JP2004183908A - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP2004183908A
JP2004183908A JP2002347594A JP2002347594A JP2004183908A JP 2004183908 A JP2004183908 A JP 2004183908A JP 2002347594 A JP2002347594 A JP 2002347594A JP 2002347594 A JP2002347594 A JP 2002347594A JP 2004183908 A JP2004183908 A JP 2004183908A
Authority
JP
Japan
Prior art keywords
hot water
heat
heat exchanger
evaporator
storage tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002347594A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Irisawa
一義 入澤
Kaoru Katayama
馨 片山
Masahiko Yaguchi
正彦 矢口
Eiichi Machida
栄一 町田
Akihiro Sato
彰弘 佐藤
Masatoshi Uchida
正敏 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Electric Appliances Co Ltd
Original Assignee
Toshiba Electric Appliances Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Electric Appliances Co Ltd filed Critical Toshiba Electric Appliances Co Ltd
Priority to JP2002347594A priority Critical patent/JP2004183908A/en
Publication of JP2004183908A publication Critical patent/JP2004183908A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump water heater capable of surely performing the defrosting operation of an evaporator as a heat collector. <P>SOLUTION: This heat pump water heater comprises a heat pump unit 3, a circulation passage 9 for boiling, and a circulation passage 14 for defrosting. While the evaporator 24 as the heat collector of the heat pump unit 3 is being defrosted, the heat pump unit 3 is operated by reverse cycle, hot water in the hot water storage tank 5 is taken out from the upper part of the hot water storage tank 5 through the circulation passage 9 for boiling and circulated to the lower part of the hot water storage tank 5 through the circulation passage 14 for defrosting to heat-exchange the heat of the hot water between a heat exchanger 12 for water in the circulation passage 9 for boiling and a heat exchanger 22 for refrigerant for the heat pump unit 3, and the evaporator 24 functions as a radiator to defrost the evaporator 24. Boiled hot water is surely present at the top part of the hot water storage tank 5, the defrosting of the evaporator is surely performed, and cooled hot water is returned to the lower part of the hot water storage tank 5 located on the underside of a hot water mixing layer. Accordingly, the cooled hot water is not mixed with hot water in the hot water storage tank 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
本発明は、貯湯槽内の上部の湯水を利用して集熱器としての蒸発器の除霜を行うようにしたヒートポンプ給湯装置に関する。
【0002】
【従来技術】
従来、ヒートポンプ給湯装置の集熱器としての蒸発器の除霜運転は、例えば特開平8−152193号公報のに記載されているように、大気熱を利用するヒートポンプ、即ち、集熱器、圧縮機、四方弁、熱交換器等が配管接続されて成る集熱回路と、貯湯槽、ポンプ、及び電動の切換弁である三方弁、熱交換器等を配管接続して成る給湯回路が形成され、そして、熱交換器と貯湯槽とは湯を熱交換器から貯湯槽へと流す往き配管(P0、P1)と、貯湯槽側から熱交換器へ水を流す戻り配管で接続され、往き配管P1の途中から戻り配管P5へ連通するバイパス配管P3が三方弁を介して接続される集熱器の除霜回路が接続されている。
【0003】
そして、通常の沸上運転時は、集熱回路は四方弁を正転状態に維持し、熱媒は圧縮機、熱交換器、集熱器の順に循環して集熱運転が行われ、一方、給湯回路は、三方弁を切換えて往き配管P1を選択し、貯湯槽内の湯水はポンプを通って、熱交換器により温められ、三方弁から往き配管P1を通って貯湯槽の上部から順次湯を蓄えてゆく通常運転が行われる。
【0004】
また、集熱器の除霜運転時は集熱回路の四方弁を正転状態から反転状態に切換えるとともに、給湯回路の三方弁をバイパス配管P3を選択するように切換え、これにより、集熱回路においては、熱媒は熱交換器、圧縮機、集熱器、熱交換器の順に循環する。一方、給湯回路側においては、三方弁、ポンプ、熱交換器、三方弁のように循環して除霜運転が行われる。これにより、熱交換器により給湯回路側の湯水から熱を奪い、この熱を利用して集熱器に着霜した霜を除くことができるようになっている。したがって、除霜運転時、貯湯槽内の湯を用いることがないので、貯湯槽内の湯の温度低下を招くことなく、湯の温度を元の温度以上にするための手段や時間が不要となる。
【0005】
しかし、このように、貯湯槽内の湯の熱を利用することなく給湯回路側の湯水の熱を利用して集熱器に着霜した霜の除霜運転を行うようにすると、貯湯槽の上部から湯水を積層させて沸上げる方式の給湯装置においては、給湯回路側には常に湯が存在するとは限らず除霜運転が確実に行われない場合がある等の問題点が生じる。
【0006】
これに対し、貯湯槽の湯水を使用して集熱器としての蒸発器の除霜運転を行うものが存在する。即ち、特開平10−89816号公報に記載されているように、下端部に取水口を設けた貯湯タンクと、蒸発器としての室外熱交換機と水熱交換器とを有してなる冷媒回路と、上記水熱交換器に対して熱交換可能に設けられ、貯湯タンク内の湯水を流通させる熱交換路とを備え、給湯要求に応じて上記水熱交換器を凝縮器として機能させると共に、熱交換路に上記取水口から流出させた湯水を流通させ、貯湯タンク内に湯水を貯溜する給湯運転を行う一方、除霜要求に応じて室外熱交換機を凝縮器として機能させて除霜運転を行うヒートポンプシステムにおいて、貯湯タンクの中間部に取湯口を設ける共に、貯湯タンクから熱交換器への湯水の流出を取水口を経由して行う第1切替状態と、流出を取湯口を経由して熱交換器からの返流水を取湯口の下側に設けた流入口に流入して行う第2切替状態とを切替える流路切替手段を設け、給湯要求があったときは流路切替手段を第1切替状態とする一方、除霜要求があったときは流路切替手段を第2切替状態として取湯口から流出した湯水を湯水を熱交換路に流通させると共に、水熱交換器を蒸発器として機能させ返流水を取湯口の下側に設けた流入口に返流させるようにしている。
【0007】
【発明が解決しようとする課題】
しかし、特開平10−89816号公報に記載された除霜運転は、貯湯タンクの中間部に設けた取湯口から貯湯タンク内の湯を取り出し、その温熱を水熱交換器において冷媒に付与し、この温熱によって蒸発器としての室外熱交換機の除霜を行い、水熱交換器からの返流水は、取湯口の下側に設けられた流入口から貯湯タンクに戻すようになっているため、貯湯タンクの上部から湯水を積層させて沸上げる方式の給湯装置においては、常に貯湯タンクの中間部に湯水が存在するとは限らず、また、水熱交換器からの返流水を取湯口の下側に設けられた流入口に戻すため、貯湯タンクの中間部の湯水と返流水とが混じり合い湯水の温度低下を招く問題点がある。
【0008】
本発明は、このような点に鑑みなされたもので、集熱器としての蒸発器の除霜運転は、貯湯槽の上部から湯水を積層させて沸上げる方式の給湯装置において、沸上用循環路を通じて貯湯槽上部から貯湯槽内の湯水を取出し、この湯水の熱を水熱交換器にてヒートポンプユニットの冷媒熱交換器に熱交換し蒸発器を放熱器として作用させ蒸発器の除霜を行った後の沸上用循環路内の冷めた湯水を湯水混合層より下部の貯湯槽下部へ戻すようにしているため、必ず貯湯槽上部には湯水は存在し蒸発器の除霜運転は確実に行われるとともに、除霜後の返流水は貯湯槽内の湯水と混じり合うことがなく貯湯槽内の湯温の低下を招くことがないヒートポンプ給湯装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
請求項1記載のヒートポンプ給湯装置は、圧縮機、四方弁、冷媒熱交換器、集熱器としての蒸発器等を順次直列接続され冷媒が循環されるヒートポンプユニットと、三方弁、水熱交換器、切換弁等を順次接続され貯湯槽の下部から上部に貯湯槽内の湯水を循環され前記冷媒熱交換器と熱交換される水熱交換器にて熱交換された湯水を貯湯槽の上部から積層させる沸上用循環路と、第1の分岐路、前記三方弁、前記水熱交換器、前記切換弁、第2の分岐路を順次接続される除霜用循環路とを備え、集熱器としての蒸発器の除霜時ヒートポンプユニットを逆サイクル運転させるとともに、前記沸上用循環路を通じて前記貯湯槽上部から貯湯槽内の湯水を取出し前記除霜用循環路を通じて貯湯槽下部へ湯水を循環させ、この湯水の熱を前記水熱交換器にてヒートポンプユニットの冷媒熱交換器に熱交換し蒸発器を放熱器として作用させ蒸発器の除霜を行うようにしたものである。
【0010】
そして、この構成により、必ず貯湯槽上部には湯水は存在し蒸発器の除霜運転は確実に行われるとともに、除霜後の返流水は貯湯槽内の湯水と混じり合うことがなく貯湯槽内の湯温の低下を招くことがないヒートポンプ給湯装置が得られる。
【0011】
請求項2記載のヒートポンプ給湯装置は、前記貯湯槽下部に、前記三方弁、前記水熱交換器、前記切換弁、前記第2の分岐路を順次接続される前記水熱交換器冷却用の冷却水循環路を設け、前記蒸発器の除霜後、前記貯湯槽下部から冷えた湯水を取出し前記冷却水循環路を通じて貯湯槽下部に冷えた湯水を循環させ前記水熱交換器を冷却し、その後ヒートポンプユニットを運転するとともに、前記沸上用循環路を動作させて前記貯湯槽内の湯水を沸き上げるようにしたものである。
【0012】
そして、この構成により、集熱器としての蒸発器除霜後の沸上用循環路の温められた水熱交換器は直ちに冷却水循環路内を流通する貯湯槽内下部側の冷えた湯水により冷却され、ヒートポンプユニットの圧縮機が過負荷状態から解消され正常な貯湯槽内の湯水の沸上運転が行える。
【0013】
【発明の実施の形態】
以下、本発明の一実施の形態を図面を参照して説明する。
【0014】
【実施例】
図1に示すように、ヒートポンプ給湯装置1は、貯湯ユニット2と、ヒートポンプユニット3と、暖房ユニット4とを備えている。
【0015】
貯湯ユニット2は、貯湯槽5を備え、この貯湯槽5は、先止押上式の給湯方式を採用しており、貯湯槽5の下部には減圧弁6を介して水道水を給水する給水管7が接続されているとともに、上部には沸き上げた湯を台所や風呂場などの給湯先に給湯する給湯管8が接続されている。
【0016】
貯湯槽5には、貯湯槽5の下部から出て貯湯槽5の上部に戻る沸上用循環路9が接続されている。この沸上用循環路9には貯湯槽5の下側から三方弁10と、この沸上用循環路9の中間部は貯湯ユニット2から出てヒートポンプユニット3内に配置され、このヒートポンプユニット3内において貯湯槽5の下部の湯水を沸上用循環路9内に強制的に引き込んで貯湯槽5の上部に循環させる沸上用循環ポンプ11と水熱交換器12とが配設され、また、水熱交換器12と貯湯槽5ととの間には流量調節器としての切換弁13とが配設されている。
【0017】
また、貯湯槽5の上部から湯水を取り出し貯湯槽5の下部に湯水を循環させる除霜用循環路14が接続されている。この除霜用循環路14には貯湯槽5の上部から第1の分岐路15、三方弁10、沸上用循環ポンプ11、水熱交換器12、切換弁13、暖房用熱交換器18、第2の分岐路16、貯湯槽5下部とが順次接続されている。
【0018】
また、貯湯槽5下部には、貯湯槽5下部から出て貯湯槽5下部に湯水を循環させる冷却水循環路17が接続されている。この冷却水循環路17には三方弁10、沸上用循環ポンプ11、水熱交換器12、切換弁13、暖房用熱交換器18、第2の分岐路16とが順次配設されている。
【0019】
ヒートポンプユニット3は、冷媒が充填された冷媒循環路19を有し、この冷媒循環路19には、圧縮機20、四方弁21、凝縮器として機能し沸上用循環路9内を流通する湯水を水熱交換器12との間で熱交換して湯水を所定の沸上温度に沸上げる冷媒熱交換器22、膨張弁23および集熱器としての蒸発器24が順に接続されている。また、蒸発器24には、蒸発器24の温度を検知する温度センサ25、外気を蒸発器24に送る送風ファン26および、この送風ファン26を回転させる送風モータ27を備えている。
【0020】
暖房ユニット4は、熱媒が充填された暖房循環路28を有し、この暖房循環路28は、暖房用熱交換器18、床暖房、パネルヒータ等の放熱部29a、放熱部29b、上方を大気に開放したシスターン30、暖房用循環ポンプ31が順に接続されている。また、シスターン30に電磁弁32を通じて水道水を供給する給水路33が接続されている。
【0021】
34はリモコンを示し、このリモコン34は、台所などの壁面に配設されて貯湯ユニット2、ヒートポンプユニット3および、暖房ユニット4を動作させるもので、これら各ユニットを始動させたり切換えたりする切変スイッチ類、これらの運転状態を表示する表示手段などを有している。
【0022】
35は運転制御手段としての制御装置で、この制御装置35は、リモコン34の操作で三方弁10、切換弁13を適宜切り換えて沸上用循環路9を循環動作させるとともヒートポンプユニット3を動作させて貯湯槽5の湯水の沸上制御を行ったり、温度センサ25の温度信号により除霜運転の制御をを行ったり、暖房循環路28に切換えて暖房運転を行なうようになっている。
【0023】
次に、本実施の形態の作用を説明する。
【0024】
先ず、図2により貯湯槽5内の水を沸上げる作用について説明する。
【0025】
給水管7から貯湯槽5内に水道水が貯留される。そして、リモコン34の操作により制御装置35が制御され、三方弁10が沸上用循環路9側に切換えられるとともに、流量調節弁13が沸上用循環路9側に100%の量の湯水が流れるよう調節される。そして、ヒートポンプユニット3の圧縮機20が駆動される。これにより矢印で示すように、冷媒は、冷媒回路19の圧縮機20、四方弁21、凝縮器として機能する冷媒熱交換器22、膨張弁23、蒸発器24の順に流れる。蒸発器20で大気熱を集熱し気化された冷媒は圧縮機20に送られ、圧縮機20で圧縮されて出た高温高圧の冷媒ガスは、冷媒熱交換器22で熱交換される。
【0026】
一方、沸上用循環路9の沸上用循環ポンプ11が駆動され、矢印で示すように貯湯槽5下部の水が沸上用循環路9側を通じて水熱交換器12と冷媒熱交換器22との間で沸上用循環路9内の水が熱交換され湯水となって貯湯槽5上部に入り、これを繰返して貯湯槽5の上部から設定温度の約80℃の湯水が順次積層され貯湯槽5内の水が沸上げられる。そして、このように、貯湯槽5内に積層された湯水は、給湯管8を通じて例えば台所や浴槽に送られ給湯に利用される。
【0027】
次に、図3により集熱器としての蒸発器の除霜運転の作用について説明する。
【0028】
温度センサ25が蒸発器20の温度が所定温度以下にあることを検知すると、制御装置28が制御され、三方弁10が第1の分岐路15側に切換えられるとともに、流量調節弁13が第2の分岐路16側に100%の量の湯水が流れるよう調節される。これにより除霜用循環路14が形成される。そして、貯湯ユニット2は沸上用循環ポンプ11が駆動され貯湯槽5の上部より貯湯槽5内の湯水を取り出し、この湯水は第1の分岐路15、三方弁10、水熱交換器12、流量調節弁13、暖房用熱交換器18、第2の分岐路16、貯湯槽5下部の順に流れる。
【0029】
一方、ヒートポンプユニット3は、温度センサ25の検知信号により制御装置28が制御され、四方弁21が反転され冷媒は冷媒熱交換器22、四方弁21、圧縮機20、蒸発器24、膨張弁23の順に流れる。そして、この冷媒の循環により水熱交換器12の熱が冷媒熱交換器22に熱交換され集熱器としての蒸発器24から放熱され蒸発器24に付着した霜が除去される。
【0030】
この、集熱器としての蒸発器の除霜運転に際しては、貯湯槽5上部の湯水を取り出し使用ているため、必ず貯湯槽5上部には沸き上げられた湯水が存在し除霜が確実に行われるとともに、除霜後の冷めた湯水は貯湯槽5下部の湯水混合層より下部に循環されるため、貯湯槽5内の湯水と混合されることがない。
【0031】
次に、図4により集熱器としての後の水熱交換器の冷却作用について説明する。
【0032】
前記蒸発器除霜運転により水熱交換器12が加熱され水熱交換器12を流れる湯水の温度が高いと通常の貯湯槽5内の湯水の沸上運転に戻る時ヒートポンプユニット3の圧縮機20が過負荷状態になりヒートポンプユニット3の成績係数が低下するかヒートポンプユニット3が停止する。そのため、蒸発器除霜運転終了後水熱交換器12を冷却する必要性が生じる。即ち、温度センサ25が蒸発器24の温度が所定温度以上にあることを検知すると、制御装置35は切換弁13を第2の分岐路16側に切り換え冷却水循環路17が形成される。これにより貯湯槽5内下部の冷えた湯水が貯湯槽5下部から出て三方弁10、水熱交換器12、切換弁13、暖房熱交換器18、貯湯槽5下部の順に流れ、この冷めた貯湯槽5下部の湯水により直ちに冷却水循環路17が冷却され通常の貯湯槽5内の湯水の沸上運転に備えられる。
【0033】
次に、図5により暖房運転開始時の作用について説明する。
【0034】
リモコン34の操作により制御装置35が制御され、電磁弁32が開かれ給水路33を通じてシスターン30に水道水が供給される。次に、三方弁10が第1の分岐路15側に切換えられるとともに、流量調節弁13が第2の分岐路16側に100%の量の湯水が流れるよう切り換え調節される。そして、この切り換えにより、貯湯槽5の上部、第1の分岐路15、三方弁10、水熱交換器12、流量調節弁13、暖房用熱交換器18、第2の分岐路16、貯湯槽5下部の順に接続される暖房運転始時の第1の暖房用循環路36が形成される。そして、沸上用循環ポンプ10が駆動され、例えば、外気温度が10℃未満の場合は貯湯槽5内の約80℃の湯水200Lを貯湯槽5上部より第1の暖房用循環路36を通じて矢印で示すように流通させる。一方、暖房ユニット4の暖房用循環ポンプ31が駆動され暖房用循環路28内の熱媒が循環される。そして、第1の暖房用循環路36内を流通する約80℃の湯水の熱が暖房用熱交換器18ですぐに熱交換されて放熱部29a、放熱部29bから分散して放熱されて暖房運転が開始される。また、この暖房用熱交換器18で熱交換されて約70℃に冷やされた湯水は貯湯槽5の下部に戻される。そして、貯湯槽5上部より湯水を取り出す第1の暖房用循環路36を通じた暖房運転が例えば、約50分間繰返される。
【0035】
次に、図6により暖房運転安定時の作用について説明する。
【0036】
貯湯槽5上部より湯水を取り出す第1の暖房用循環路36を通じた暖房運転が50分間経過すると、制御装置35の制御により貯湯槽5下部から湯水を取り出し貯湯槽5下部へ湯水を戻す暖房運転が行われる。すなわち、制御装置35の制御により三方弁10が水熱交換器12側に切換えられるとともに、流量調節弁13が暖房用熱交換器18を介する第2の分岐路16側に100%の量の湯水が流れるように切り換えられる。そして、この切り換えにより貯湯槽5下部、三方弁10、水熱交換器12、流量調節弁13、暖房用熱交換器18、第2の分岐路16、貯湯槽5下部を順次接続する第2の暖房用循環路37が形成される。
【0037】
そして、沸上用循環ポンプ11および暖房用循環ポンプ31が駆動され第2の暖房用循環路37および暖房用循環路28の循環が開始される。そして、暖房用循環路37を通じた暖房運転が繰り返し行われると貯湯槽5下部の湯水温度が徐々に低下する。そして、水熱交換器12の入口側に設けた図示しない温度センサが例えば50℃を検知するとヒートポンプユニット3が運転を開始し、ヒートポンプユニット3の運転により第2の暖房用循環路37内の湯水が冷媒熱交換器22の熱により水熱交換器12に熱交換し、貯湯槽5下部から出た湯水を再度沸上げ、この沸上げられた湯水の熱が暖房用熱交換器18で熱交換されて暖房運転開始時と同様の作用により暖房ユニット4が運転され暖房運転が行われる。
【0038】
そして、このヒートポンプユニット3の運転により沸上げられた第2の暖房用循環路37内の湯水温度が温度センサで例えば55℃を検知するとヒートポンプユニット3の運転は停止される。以後ヒートポンプユニット3は温度センサが検知する温度が湯温50℃で運転し、55℃で停止するサイクルを繰り返して暖房運転が継続運転される。
【0039】
【発明の効果】
請求項1記載のヒートポンプ給湯装置によれば、沸上用循環路を通じて貯湯槽上部から貯湯槽内の湯水を取出し、この湯水の熱を水熱交換器にてヒートポンプユニットの冷媒熱交換器に熱交換し蒸発器を放熱器として作用させ蒸発器の除霜を行った後の沸上用循環路内の冷めた湯水を湯水混合層より下部の貯湯槽下部へ戻すようにしているため、必ず貯湯槽上部には湯水は存在し蒸発器の除霜運転は確実に行われるとともに、除霜後の返流水は貯湯槽内の湯水と混じり合うことがなく貯湯槽内の湯温の低下を招くことがない。
【0040】
請求項2記載のヒートポンプ給湯装置によれば、蒸発器除霜後の沸上用循環路の温められた水熱交換器は直ちに冷却水循環路内を流通する貯湯槽内下部側の冷えた湯水により冷却され、ヒーユニットの圧縮機が過負荷状態から解消され正常な貯湯槽内の湯水の沸上運転が行える。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すヒートポンプ給湯装置の構成を説明する説明図である。
【図2】同上、ヒートポンプ給湯装置の沸上げ時の作用を説明する説明図である。
【図3】同上、ヒートポンプ給湯装置の蒸発器除霜時の作用を説明する説明図である。
【図4】同上、ヒートポンプ給湯装置の水熱交換器冷却時の作用を説明する説明図である。
【図5】同上、ヒートポンプ給湯装置の暖房運転初期の作用を説明する説明図である。
【図6】同上、ヒートポンプ給湯装置の暖房運転安定時の作用を説明する説明図である。
【符号の説明】
1 ヒートポンプ給湯装置
2 貯湯ユニット
3 ヒートポンプユニット
4 暖房ユニット
5 貯湯槽
9 沸上用循環路
10 三方弁
11 沸上用循環ポンプ
12 水熱交換器
13 流量調節器としての切換弁
14 除霜用循環路
15 第1の分岐路
16 第2の分岐路
17 冷却水循環路
18 暖房用熱交換器
19 冷媒循環路
20 圧縮機
21 四方弁
22 冷媒用熱交換器
23 膨張弁
24 集熱器としての蒸発器
25 温度センサ
28 暖房循環路
29a,29b 放熱部
30 シスターン
31 暖房用循環ポンプ
34 リモコン
35 制御装置
36 第1の暖房用循環路
37 第2の暖房用循環路
[0001]
The present invention relates to a heat pump hot water supply apparatus that performs defrosting of an evaporator as a heat collector using hot water in an upper part of a hot water storage tank.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a defrosting operation of an evaporator as a heat collector of a heat pump hot water supply apparatus is performed, for example, as described in Japanese Patent Application Laid-Open No. 8-152193. A heat collection circuit formed by pipe connection of a machine, a four-way valve, a heat exchanger, and the like, and a hot water supply circuit formed by pipe connection of a hot water tank, a pump, and a three-way valve that is an electric switching valve, a heat exchanger, and the like are formed. The heat exchanger and the hot water tank are connected by an outgoing pipe (P0, P1) for flowing hot water from the heat exchanger to the hot water tank, and a return pipe for flowing water from the hot water tank side to the heat exchanger. A defrost circuit of a heat collector to which a bypass pipe P3 communicating with the return pipe P5 from the middle of P1 is connected via a three-way valve is connected.
[0003]
During normal boiling operation, the heat collecting circuit maintains the four-way valve in the normal rotation state, and the heat medium circulates in the order of the compressor, the heat exchanger, and the heat collector to perform the heat collecting operation. The hot water supply circuit switches the three-way valve to select the outgoing pipe P1, the hot water in the hot water tank passes through the pump, is heated by the heat exchanger, and goes out of the three-way valve through the outgoing pipe P1 and sequentially from the top of the hot water tank. Normal operation for storing hot water is performed.
[0004]
Further, during the defrosting operation of the heat collector, the four-way valve of the heat collecting circuit is switched from the normal rotation state to the inverted state, and the three-way valve of the hot water supply circuit is switched so as to select the bypass pipe P3. In, the heat medium circulates in the order of a heat exchanger, a compressor, a heat collector, and a heat exchanger. On the other hand, on the hot water supply circuit side, the defrosting operation is performed by circulating like a three-way valve, a pump, a heat exchanger, and a three-way valve. Thus, heat is removed from the hot water on the hot water supply circuit side by the heat exchanger, and frost formed on the heat collector can be removed using the heat. Therefore, at the time of the defrosting operation, the hot water in the hot water tank is not used, so that there is no need for a means or time for raising the temperature of the hot water to the original temperature or more without causing a decrease in the temperature of the hot water in the hot water tank. Become.
[0005]
However, as described above, when the defrosting operation of the frost formed on the heat collector is performed by using the heat of the hot water in the hot water supply circuit side without using the heat of the hot water in the hot water tank, In a hot water supply apparatus of a system in which hot water is stacked from the upper portion and heated, there are problems that hot water is not always present on the hot water supply circuit side and the defrosting operation may not be reliably performed.
[0006]
On the other hand, there is one that performs defrosting operation of an evaporator as a heat collector using hot water in a hot water storage tank. That is, as described in Japanese Patent Application Laid-Open No. Hei 10-89816, a hot water storage tank provided with a water intake port at a lower end, a refrigerant circuit having an outdoor heat exchanger as an evaporator and a water heat exchanger. A heat exchange path provided for heat exchange with the water heat exchanger, and for circulating hot water in the hot water storage tank, wherein the water heat exchanger functions as a condenser in response to a hot water supply request, The hot water supplied from the water intake is circulated through the exchange path, and the hot water supply operation for storing hot water in the hot water storage tank is performed, while the outdoor heat exchanger functions as a condenser in response to a defrost request to perform the defrosting operation. In the heat pump system, a hot water inlet is provided at an intermediate portion of the hot water storage tank, and a first switching state in which hot water flows out of the hot water storage tank to the heat exchanger via the water inlet, and heat is discharged through the hot water inlet through the hot water inlet. Collect the return water from the exchanger Flow path switching means for switching between a second switching state in which the air flows into an inflow port provided below the mouth; and when the hot water supply is requested, the flow path switching means is set to the first switching state, while defrosting is performed. When a request is made, the flow path switching means is set to the second switching state, the hot water flowing out of the hot water inlet is passed through the heat exchange path, and the water heat exchanger functions as an evaporator to return the return water to the lower part of the hot water outlet. It is made to return to the inflow port provided on the side.
[0007]
[Problems to be solved by the invention]
However, in the defrosting operation described in Japanese Patent Application Laid-Open No. Hei 10-89816, the hot water in the hot water storage tank is taken out from a hot water inlet provided in an intermediate portion of the hot water storage tank, and the heat is given to the refrigerant in a water heat exchanger. This heat defrosts the outdoor heat exchanger as an evaporator, and the return water from the water heat exchanger is returned to the hot water storage tank from the inflow port provided below the hot water intake port. In a hot water supply system in which hot water is stacked from the top of the tank and boiled, hot water does not always exist in the middle of the hot water storage tank, and the return water from the water heat exchanger is placed under the hot water outlet. In order to return to the provided inflow port, there is a problem in that the hot water in the middle part of the hot water storage tank and the return water are mixed and the temperature of the hot water drops.
[0008]
The present invention has been made in view of such a point, and a defrosting operation of an evaporator as a heat collector is performed in a hot water supply apparatus of a type in which hot water is stacked from the top of a hot water storage tank and heated. The hot water in the hot water tank is taken out from the upper part of the hot water tank through the passage, and the heat of the hot water is exchanged with the refrigerant heat exchanger of the heat pump unit by the water heat exchanger, and the evaporator acts as a radiator to defrost the evaporator. After the cooling, the hot water in the boiling circulation path is returned to the lower part of the hot water tank below the hot / cold mixed layer.There is always hot water at the upper part of the hot water tank, and the defrosting operation of the evaporator is reliable. It is another object of the present invention to provide a heat pump hot water supply apparatus in which return water after defrosting does not mix with hot water in a hot water storage tank and does not cause a drop in hot water temperature in the hot water storage tank.
[0009]
[Means for Solving the Problems]
The heat pump hot water supply apparatus according to claim 1, a heat pump unit in which a compressor, a four-way valve, a refrigerant heat exchanger, an evaporator as a heat collector and the like are sequentially connected in series, and the refrigerant is circulated, a three-way valve, and a water heat exchanger. The switching valve and the like are sequentially connected, the hot water in the hot water tank is circulated from the lower part to the upper part of the hot water tank, and the hot water that has been heat-exchanged by the water heat exchanger that is heat-exchanged with the refrigerant heat exchanger is passed from the upper part of the hot water tank A heat-collecting circuit including a boiling circulation path to be laminated, a first branch path, the three-way valve, the water heat exchanger, the switching valve, and a second branch path sequentially connected to each other; The defrosting heat pump unit of the evaporator as a heat pump unit is operated in a reverse cycle, and the hot water in the hot water storage tank is taken out of the hot water storage tank upper part through the boiling circulation path, and the hot water is supplied to the lower part of the hot water storage tank through the defrost circulation path. Circulates the heat of this hot and cold water In which the heat exchanger and the evaporator in the refrigerant heat exchanger of the heat pump units to perform the defrosting of the evaporator to act as a radiator at.
[0010]
And with this configuration, there is always hot water at the top of the hot water tank, the defrosting operation of the evaporator is performed reliably, and the return water after defrosting does not mix with the hot water in the hot water tank, Thus, a heat pump hot water supply apparatus that does not cause a decrease in hot water temperature can be obtained.
[0011]
The heat pump water heater according to claim 2, wherein the three-way valve, the water heat exchanger, the switching valve, and the second branch are sequentially connected to a lower part of the hot water storage tank for cooling the water heat exchanger. A water circulation path is provided, and after the evaporator is defrosted, the cooled hot water is taken out from the lower part of the hot water storage tank, the cooled water is circulated to the lower part of the hot water tank through the cooling water circulation path, and the water heat exchanger is cooled. And operating the boiling circulation circuit to boil the hot water in the hot water storage tank.
[0012]
With this configuration, the heated water heat exchanger in the boiling circuit after the defrosting of the evaporator as a heat collector is immediately cooled by the cold water in the lower part of the hot water tank flowing through the cooling water circuit. Then, the compressor of the heat pump unit is released from the overload state, and the normal operation of boiling water in the hot water storage tank can be performed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0014]
【Example】
As shown in FIG. 1, the heat pump hot water supply device 1 includes a hot water storage unit 2, a heat pump unit 3, and a heating unit 4.
[0015]
The hot water storage unit 2 includes a hot water storage tank 5. The hot water storage tank 5 employs a hot water supply system of a first-stop push-up type, and a water supply pipe for supplying tap water through a pressure reducing valve 6 below the hot water storage tank 5. 7 is connected, and a hot water supply pipe 8 for supplying hot water to a hot water supply destination such as a kitchen or a bathroom is connected to an upper portion thereof.
[0016]
To the hot water storage tank 5, there is connected a boiling circulation path 9 that exits from a lower part of the hot water storage tank 5 and returns to an upper part of the hot water storage tank 5. A three-way valve 10 is provided in the boiling circulation circuit 9 from below the hot water storage tank 5, and an intermediate portion of the heating circulation circuit 9 exits the hot water storage unit 2 and is disposed in the heat pump unit 3. Inside, a boiling circulation pump 11 and a water heat exchanger 12 for forcibly drawing hot water under the hot water storage tank 5 into the boiling circulation circuit 9 and circulating the hot water in the upper part of the hot water storage tank 5 are provided. A switching valve 13 as a flow controller is disposed between the water heat exchanger 12 and the hot water storage tank 5.
[0017]
Further, a defrosting circulation path 14 for taking out hot water from the upper part of the hot water tank 5 and circulating the hot water at the lower part of the hot water tank 5 is connected. From the upper part of the hot water storage tank 5, the first branch path 15, the three-way valve 10, the boiling circulation pump 11, the water heat exchanger 12, the switching valve 13, the heating heat exchanger 18, The second branch 16 and the lower part of the hot water storage tank 5 are sequentially connected.
[0018]
Further, a cooling water circulation path 17 for circulating hot water from the lower part of the hot water tank 5 to the lower part of the hot water tank 5 is connected to the lower part of the hot water tank 5. The cooling water circulation path 17 is provided with a three-way valve 10, a boiling circulation pump 11, a water heat exchanger 12, a switching valve 13, a heating heat exchanger 18, and a second branch path 16 in this order.
[0019]
The heat pump unit 3 has a refrigerant circuit 19 filled with a refrigerant. The refrigerant circuit 19 has a compressor 20, a four-way valve 21, and hot and cold water that functions as a condenser and flows through the boiling circuit 9. A heat exchanger 22 for exchanging heat with the water heat exchanger 12 to bring hot water to a predetermined boiling temperature, an expansion valve 23 and an evaporator 24 as a heat collector are connected in order. Further, the evaporator 24 includes a temperature sensor 25 for detecting the temperature of the evaporator 24, a blower fan 26 for sending outside air to the evaporator 24, and a blower motor 27 for rotating the blower fan 26.
[0020]
The heating unit 4 includes a heating circuit 28 filled with a heat medium. The heating circuit 28 includes a heat exchanger 18 for heating, a heat radiator 29 a such as a floor heater and a panel heater, a heat radiator 29 b, and an upper portion. A cistern 30 open to the atmosphere and a circulation pump 31 for heating are connected in order. Further, a water supply channel 33 for supplying tap water to the cistern 30 through an electromagnetic valve 32 is connected.
[0021]
Reference numeral 34 denotes a remote controller. The remote controller 34 is disposed on a wall surface of a kitchen or the like to operate the hot water storage unit 2, the heat pump unit 3, and the heating unit 4. The remote controller 34 is used to start or switch these units. It has switches and display means for displaying the operating state of these switches.
[0022]
Reference numeral 35 denotes a control device as operation control means. The control device 35 operates the remote control 34 to appropriately switch the three-way valve 10 and the switching valve 13 to circulate the boiling circulation path 9 and operate the heat pump unit 3. Then, the boiling water in the hot water storage tank 5 is controlled, the defrosting operation is controlled by the temperature signal of the temperature sensor 25, or the heating operation is performed by switching to the heating circulation path 28.
[0023]
Next, the operation of the present embodiment will be described.
[0024]
First, the operation of boiling water in the hot water storage tank 5 will be described with reference to FIG.
[0025]
Tap water is stored in the hot water tank 5 from the water supply pipe 7. Then, the control device 35 is controlled by operating the remote controller 34, the three-way valve 10 is switched to the boiling circulation path 9 side, and the flow rate control valve 13 is turned to the boiling circulation path 9 side so that 100% of hot and cold water is supplied to the boiling circulation path 9 side. Adjusted to flow. Then, the compressor 20 of the heat pump unit 3 is driven. Thereby, as shown by the arrow, the refrigerant flows in the order of the compressor 20, the four-way valve 21, the refrigerant heat exchanger 22 functioning as a condenser, the expansion valve 23, and the evaporator 24 in the refrigerant circuit 19. The refrigerant that has collected atmospheric heat in the evaporator 20 and vaporized is sent to the compressor 20, and the high-temperature and high-pressure refrigerant gas compressed and discharged in the compressor 20 is heat-exchanged in the refrigerant heat exchanger 22.
[0026]
On the other hand, the boiling circulation pump 11 of the boiling circulation circuit 9 is driven, and water at the lower part of the hot water storage tank 5 is passed through the boiling circulation circuit 9 as shown by an arrow, and the water heat exchanger 12 and the refrigerant heat exchanger 22 are turned on. The water in the boiling circulation circuit 9 is heat-exchanged to become hot water and enters the upper portion of the hot water storage tank 5 between them. This is repeated, and hot water at a set temperature of about 80 ° C. is sequentially stacked from the upper portion of the hot water storage tank 5. The water in the hot water storage tank 5 is boiled. The hot and cold water stacked in the hot water storage tank 5 is sent to, for example, a kitchen or a bathtub through the hot water supply pipe 8 and used for hot water supply.
[0027]
Next, the operation of the defrosting operation of the evaporator as the heat collector will be described with reference to FIG.
[0028]
When the temperature sensor 25 detects that the temperature of the evaporator 20 is equal to or lower than the predetermined temperature, the control device 28 is controlled, the three-way valve 10 is switched to the first branch 15 side, and the flow control valve 13 is switched to the second branch. Is adjusted so that 100% of the hot and cold water flows to the side of the fork 16. Thereby, the defrosting circulation path 14 is formed. Then, the hot water storage unit 2 is driven by the boiling circulation pump 11 to take out hot water from the hot water tank 5 from above the hot water tank 5, and the hot water is supplied to the first branch 15, the three-way valve 10, the water heat exchanger 12, It flows in the order of the flow control valve 13, the heating heat exchanger 18, the second branch 16, and the lower part of the hot water tank 5.
[0029]
On the other hand, in the heat pump unit 3, the control device 28 is controlled by the detection signal of the temperature sensor 25, the four-way valve 21 is inverted, and the refrigerant is the refrigerant heat exchanger 22, the four-way valve 21, the compressor 20, the evaporator 24, the expansion valve 23. It flows in the order of Then, the heat of the water heat exchanger 12 is exchanged with the refrigerant heat exchanger 22 by the circulation of the refrigerant, and the heat is radiated from the evaporator 24 as a heat collector, and the frost attached to the evaporator 24 is removed.
[0030]
During the defrosting operation of the evaporator as a heat collector, the hot water in the upper part of the hot water storage tank 5 is taken out and used. At the same time, the cooled hot water after defrosting is circulated below the hot water mixing layer at the lower part of the hot water storage tank 5, and is not mixed with the hot water in the hot water storage tank 5.
[0031]
Next, the cooling operation of the subsequent water heat exchanger as a heat collector will be described with reference to FIG.
[0032]
When the water heat exchanger 12 is heated by the evaporator defrosting operation and the temperature of the hot water flowing through the water heat exchanger 12 is high, when the operation returns to the normal operation of boiling water in the hot water storage tank 5, the compressor 20 of the heat pump unit 3 Is overloaded and the coefficient of performance of the heat pump unit 3 decreases or the heat pump unit 3 stops. Therefore, there is a need to cool the water heat exchanger 12 after the evaporator defrosting operation is completed. That is, when the temperature sensor 25 detects that the temperature of the evaporator 24 is equal to or higher than the predetermined temperature, the control device 35 switches the switching valve 13 to the second branch passage 16 side to form the cooling water circulation passage 17. Thereby, cold hot water in the lower part of the hot water tank 5 flows out of the lower part of the hot water tank 5 and flows in the order of the three-way valve 10, the water heat exchanger 12, the switching valve 13, the heating heat exchanger 18, and the lower part of the hot water tank 5, and is cooled. The cooling water circulation path 17 is immediately cooled by the hot and cold water in the lower part of the hot water storage tank 5, so that the hot water in the normal hot water storage tank 5 can be prepared for the boiling operation.
[0033]
Next, the operation at the start of the heating operation will be described with reference to FIG.
[0034]
The control device 35 is controlled by operating the remote controller 34, the electromagnetic valve 32 is opened, and tap water is supplied to the cistern 30 through the water supply passage 33. Next, the three-way valve 10 is switched to the first branch 15 and the flow control valve 13 is switched and adjusted so that 100% of hot and cold water flows to the second branch 16. By this switching, the upper part of the hot water tank 5, the first branch 15, the three-way valve 10, the water heat exchanger 12, the flow control valve 13, the heating heat exchanger 18, the second branch 16, the hot water tank The first heating circulation path 36 at the start of the heating operation, which is connected in the order of the lower part 5, is formed. Then, the boiling circulation pump 10 is driven. For example, when the outside air temperature is lower than 10 ° C., 200 L of hot water of about 80 ° C. in the hot water tank 5 is supplied from the upper part of the hot water tank 5 through the first heating circulation path 36 through the arrow. Distribute as shown. On the other hand, the heating circulation pump 31 of the heating unit 4 is driven to circulate the heat medium in the heating circulation passage 28. Then, the heat of the hot / cold water of about 80 ° C. flowing in the first heating circulation path 36 is immediately exchanged by the heating heat exchanger 18 and dispersed and radiated from the heat radiating portions 29 a and 29 b to be radiated. Operation is started. The hot water cooled to about 70 ° C. by heat exchange in the heating heat exchanger 18 is returned to the lower part of the hot water storage tank 5. Then, the heating operation through the first heating circulation path 36 for taking out hot water from the upper part of the hot water storage tank 5 is repeated, for example, for about 50 minutes.
[0035]
Next, the operation when the heating operation is stable will be described with reference to FIG.
[0036]
When the heating operation through the first heating circulation path 36 for taking out hot water from the upper part of the hot water storage tank 5 has elapsed for 50 minutes, the heating operation of taking out hot water from the lower part of the hot water storage tank 5 and returning the hot water to the lower part of the hot water storage tank 5 under the control of the controller 35. Is performed. That is, the three-way valve 10 is switched to the water heat exchanger 12 side by the control of the control device 35, and the flow control valve 13 is moved to the second branch 16 side via the heating heat exchanger 18 by 100% hot and cold water. Are switched to flow. By this switching, the lower part of the hot water tank 5, the three-way valve 10, the water heat exchanger 12, the flow control valve 13, the heating heat exchanger 18, the second branch passage 16, and the lower part of the hot water tank 5 are sequentially connected. A heating circulation path 37 is formed.
[0037]
Then, the heating circulation pump 11 and the heating circulation pump 31 are driven, and the circulation of the second heating circulation path 37 and the heating circulation path 28 is started. When the heating operation through the heating circulation path 37 is repeatedly performed, the temperature of the hot water at the lower portion of the hot water storage tank 5 gradually decreases. Then, when a temperature sensor (not shown) provided on the inlet side of the water heat exchanger 12 detects, for example, 50 ° C., the heat pump unit 3 starts operating, and the operation of the heat pump unit 3 causes the hot and cold water in the second heating circulation path 37. Heat exchanges with the water heat exchanger 12 by the heat of the refrigerant heat exchanger 22, and again boils the hot water discharged from the lower part of the hot water storage tank 5, and the heat of the boiled water is exchanged by the heat exchanger 18 for heating. Then, the heating unit 4 is operated by the same operation as when the heating operation is started, and the heating operation is performed.
[0038]
The operation of the heat pump unit 3 is stopped when the temperature of the hot and cold water in the second circulation circuit 37, which is boiled by the operation of the heat pump unit 3, is detected by a temperature sensor, for example, 55 ° C. Thereafter, the heat pump unit 3 operates at a temperature detected by the temperature sensor at a hot water temperature of 50 ° C., and repeats a cycle of stopping at 55 ° C. to continue the heating operation.
[0039]
【The invention's effect】
According to the heat pump hot water supply device of the first aspect, the hot water in the hot water tank is taken out from the upper part of the hot water tank through the boiling circulation circuit, and the heat of the hot water is transferred to the refrigerant heat exchanger of the heat pump unit by the water heat exchanger. Replace the evaporator as a radiator to defrost the evaporator, and then return the cooled hot water in the boiling circulation path to the lower part of the hot water tank below the hot / water mixed layer. There is hot water in the upper part of the tank, the defrosting operation of the evaporator is performed reliably, and the return water after defrosting does not mix with the hot water in the hot water storage tank, causing a drop in the hot water temperature in the hot water storage tank. There is no.
[0040]
According to the heat pump hot water supply device of the second aspect, the heated water heat exchanger of the boiling circulation circuit after the evaporator defrosting is immediately cooled by the cold water in the lower part of the hot water storage tank flowing through the cooling water circulation circuit. Cooling is performed, and the compressor of the heat unit is released from the overload state, and the normal operation of boiling water in the hot water storage tank can be performed.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram illustrating a configuration of a heat pump water heater according to an embodiment of the present invention.
FIG. 2 is an explanatory view illustrating an operation of the heat pump water heater at the time of boiling.
FIG. 3 is an explanatory diagram illustrating an operation of the heat pump water heater at the time of evaporator defrosting.
FIG. 4 is an explanatory diagram illustrating an operation of the heat pump water heater at the time of cooling the water heat exchanger.
FIG. 5 is an explanatory diagram illustrating an operation of the heat pump water heater at an early stage of a heating operation.
FIG. 6 is an explanatory diagram illustrating an operation of the heat pump water heater when the heating operation is stable.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 heat pump hot water supply device 2 hot water storage unit 3 heat pump unit 4 heating unit 5 hot water storage tank 9 heating circuit 10 three-way valve 11 heating circuit 12 water heat exchanger 13 switching valve 14 as flow controller 14 defrost circuit Reference Signs List 15 first branch path 16 second branch path 17 cooling water circulation path 18 heating heat exchanger 19 refrigerant circulation path 20 compressor 21 four-way valve 22 refrigerant heat exchanger 23 expansion valve 24 evaporator 25 as heat collector Temperature sensor 28 Heating circulation paths 29a, 29b Heat radiating section 30 Systern 31 Heating circulation pump 34 Remote controller 35 Control device 36 First heating circulation path 37 Second heating circulation path

Claims (2)

圧縮機、四方弁、冷媒熱交換器、集熱器としての蒸発器等を順次直列接続され冷媒が循環されるヒートポンプユニットと、三方弁、水熱交換器、切換弁等を順次接続され貯湯槽の下部から上部に貯湯槽内の湯水を循環され前記冷媒熱交換器と熱交換される水熱交換器にて熱交換された湯水を貯湯槽の上部から積層させる沸上用循環路と、第1の分岐路、前記三方弁、前記水熱交換器、前記切換弁、第2の分岐路を順次接続される除霜用循環路とを備え、集熱器としての蒸発器の除霜時ヒートポンプユニットを逆サイクル運転させるとともに、前記沸上用循環路を通じて前記貯湯槽上部から貯湯槽内の湯水を取出し前記除霜用循環路を通じて貯湯槽下部へ湯水を循環させ、この湯水の熱を前記水熱交換器にてヒートポンプユニットの冷媒熱交換器に熱交換し蒸発器を放熱器として作用させ蒸発器の除霜を行うことを特徴とするヒートポンプ給湯装置。A heat pump unit in which a compressor, a four-way valve, a refrigerant heat exchanger, an evaporator as a heat collector, and the like are sequentially connected in series and a refrigerant is circulated, and a three-way valve, a water heat exchanger, a switching valve, and the like are sequentially connected, and a hot water tank. A boiling water circulation path for circulating hot water in the hot water tank from the lower part to the upper part and stacking the hot water and the heat exchanged by the water heat exchanger that is heat-exchanged with the refrigerant heat exchanger from the upper part of the hot water tank; A defrosting circuit for sequentially connecting the first branch, the three-way valve, the water heat exchanger, the switching valve, and the second branch to the evaporator as a heat collector; The unit is operated in a reverse cycle, hot water in the hot water tank is taken out of the hot water tank from the upper part of the hot water tank through the boiling circuit, and the hot water is circulated to the lower part of the hot water tank through the defrosting circuit. Refrigerant heat exchange of heat pump unit with heat exchanger The heat pump water heater, characterized in that the heat exchanger to the evaporator to act as a radiator defrosted evaporator to. 前記貯湯槽下部に、前記三方弁、前記水熱交換器、前記切換弁、前記第2の分岐路を順次接続される前記水熱交換器冷却用の冷却水循環路を設け、前記蒸発器の除霜後、前記貯湯槽下部から冷えた湯水を取出し前記冷却水循環路を通じて貯湯槽下部に冷えた湯水を循環させ前記水熱交換器を冷却し、その後ヒートポンプユニットを運転するとともに、前記沸上用循環路を動作させて前記貯湯槽内の湯水を沸き上げるようにしたことを特徴とする請求項1記載のヒートポンプ給湯装置。A cooling water circulation path for cooling the water heat exchanger, which is sequentially connected to the three-way valve, the water heat exchanger, the switching valve, and the second branch path, is provided below the hot water tank, and the evaporator is removed. After the frost, the cold water is taken out from the lower part of the hot water tank, the cold water is circulated to the lower part of the hot water tank through the cooling water circulation path to cool the water heat exchanger, and then the heat pump unit is operated and the circulation for boiling is performed. 2. The heat pump hot water supply apparatus according to claim 1, wherein the hot water in the hot water storage tank is heated by operating a path.
