llc Device for producing a gaseous fuel composite and system of production thereof
EP2185274A4 (en) 2007-09-07 2012-12-05 Turbulent Energy Inc Dynamic mixing of fluids
US8871090B2 (en) 2007-09-25 2014-10-28 Turbulent Energy, Llc Foaming of liquids
US8844495B2 (en) 2009-08-21 2014-09-30 Tubulent Energy, LLC Engine with integrated mixing technology
EP2368625A1 (en) * 2010-03-22 2011-09-28 Sulzer Chemtech AG Method and device for dispersion
KR101400468B1 (en) * 2010-06-22 2014-05-28 현대중공업 주식회사 Advanced guide vane for low-NOx burner
JP6066454B2 (en) * 2013-03-27 2017-01-25 Jfeエンジニアリング株式会社 Mixed gas blowing device, waste gasification and melting furnace having the same, mixed gas blowing method, and waste gasification and melting method using the same
KR101528807B1 (en) * 2014-05-07 2015-06-15 한국기계연구원 Super-low NOx eission combustion apparatus using coanda effect
BR102015024699B1 (en) * 2015-09-25 2022-03-29 Cylzer S.A. Mixing ring for dissolving a portion of solute in a portion of solvent and system for dissolving a portion of solute in a portion of solvent
CN107023829B (en) * 2017-05-22 2023-11-03 北京醇能科技有限公司 Gaseous fuel mixing device
JP6780179B1 (en) * 2019-02-14 2020-11-04 株式会社塩 Fluid supply device and internal structure
KR20200099463A (en) * 2019-02-14 2020-08-24 시오 컴퍼니 리미티드 Fluid supply apparatus, internal structure, and method of manufacturing the same
JP2022017638A (en) * 2020-07-14 2022-01-26 株式会社塩 Gas-liquid mixture system, and production method of gas-liquid mixture fluid
KR102415743B1 (en) * 2020-11-27 2022-06-30 후이 탕 류 Venturi tube

Also Published As

Publication number Publication date
JP2001000849A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3884596B2 (en) Premixing device
US5626017A (en) Combustion chamber for gas turbine engine
EP2027415B1 (en) Burner
US5829967A (en) Combustion chamber with two-stage combustion
JP4808133B2 (en) Gas burner
US20100192583A1 (en) Non-rotational stabilization of the flame of a premixing burner
JP2006207996A (en) Multiple venturi tube gas fuel injector for combustor
JPH07310909A (en) Self-ignition type combustion chamber
EP0738854A2 (en) A low nitrogen oxide producing combustion method and apparatus
EP1592495B1 (en) Mixer
CA1131921A (en) Flameholder for gas turbine engine
TWI712761B (en) Solid fuel burner
CN110345475A (en) A kind of premixed anti-backfire Flameless burner
JPH08303776A (en) Axial air inflow type or radial air inflow type premixing type burner
JP2001254947A (en) Gas turbine combustor
JPH10205756A (en) Fuel nozzle assembly
KR100708445B1 (en) Pre-mixing structure of burner for gas
JP3712505B2 (en) Gas-fired premixed combustion device
JPH09112816A (en) After-air feeding device
JPH09119639A (en) Premixing main nozzle for low nox gas turbine combustor
JPH08296812A (en) Noise prevention means for premixed type gas burner
JPH0826971B2 (en) Flame stabilizer and combustor
JP4090045B2 (en) Burner that prevents combustion failure due to uneven flame
JP3417367B2 (en) Low NOx combustion method and partially premixed gas low NOx burner
JPH08278008A (en) Premixture type gas burner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041028

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20041210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees