JP2004183038A - METHOD FOR FORMING ELECTRODE WITH LOW CONTACT RESISTANCE ONTO n-TYPE CONDUCTIVE ZINC OXIDE - Google Patents

METHOD FOR FORMING ELECTRODE WITH LOW CONTACT RESISTANCE ONTO n-TYPE CONDUCTIVE ZINC OXIDE Download PDF

Info

Publication number
JP2004183038A
JP2004183038A JP2002350571A JP2002350571A JP2004183038A JP 2004183038 A JP2004183038 A JP 2004183038A JP 2002350571 A JP2002350571 A JP 2002350571A JP 2002350571 A JP2002350571 A JP 2002350571A JP 2004183038 A JP2004183038 A JP 2004183038A
Authority
JP
Japan
Prior art keywords
electrode
zinc oxide
indium
indium metal
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002350571A
Other languages
Japanese (ja)
Other versions
JP3855051B2 (en
Inventor
Naoki Ohashi
直樹 大橋
Hajime Haneda
肇 羽田
Takeshi Ogaki
武 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002350571A priority Critical patent/JP3855051B2/en
Publication of JP2004183038A publication Critical patent/JP2004183038A/en
Application granted granted Critical
Publication of JP3855051B2 publication Critical patent/JP3855051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To form an electrode with low contact resistance onto zinc oxide which is useful as an electronic material including an electric resistor and a sensor material. <P>SOLUTION: The method for forming the electrode comprises heating/vaporizing indium metal and fixing the vapor on the surface of the zinc oxide. In the above step, direct current plasma is used in particular for the purpose of avoiding increase of contact resistance by oxidation of indium metal, to improve adhesiveness of vapor deposited indium. The method further comprises stopping generation of the direct-current plasma after the vapor deposition of the indium metal, and without breaking the vacuum, preferably vapor depositing a noble metal on the indium metal electrode so as to form a film for preventing the oxidation. Because the film acquires higher adhesiveness of the indium metal than that by pressure bonding or normal vapor deposition, the film realizes a more stable ohmic property and lower resistance. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、n型伝導性を特徴とする酸化亜鉛を用いた電気抵抗体、センサー、バリスター、透明電極などの電気、電子素子の酸化亜鉛上へ低抵抗でオーミック性の良い金属電極を形成する方法に関する。
【0002】
【従来の技術】
一般に、金属と半導体との接合においては、金属の仕事関数と半導体の電子親和力によって決定されるエネルギー障壁が形成されるため、オーミック性に優れた低抵抗電極を形成するには、様々な努力がなされてきている。これまで、電気、電子素子に利用される酸化亜鉛へのオーミック電極は銀ペースト等の金属微粒子を分散させたペーストの塗布とその焼き付け、あるいは、金をはじめとする金属のスパッタ蒸着によって形成されてきた。
【0003】
また、インジウムが低抵抗の電極として利用可能であることが知られてきている。特に、n型にドープされた酸化亜鉛に対してインジウムが有効である(例えば、非特許文献1参照)。インジウム電極の形成には、インジウム箔を圧着する方法、インジウム・ガリウム系アマルガムを塗布する方法、あるいは、インジウム系の金属を半田として利用する方法が用いられている。
【0004】
【非特許文献1】
N.Ohashi et al.,Japanese Journal of Applied Physics Vol.38, pp5028−5032,1999
【0005】
【発明が解決しようとする課題】
酸化亜鉛へのインジウム電極の形成方法において、インジウム・ガリウム系のアマルガムを塗布すると、酸化亜鉛との反応が起こり、酸化亜鉛単結晶表面にダメージを与えることがあった。さらに、焼き付けを必要とする電極では、温度履歴に敏感な酸化亜鉛の欠陥構造を変質させてしまうこともあった。また、塗布による方法では微小な素子への電極形成が困難である。
【0006】
上記の非特許文献1に示されるように、酸化亜鉛に対してインジウムが高濃度に拡散した場合、亜鉛とインジウムとからなる複合酸化物を形成する可能性があり、この複合酸化物は絶縁体になり易い性質を持つ。
【0007】
通常のインジウム蒸着では、インジウムが酸化亜鉛に拡散してこのような問題を引き起こす可能性がある。さらに、インジウムが酸化されることによって、電極の特性が失われることがある。
【0008】
本発明の課題は、電気、電子素子に利用されるn型伝導性を特徴とする酸化亜鉛との接触抵抗が小さく、また、耐酸化性に優れたインジウム金属電極を蒸着法により形成することである。特に、1ミリを下回るサイズの小型の良質なインジウム金属電極をn型伝導性酸化亜鉛膜上に形成すること、また、熱処理を施すことなく、すなわち、酸化亜鉛材料の欠陥構造や不純物の状態を変化させることなく、小型の電極を形成する技術を提供することを課題とする。
【0009】
【課題を解決するための手段】
本発明者は、低い接触抵抗を実現してくれる金属であるインジウムを酸化亜鉛に拡散せず、且つ密着性よく付着させる条件で蒸着する方法を見出した。
この方法によれば、インジウム金属が付着しないための覆いをマスクによってかけ、必要な部分にのみ蒸着することが可能であり、小型の電極を容易に形成することができる。
【0010】
さらに、蒸着膜は薄く、また、酸化亜鉛を室温で蒸着した後に、大気中に曝すと、インジウムが酸化して電極としての特性が損なわれるため、耐酸化性に優れた被膜を連続して蒸着することによってこの問題も解決可能であることを見出した。
【0011】
すなわち、本発明は、(1)真空槽に、直流プラズマ放電を可能とするためのアノード電極と該アノード電極に対向して配置したカソード電極と、インジウム金属の真空加熱蒸着を実現するに足る高温を実現できるインジウム金属を充填した加熱容器と、を配置し、該カソード電極上にn型伝導性酸化亜鉛を用いた電子素子を配置し、該真空槽内を気し、しかる後に、アルゴンガスを真空槽に導入し、直流プラズマが発生するに適当な圧力を保持し、直流プラズマが発生した状態において、インジウム金属を加熱・蒸発させて、n型伝導性酸化亜鉛表面に直流電界下でプラズマを照射しながらインジウムを蒸着させてインジウム金属電極を形成することを特徴とするn型伝導性酸化亜鉛上への低接触抵抗電極の形成法、である。
【0012】
また、本発明は、(2)上記(1)の酸化亜鉛上への低接触抵抗電極の形成法であって、インジウム金属蒸着の後に、直流プラズマの発生を停止し、真空を破ることなく、インジウム金属電極上に、酸化防止のための貴金属膜を蒸着させることを特徴とするn型伝導性酸化亜鉛上への低接触抵抗電極の形成法、である。
【0013】
【発明の実施の形態】
本発明の方法を実施するためには、下記のような直流プラズマ真空蒸着装置を使用する。真空槽内には、直流プラズマ放電を可能とし、n型伝導性酸化亜鉛表面に直流電界下でプラズマを照射するためのアノード電極とカソード電極を対向して設置する。n型伝導性酸化亜鉛を用いた電気、電子素子は、カソード電極上に配置して酸化亜鉛膜表面をアノード電極に対向させる。
【0014】
真空槽内に抵抗線加熱又はそれと同等の加熱機構を設置する。この加熱機構は、インジウムを真空蒸着するに足る高温を発生できる加熱機構とする。この加熱機構によって加熱される加熱容器は、抵抗加熱ヒーターを成形してバスケット状にしたものが望ましいが、磁器坩堝を抵抗線加熱する等、インジウムを加熱蒸発させることが可能な機構であれば特に限定されない。この加熱容器に蒸発させるインジウム金属を充填する。
【0015】
インジウムを充填した加熱容器は、直流プラズマ放電用の対向する電極の間に設置することが好ましいが、蒸発したインジウムが酸化亜鉛膜表面に蒸着される配置となっていれば、その他の設置場所でも構わない。
【0016】
上記のとおり、アノード電極とカソード電極及びインジウムを充填した加熱容器を真空槽に配置し、カソード電極上にn型伝導性酸化亜鉛を用いた電気、電子素子を配置した後に、真空槽を排気する。真空槽の真空排気機構は適宜のものを使用できる。排気前に真空槽内をアルゴンガスで置換しパージすることによって、真空槽内の酸素成分を除き、インジウム金属の酸化を防止することが望ましい。
【0017】
真空槽内の排気が完了した後に、アルゴンガスを真空槽に導入し、直流プラズマが安定して発生するに適当な圧力を保持する。この際の圧力(真空度)は、数パスカル程度であるが、使用する真空槽、放電電極の形状、放電用電圧によって、適当な真空度を選択する。
【0018】
真空度が安定した状況下で、放電電極に電圧を印加し、真空槽内にアルゴンプラズマを形成する。このアルゴンプラズマが発生した後に、先に示したインジウムを充填した加熱装置により、インジウム金属の蒸発を開始する。所望の厚さの電極が形成されるに足るインジウムを蒸着した後に、加熱装置の温度を降下させ、直流プラズマの発生を停止する。
【0019】
この直流プラズマの照射下において蒸着を実施することによって、電極を付けようとする酸化亜鉛を用いた電気、電子素子へのインジウム金属電極の密着強度が増加する。その詳細な機構については不明である。プラズマ照射を施さないインジウム金属電極では、大気中で酸化されやすい蛍光が認められ、また、電極の接触抵抗の値にばらつきが認められた。一方、プラズマ照射下でインジウム金属電極を形成した場合、ばらつきが少なく、比較的酸化されにくい電極が得られた。
【0020】
このプラズマ照射の効果は、プラズマ中のイオンが直流電極で加速され、イオン密度を高めて酸化亜鉛表面上に堆積中のインジウムに叩きつけられることによって、イオンの運動エネルギーが熱エネルギーとして堆積中のインジウムに与えられ、その効果によって、酸化亜鉛表面上に堆積したインジウムが孤立した微粒子とならず、粒子間の結合が形成された多結晶体の状態になることによって密着性が強化されるためと理解される。
【0021】
しかし、一方で、過剰なエネルギーをもった化学種が酸化亜鉛表面又は堆積中のインジウム薄膜に衝突した場合、必要以上の熱エネルギーが加えられ、酸化亜鉛中の欠陥の形成又は堆積中のインジウムが酸化亜鉛と反応するという問題が生じる。現実に、r.f.スパッタリング法で合成された酸化亜鉛は、高い欠陥密度を持つことが知られており(”Microstructure of Zinc Oxide Grown by rf Magnetron Sputtering ; Aspect of Oxygen Vacancy” T.Ogino, M.Komatsu, I.Sakaguchi, S.Hishita, N.Ohashi, T.Takenaka, K.Oki, N.Kuwano and H.Haneda, KeyEngineering Materials, Vol.181〜182,(2000) pp101〜104 ,Trans. Tech. Publ.)、高出力の高周波プラズマを用いることは、酸化亜鉛にダメージを与えることになるため、交流の高出力のプラズマを用いることは、高エネルギーの粒子を照射し密着性を高めるという意味において有効ではあるが、電極を形成しようとする対象物である酸化亜鉛へのダメージの導入をおそれる場合、高出力の交流プラズマを用いることは好ましくない。
【0022】
インジウム金属電極を付着した試料を酸素を含まない雰囲気下で熱処理することによっても、インジウム金属と酸化亜鉛の密着性を高めることは可能であるが、その場合、酸化亜鉛素子自身の温度も上昇し、酸化亜鉛の変質を招く恐れがある。プラズマからのイオン照射では、電極部分のみの局所的な加熱が実現するという長所が有るためと、理解される。
【0023】
インジウム金属電極を形成した後、酸化性雰囲気下での該電極付き酸化亜鉛の使用、又は、酸化性雰囲気下での工程を経る場合、形成したインジウム金属電極の表面が酸化され、インジウム自身の電気伝導性が損なわれる場合がある。これを避けるために、インジウム金属電極を形成した後に、インジウム金属電極上に金をはじめとする耐酸化性の強い貴金属を酸化防止膜として形成する。
【0024】
そのために、インジウムを加熱蒸発させる加熱容器の他に金などを加熱蒸発させる加熱容器を真空槽内に設けておけば、そのまま真空蒸着装置内においてその真空を破ることなく、酸化防止膜をインジウム金属電極上に蒸着できる。なお、この酸化防止膜の形成のための金属膜の形成にはプラズマによりエネルギーの高い粒子が降り注ぐ方法を用いても、酸化亜鉛がインジウムで被覆されているので酸化亜鉛への直接のダメージは小さくなる。
【0025】
【実施例】
実施例1
図1に示す構成の真空蒸着装置において、n型伝導性酸化亜鉛を用いた電気、電子素子3を直径0.2mmの円形の穴を多数個設けた厚さ0.2mmのステンレス鋼からなるマスク4で覆い、プラズマ発生用に設置した下部カソード電極板2上に配置した。プラズマ発生用の上部アノード電極板1と下部カソード電極板2の間に、バスケット状に成形した第1の抵抗加熱ヒーター5を配置し、真空槽9の外部に設けた加熱用電源7に接続した。この抵抗加熱ヒーター5のバスケット部分に、金属インジウム粒子を充填した。
【0026】
これらの準備が完了した後に、真空槽を排気装置10により排気し、10−3パスカルまで排気した。その後、真空槽9に流量制御弁を介してアルゴンガスを導入し、真空度が10パスカルほどで安定した状態を維持した。この真空度の安定が実現された後に、真空槽9外に設置された直流プラズマ発生用電源8に電圧を印加し、直流プラズマを発生させた。
【0027】
プラズマの発生が確認された後に、インジウム金属を充填した抵抗加熱ヒーター5に、加熱用電源7から電流を通じ、インジウム金属を加熱・溶融・蒸発させ、直流電界下でプラズマを照射しながらインジウム金属を電気、電子素子3の酸化亜鉛膜上にマスクに沿って膜厚が約300ナノメータとなるように蒸着した。この蒸着の後に、抵抗加熱ヒーター5への通電を停止し、インジウム金属の蒸発を終了し、プラズマ発生用電源を遮断して、インジウム金属電極の形成を終了した。
【0028】
得られたインジウム金属電極について、オーミック特性の評価を行った結果、1nA〜0.1Aの範囲で、電極抵抗の直線性が認められ、良好なオーミック接触が形成されたことが確認された。
【0029】
実施例2
実施例1と同じ方法でインジウム金属電極の形成を終了した後、金を蒸発させるためのバスケット状に成形した第2の抵抗加熱ヒーター6へ電力を通じ、金を蒸着させて先に蒸着したインジウム金属電極の上に膜厚が約300ナノメータとなるように金薄膜を蒸着した。
得られた金薄膜で被覆したインジウム金属電極について、オーミック特性の評価を行った結果、1nA〜0.1Aの範囲で、電極抵抗の直線性が認められ、良好なオーミック接触が形成されたことが確認された。
【0030】
比較例1
真空槽9外に設置された直流プラズマ発生用電源8に電圧を印加しないで、直流プラズマを発生させなかったことを除いて、実施例1と同じ方法で酸化亜鉛膜上にインジウム金属電極を形成した。
【0031】
このインジウム金属電極を形成した電気、電子素子を大気中に取り出したところ、インジウム金属部分の金属光沢が失われ、白色化した。この白色化に伴い、インジウム金属の表面が高抵抗化し、実施例1及び2で得られた電極特性は実現されず、高抵抗の接触抵抗が認められた。
【0032】
【発明の効果】
本発明の方法によれば、電気、電子素子に利用されるn型伝導性酸化亜鉛膜にインジウム金属電極を真空蒸着によって形成する方法を採用した場合に問題となる電極の密着性、インジウム金属電極が持つ低い耐酸化性を改善することによって、オーミック性に優れた安定した低抵抗インジウム金属電極を形成することができ、インジウム金属電極の接触抵抗による発熱を低減し、また、インジウム金属電極の抵抗によるノイズの発生を低減することが可能であり、電気、電子素子の安定動作を実現することができる。
【図面の簡単な説明】
【図1】本発明の方法を実施する直流プラズマ真空蒸着装置の概略図である。
【符号の説明】
1 アノード電極
2 カソード電極
3 n型伝導性酸化亜鉛を用いた電気、電子素子
4 マスク
5 バスケット状に成形した第1の抵抗加熱ヒーター
6 バスケット状に成形した第2の抵抗加熱ヒーター
7 抵抗加熱ヒーター加熱用電源
8 直流プラズマ電源
9 真空槽
10 排気装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention forms a metal electrode having low resistance and good ohmic properties on zinc oxide of electric and electronic devices such as electric resistors, sensors, varistors, and transparent electrodes using zinc oxide characterized by n-type conductivity. On how to do it.
[0002]
[Prior art]
Generally, at the junction between a metal and a semiconductor, an energy barrier determined by the work function of the metal and the electron affinity of the semiconductor is formed. Therefore, various efforts have been made to form a low-resistance electrode having excellent ohmic properties. It has been done. Until now, ohmic electrodes on zinc oxide used for electric and electronic devices have been formed by applying and baking a paste in which fine metal particles such as a silver paste are dispersed, or by sputter deposition of a metal such as gold. Was.
[0003]
Also, it has been known that indium can be used as a low-resistance electrode. In particular, indium is effective for n-type doped zinc oxide (for example, see Non-Patent Document 1). For forming the indium electrode, a method of pressing an indium foil, a method of applying an indium-gallium-based amalgam, or a method of using an indium-based metal as solder is used.
[0004]
[Non-patent document 1]
N. Ohashi et al. , Japanese Journal of Applied Physics Vol. 38, pp5028-5032, 1999
[0005]
[Problems to be solved by the invention]
In the method of forming an indium electrode on zinc oxide, when an indium-gallium-based amalgam is applied, a reaction with zinc oxide occurs, which may damage the surface of the zinc oxide single crystal. Further, in an electrode that requires baking, the defect structure of zinc oxide that is sensitive to the temperature history may be altered. Further, it is difficult to form an electrode on a minute element by a coating method.
[0006]
As described in Non-Patent Document 1, when indium diffuses at a high concentration with respect to zinc oxide, there is a possibility that a complex oxide composed of zinc and indium may be formed. It has the property of easily becoming.
[0007]
In normal indium deposition, indium can diffuse into zinc oxide and cause such problems. In addition, the properties of the electrode may be lost due to oxidation of the indium.
[0008]
An object of the present invention is to form an indium metal electrode having a low contact resistance with zinc oxide characterized by n-type conductivity used in electric and electronic devices and having excellent oxidation resistance by a vapor deposition method. is there. In particular, a small high-quality indium metal electrode having a size of less than 1 mm is formed on the n-type conductive zinc oxide film, and the defect structure and impurity state of the zinc oxide material can be reduced without heat treatment. It is an object of the present invention to provide a technique for forming a small electrode without changing it.
[0009]
[Means for Solving the Problems]
The present inventor has found a method of depositing indium, which is a metal that realizes low contact resistance, under conditions that do not diffuse into zinc oxide and adhere well.
According to this method, it is possible to cover only a necessary portion with a mask so that the indium metal is not adhered, and to vapor-deposit only a necessary portion, so that a small electrode can be easily formed.
[0010]
Furthermore, the deposited film is thin, and when zinc oxide is deposited at room temperature and then exposed to the atmosphere, indium is oxidized and the characteristics as an electrode are impaired, so a film with excellent oxidation resistance is continuously deposited. It was found that this problem could be solved by doing so.
[0011]
That is, the present invention provides: (1) an anode electrode for enabling direct-current plasma discharge, a cathode electrode disposed opposite to the anode electrode, and a high temperature sufficient for realizing vacuum heating deposition of indium metal in a vacuum chamber. And a heating vessel filled with indium metal capable of realizing the above, an electronic element using n-type conductive zinc oxide is arranged on the cathode electrode, and the inside of the vacuum chamber is evacuated. Introduced into a vacuum chamber and maintained at an appropriate pressure to generate DC plasma.In a state where DC plasma was generated, indium metal was heated and evaporated, and plasma was applied to the surface of the n-type conductive zinc oxide under a DC electric field. A method for forming a low contact resistance electrode on n-type conductive zinc oxide, characterized by forming indium metal electrode by depositing indium while irradiating.
[0012]
The present invention also provides (2) the method for forming a low contact resistance electrode on zinc oxide according to (1) above, wherein after indium metal deposition, the generation of DC plasma is stopped, and the vacuum is not broken. A method for forming a low contact resistance electrode on n-type conductive zinc oxide, comprising depositing a noble metal film for preventing oxidation on an indium metal electrode.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to carry out the method of the present invention, the following DC plasma vacuum deposition apparatus is used. In the vacuum chamber, an anode electrode and a cathode electrode for enabling direct-current plasma discharge and irradiating plasma to the surface of the n-type conductive zinc oxide under a direct-current electric field are provided opposite to each other. An electric or electronic device using n-type conductive zinc oxide is disposed on a cathode electrode such that the surface of the zinc oxide film faces the anode electrode.
[0014]
A resistance wire heating or a heating mechanism equivalent thereto is installed in the vacuum chamber. This heating mechanism is a heating mechanism capable of generating a high temperature sufficient for vacuum deposition of indium. The heating vessel heated by this heating mechanism is desirably a basket formed by molding a resistance heating heater, but any mechanism capable of heating and evaporating indium, such as resistance wire heating of a porcelain crucible, is preferred. Not limited. The heating vessel is filled with indium metal to be evaporated.
[0015]
The heating vessel filled with indium is preferably installed between opposed electrodes for direct-current plasma discharge.However, as long as the evaporated indium is arranged to be deposited on the surface of the zinc oxide film, it can be installed in other installation places. I do not care.
[0016]
As described above, an anode electrode, a cathode electrode, and a heating vessel filled with indium are arranged in a vacuum chamber, and after the electric and electronic elements using n-type conductive zinc oxide are arranged on the cathode electrode, the vacuum chamber is evacuated. . An appropriate evacuation mechanism for the vacuum chamber can be used. It is desirable that the inside of the vacuum chamber is purged with argon gas before the evacuation and purged to remove oxygen components in the vacuum chamber and prevent oxidation of indium metal.
[0017]
After the evacuation of the vacuum chamber is completed, argon gas is introduced into the vacuum chamber to maintain an appropriate pressure for stably generating DC plasma. The pressure (degree of vacuum) at this time is about several pascals, but an appropriate degree of vacuum is selected depending on the vacuum tank to be used, the shape of the discharge electrode, and the discharge voltage.
[0018]
Under a condition in which the degree of vacuum is stable, a voltage is applied to the discharge electrode to form argon plasma in the vacuum chamber. After the generation of the argon plasma, evaporation of indium metal is started by the above-described heating device filled with indium. After depositing enough indium to form an electrode having a desired thickness, the temperature of the heating device is lowered to stop the generation of DC plasma.
[0019]
By performing the deposition under the irradiation of the DC plasma, the adhesion strength of the indium metal electrode to the electric or electronic device using zinc oxide to which the electrode is to be attached is increased. The exact mechanism is unknown. In the indium metal electrode which was not subjected to plasma irradiation, fluorescence which was easily oxidized in the atmosphere was observed, and the value of the contact resistance of the electrode varied. On the other hand, when the indium metal electrode was formed under plasma irradiation, an electrode having little variation and being relatively resistant to oxidation was obtained.
[0020]
The effect of this plasma irradiation is that the ions in the plasma are accelerated by the DC electrode, increase the ion density and are beaten against the indium being deposited on the zinc oxide surface, so that the kinetic energy of the ions is converted into thermal energy as the indium being deposited. It is understood that, due to the effect, indium deposited on the zinc oxide surface does not become isolated fine particles, but becomes a polycrystalline state in which bonds between particles are formed, thereby enhancing adhesion. Is done.
[0021]
However, on the other hand, if a species having excessive energy collides with the zinc oxide surface or the indium thin film being deposited, excessive thermal energy is applied, and the indium during the formation of defects or deposition in the zinc oxide is reduced. The problem of reacting with zinc oxide arises. In reality, r. f. It is known that zinc oxide synthesized by a sputtering method has a high defect density ("Microstructure of Zinc Oxide Growth by rf Magnetron Sputtering; Aspect of Oxygen Vacancy", T.O.K.Og. S. Hista, N. Ohashi, T. Takenaka, K. Oki, N. Kuwano and H. Haneda, Key Engineering Materials, Vol. 181-182, (2000) pp 101-104, Trans. Using high-frequency plasma of AC will damage the zinc oxide, so high-frequency AC plasma Although it is effective to use high-energy particles to increase adhesion by irradiating them with high-energy particles, a high-output AC plasma is used when there is a fear of introducing damage to zinc oxide, which is an object on which an electrode is to be formed. Its use is not preferred.
[0022]
The adhesion between indium metal and zinc oxide can also be increased by subjecting the sample with the indium metal electrode to heat treatment in an oxygen-free atmosphere, but in that case, the temperature of the zinc oxide element itself also increases. , Zinc oxide may be deteriorated. It is understood that ion irradiation from plasma has an advantage that local heating of only the electrode portion is realized.
[0023]
After the formation of the indium metal electrode, the use of the zinc oxide with the electrode in an oxidizing atmosphere, or a step in an oxidizing atmosphere, the surface of the formed indium metal electrode is oxidized, and the indium itself has an electric power. Conductivity may be impaired. To avoid this, after forming the indium metal electrode, a noble metal having high oxidation resistance such as gold is formed as an antioxidant film on the indium metal electrode.
[0024]
For this purpose, if a heating vessel for heating and evaporating gold or the like is provided in the vacuum chamber in addition to a heating vessel for heating and evaporating indium, the antioxidant film can be formed on the indium metal without breaking the vacuum in the vacuum evaporation apparatus. Can be deposited on electrodes. In addition, even if a method in which high-energy particles are poured down by plasma is used to form the metal film for forming the antioxidant film, direct damage to the zinc oxide is small because the zinc oxide is covered with indium. Become.
[0025]
【Example】
Example 1
In the vacuum evaporation apparatus having the structure shown in FIG. 1, a mask made of stainless steel having a thickness of 0.2 mm and having a plurality of circular holes each having a diameter of 0.2 mm provided with electric and electronic elements 3 using n-type conductive zinc oxide. 4 and placed on the lower cathode electrode plate 2 installed for plasma generation. A first resistance heater 5 shaped like a basket was arranged between the upper anode electrode plate 1 and the lower cathode electrode plate 2 for plasma generation, and connected to a heating power supply 7 provided outside the vacuum chamber 9. . The basket portion of the resistance heater 5 was filled with metal indium particles.
[0026]
After these preparations were completed, the vacuum chamber was evacuated by the exhaust device 10 and evacuated to 10 -3 Pascal. Thereafter, argon gas was introduced into the vacuum chamber 9 through a flow control valve, and the degree of vacuum was maintained at about 10 Pascal to maintain a stable state. After the degree of vacuum was stabilized, a voltage was applied to a DC plasma generating power source 8 installed outside the vacuum chamber 9 to generate DC plasma.
[0027]
After the generation of plasma is confirmed, current is passed from the heating power supply 7 to the resistance heater 5 filled with indium metal to heat, melt, and evaporate the indium metal. The film was vapor-deposited on the zinc oxide film of the electric / electronic element 3 so as to have a thickness of about 300 nm along the mask. After this vapor deposition, the power supply to the resistance heater 5 was stopped, the evaporation of indium metal was terminated, the power supply for plasma generation was cut off, and the formation of the indium metal electrode was terminated.
[0028]
The ohmic characteristics of the obtained indium metal electrode were evaluated. As a result, linearity of the electrode resistance was observed in the range of 1 nA to 0.1 A, and it was confirmed that a good ohmic contact was formed.
[0029]
Example 2
After the formation of the indium metal electrode was completed in the same manner as in Example 1, electric power was supplied to the second resistance heater 6 formed into a basket shape for evaporating gold, and gold was evaporated to deposit the indium metal previously deposited. A gold thin film was deposited on the electrode so as to have a thickness of about 300 nanometers.
With respect to the indium metal electrode coated with the obtained gold thin film, the ohmic characteristics were evaluated. As a result, in the range of 1 nA to 0.1 A, the linearity of the electrode resistance was recognized, and a good ohmic contact was formed. confirmed.
[0030]
Comparative Example 1
An indium metal electrode was formed on a zinc oxide film in the same manner as in Example 1 except that no DC plasma was generated without applying a voltage to the DC plasma generating power supply 8 installed outside the vacuum chamber 9. did.
[0031]
When the electric or electronic device on which the indium metal electrode was formed was taken out to the atmosphere, the metal luster of the indium metal portion was lost and the indium metal became white. Along with this whitening, the surface of the indium metal was increased in resistance, and the electrode characteristics obtained in Examples 1 and 2 were not realized, and a high-resistance contact resistance was recognized.
[0032]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the method of this invention, the adhesiveness of an electrode which becomes a problem when the method of forming an indium metal electrode by vacuum vapor deposition on the n-type conductive zinc oxide film used for an electric and electronic element, an indium metal electrode By improving the low oxidation resistance of the indium metal electrode, it is possible to form a stable low-resistance indium metal electrode with excellent ohmic properties, reduce the heat generated by the contact resistance of the indium metal electrode, and reduce the resistance of the indium metal electrode. Noise can be reduced, and stable operation of electric and electronic elements can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic view of a DC plasma vacuum deposition apparatus for performing the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Anode electrode 2 Cathode electrode 3 Electric and electronic element 4 using n-type conductive zinc oxide 4 Mask 5 First resistance heating heater formed in basket shape 6 Second resistance heating heater formed in basket shape 7 Resistance heating heater Heating power supply 8 DC plasma power supply 9 Vacuum chamber 10 Exhaust device