JP2002347594A 2002-11-29 2002-11-29 Heat pump water heater Pending JP2004183908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002347594A JP2004183908A (en) 2002-11-29 2002-11-29 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002347594A JP2004183908A (en) 2002-11-29 2002-11-29 Heat pump water heater

Publications (1)

Publication Number Publication Date
JP2004183908A true JP2004183908A (en) 2004-07-02

Family

ID=32750740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002347594A Pending JP2004183908A (en) 2002-11-29 2002-11-29 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP2004183908A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007248003A (en) * 2006-03-17 2007-09-27 Toshiba Kyaria Kk Hot water supply heat source machine
US7454919B2 (en) 2005-03-28 2008-11-25 Toshiba Carrier Corporation Hot-water supply apparatus
JP2009103362A (en) * 2007-10-23 2009-05-14 Mitsubishi Electric Corp Storage type water heater
WO2010090071A1 (en) * 2009-02-06 2010-08-12 三菱重工業株式会社 Heat pump-type hot-water supply and air-conditioning device
KR101058843B1 (en) 2009-03-18 2011-08-23 고세진 Defrost heat pump cycle
JP2013148266A (en) * 2012-01-19 2013-08-01 Mitsubishi Electric Corp Heat pump system and control method of heat pump system
KR101485061B1 (en) * 2014-09-01 2015-01-21 윤정희 Heat to the cold inflation pressure used for heat pump having a defrost function, heating
EP2538146B1 (en) 2011-06-24 2016-04-20 Panasonic Corporation Cold/hot water supply apparatus
EP2461109B1 (en) 2010-12-02 2017-03-01 Panasonic Corporation Cold/hot water supply apparatus
EP2151633B1 (en) * 2008-08-04 2017-11-22 LG Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7454919B2 (en) 2005-03-28 2008-11-25 Toshiba Carrier Corporation Hot-water supply apparatus
JP2007248003A (en) * 2006-03-17 2007-09-27 Toshiba Kyaria Kk Hot water supply heat source machine
JP2009103362A (en) * 2007-10-23 2009-05-14 Mitsubishi Electric Corp Storage type water heater
EP2151633B1 (en) * 2008-08-04 2017-11-22 LG Electronics Inc. Hot water circulation system associated with heat pump and method for controlling the same
WO2010090071A1 (en) * 2009-02-06 2010-08-12 三菱重工業株式会社 Heat pump-type hot-water supply and air-conditioning device
JP2010181104A (en) * 2009-02-06 2010-08-19 Mitsubishi Heavy Ind Ltd Heat pump type hot water-supply/air-conditioning device
EP2395302A4 (en) * 2009-02-06 2017-08-09 Mitsubishi Heavy Industries, Ltd. Heat pump-type hot-water supply and air-conditioning device
KR101058843B1 (en) 2009-03-18 2011-08-23 고세진 Defrost heat pump cycle
EP2461109B1 (en) 2010-12-02 2017-03-01 Panasonic Corporation Cold/hot water supply apparatus
EP2538146B1 (en) 2011-06-24 2016-04-20 Panasonic Corporation Cold/hot water supply apparatus
JP2013148266A (en) * 2012-01-19 2013-08-01 Mitsubishi Electric Corp Heat pump system and control method of heat pump system
KR101485061B1 (en) * 2014-09-01 2015-01-21 윤정희 Heat to the cold inflation pressure used for heat pump having a defrost function, heating

Similar Documents

Publication Publication Date Title
EP2151633A2 (en) Hot water circulation system associated with heat pump and method for controlling the same
JP2008096044A (en) Hot water reservoir type hot-water supply device
JP2004183908A (en) Heat pump water heater
JP2002048398A (en) Heat pump hot water supply apparatus
WO2006114983A1 (en) Refrigeration cycle device
JP4304832B2 (en) Air conditioner
JP2002048399A (en) Heat pump hot water supply apparatus
JP2004132612A (en) Heating and air conditioning system, and dwelling house with heating and air conditioning system
JP4502020B2 (en) Heating and hot water supply equipment
JP2004317093A (en) Heat pump hot water supply and heating apparatus
JP2018066515A (en) Method of controlling heat pump hot water heating system
JP4114930B2 (en) Heat pump water heater / heater
JP3047831B2 (en) Heat pump system
JP3842170B2 (en) Heat pump water heater
JP2007333340A (en) Heat pump type hot water supply apparatus
JP5773897B2 (en) HEAT PUMP SYSTEM AND HEAT PUMP SYSTEM CONTROL METHOD
JP2007071471A (en) Heating device and hot-water supply heating device
JP2002340439A (en) Heat pump type hot-water supplier
JP2009264716A (en) Heat pump hot water system
JP2004225952A (en) Heat pump hot-water supply heating device
KR101488903B1 (en) Heat storaging apparatus and Control process of the same
JP2004278987A (en) Heat pump type water heater
JP2011117643A (en) Storage type water heater
JP3883184B2 (en) Heat pump water heater
JP3857221B2 (en) Heat pump water heater / heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070206