Claims (2)

真空槽に、直流プラズマ放電を可能とするためのアノード電極と該アノード電極に対向して配置したカソード電極と、インジウム金属の真空加熱蒸着を実現するに足る高温を実現できるインジウム金属を充填した加熱容器と、を配置し、該カソード電極上にn型伝導性酸化亜鉛を用いた電気、電子素子を配置し、該真空槽内を排気し、しかる後に、アルゴンガスを真空槽に導入し、直流プラズマが発生するに適当な圧力を保持し、直流プラズマが発生した状態において、インジウム金属を加熱・蒸発させて、n型伝導性酸化亜鉛表面に直流電界下でプラズマを照射しながらインジウムを蒸着させてインジウム金属電極を形成することを特徴とするn型伝導性酸化亜鉛上への低接触抵抗電極の形成法。A vacuum chamber is filled with an anode electrode for enabling DC plasma discharge, a cathode electrode disposed opposite to the anode electrode, and an indium metal filling capable of realizing a high temperature sufficient for realizing vacuum heating vapor deposition of indium metal. And an electric and electronic device using n-type conductive zinc oxide on the cathode electrode, evacuating the vacuum chamber, and then introducing argon gas into the vacuum chamber, While maintaining a suitable pressure for generating plasma, in a state where DC plasma is generated, indium metal is heated and evaporated, and indium is deposited while irradiating the plasma on the surface of the n-type conductive zinc oxide under a DC electric field. Forming a low contact resistance electrode on the n-type conductive zinc oxide by forming an indium metal electrode. 請求項1記載の酸化亜鉛上への低接触抵抗電極の形成法であって、インジウム金属の蒸着の後に、直流プラズマの発生を停止し、真空を破ることなく、インジウム金属電極上に、酸化防止のための貴金属膜を蒸着させることを特徴とするn型伝導性酸化亜鉛上への低接触抵抗電極の形成法。2. The method for forming a low contact resistance electrode on zinc oxide according to claim 1, wherein after the indium metal is deposited, the generation of DC plasma is stopped, and the oxidation is prevented on the indium metal electrode without breaking the vacuum. A method for forming a low contact resistance electrode on n-type conductive zinc oxide, comprising depositing a noble metal film for the purpose.
JP2002350571A 2002-12-03 2002-12-03 Method of forming low contact resistance electrode on n-type conductive zinc oxide Expired - Lifetime JP3855051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002350571A JP3855051B2 (en) 2002-12-03 2002-12-03 Method of forming low contact resistance electrode on n-type conductive zinc oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350571A JP3855051B2 (en) 2002-12-03 2002-12-03 Method of forming low contact resistance electrode on n-type conductive zinc oxide

Publications (2)

Publication Number Publication Date
JP2004183038A true JP2004183038A (en) 2004-07-02
JP3855051B2 JP3855051B2 (en) 2006-12-06

Family

ID=32752736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350571A Expired - Lifetime JP3855051B2 (en) 2002-12-03 2002-12-03 Method of forming low contact resistance electrode on n-type conductive zinc oxide

Country Status (1)

Country Link
JP (1) JP3855051B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652287B2 (en) 2007-08-28 2010-01-26 Samsung Mobile Display Co., Ltd. Thin film transistor, light-emitting display device having the same and associated methods
CN103592115A (en) * 2013-11-15 2014-02-19 沈阳黎明航空发动机(集团)有限责任公司 Diaphragm capsule valve stroke test device and using method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7652287B2 (en) 2007-08-28 2010-01-26 Samsung Mobile Display Co., Ltd. Thin film transistor, light-emitting display device having the same and associated methods
CN103592115A (en) * 2013-11-15 2014-02-19 沈阳黎明航空发动机(集团)有限责任公司 Diaphragm capsule valve stroke test device and using method thereof

Also Published As

Publication number Publication date
JP3855051B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
US5510011A (en) Method for forming a functional deposited film by bias sputtering process at a relatively low substrate temperature
US3844924A (en) Sputtering apparatus for forming ohmic contacts for semiconductor devices
JP3773282B2 (en) Method for forming electrode of gallium nitride compound semiconductor
US3660158A (en) Thin film nickel temperature sensor and method of forming
JP4768679B2 (en) Method for forming zinc oxide film
JP3855051B2 (en) Method of forming low contact resistance electrode on n-type conductive zinc oxide
JP4002169B2 (en) Electrostatic chuck
TW200927970A (en) Transparent conductive film forming method
JP3261049B2 (en) Sputtering method
TW201250019A (en) Electronic component manufacturing method including step of embedding metal film
JP3273827B2 (en) Semiconductor device and manufacturing method thereof
JP2007063618A (en) Apparatus for growing oxide thin film
JPH04242933A (en) Formation of oxide film
JP3363429B2 (en) Field emission type electron source and manufacturing method thereof
JP2004014234A (en) Electron emitting element and its manufacturing method
JP5234773B2 (en) Method for forming titanium oxide film
JP3508651B2 (en) Field emission type electron source and method of manufacturing the same
JP2003124185A (en) Method of manufacturing semiconductor substrate
JP2011241471A (en) Method and apparatus of forming conductive thin film
JP3687520B2 (en) Field emission electron source and manufacturing method thereof
JP3613892B2 (en) Substrate with transparent conductive film
JPH02281531A (en) Diode and its manufacture
JPH09249413A (en) Formation of lanthanum boride
JPS63238456A (en) Gas sensor
JPH06450Y2 (en) Coil movable ion plating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

R150 Certificate of patent or registration of utility model

Ref document number: 3855051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term