JP2004182609A - Ameliorating agent for intraintestinal environment - Google Patents

Ameliorating agent for intraintestinal environment Download PDF

Info

Publication number
JP2004182609A
JP2004182609A JP2002348171A JP2002348171A JP2004182609A JP 2004182609 A JP2004182609 A JP 2004182609A JP 2002348171 A JP2002348171 A JP 2002348171A JP 2002348171 A JP2002348171 A JP 2002348171A JP 2004182609 A JP2004182609 A JP 2004182609A
Authority
JP
Japan
Prior art keywords
oligosaccharide
xylo
acidic
acid
uronic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002348171A
Other languages
Japanese (ja)
Inventor
Yoshinari Izumi
可也 泉
Shoichi Ikemizu
昭一 池水
Fujiko Shizuka
ふじ子 志塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2002348171A priority Critical patent/JP2004182609A/en
Publication of JP2004182609A publication Critical patent/JP2004182609A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a highly safe ameliorating agent for the intraintestinal environment having excellent ameliorating effects on the intraintestinal environment and high stability and applicable to human bodies. <P>SOLUTION: This ameliorating agent for the intraintestinal environment comprises an acidic xylooligosaccharide having a uronic acid residue in the molecule as an active ingredient. The acidic xylooligosaccharide is a mixed composition of oligosaccharides having a different degree of polymerization and has high effects when the average degree of polymerization is 2.0-15.0. The uronic acid is preferably glucuronic acid or 4-O-methylglucuronic acid. The acidic oligosaccharide is economically obtained from a step of enzymically and/or physicochemically treating a lignocellulosic material, affording a complex of a xylooligosaccharide component with a lignin component and subjecting the resultant complex to an acidic hydrolytic treatment. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、食品及び医薬品分野に於いて使用される新規な腸内環境改善剤に関する。より詳細には、優れた生理活性を有し、しかも安全性の高い腸内環境改善剤に関する。
【0002】
【従来の技術】
近年、オリゴ糖は経口摂取により腸内環境を改善し、便秘改善及び大腸発がんリスク低減等の整腸作用をもたらすプレバイオティクスとして注目を集めている。
【0003】
難消化性のオリゴ糖は、胃や小腸で分泌される消化液で分解されにくい為、大腸まで到達する。腸内善玉菌(ビフィズス菌や乳酸菌等)はオリゴ糖の資化力が強く、逆に、腸内悪玉菌(大腸菌やクロストリジウム属の細菌)は弱い為、腸内に届いたオリゴ糖により選択的に腸内善玉菌の増殖が亢進される。その結果、大腸内細菌叢における善玉菌と悪玉菌のバランスは、善玉菌優位の状態にシフトする(非特許文献1参照)。
【0004】
腸内善玉菌により生成された各種の有機酸は、大腸内における多くの環境改善、すなわち、大腸の蠕動運動活発化による大腸内容物排泄促進(便秘改善)、腸管粘膜細胞の正常な状態の維持、腸内pH低下による強力な大腸発がん物質(ニトロソアミン等)の生成阻害等をもたらす(非特許文献2、3、4参照)。また、腸内善玉菌自身の細胞壁は、腸管を介して免疫細胞に作用し、免疫力を亢進する(非特許文献5参照)。
【0005】
一方、腸内悪玉菌が生成するβ−グルクロニダーゼは、大腸内で胆汁酸より生成される発がん物質の腸管からの吸収促進に関与する為、オリゴ糖摂取による腸内悪玉菌の減少は、β−グルクロニダーゼ活性の低下、すなわち大腸発がんリスクの低減に繋がることも推定される。
【0006】
整腸作用(便秘改善及び大腸発がんリスク低減等)をもつオリゴ糖としては、フラクトオリゴ糖、ガラクトオリゴ糖、ラクトスクロース及びラフィノース等が挙げられるが、何れも十分な効果がない。作用の強さという点ではキシロオリゴ糖が特に有効であるが、特に長鎖における水溶性の問題がある。しかし、他のオリゴ糖と比較して、キシロオリゴ糖は耐酸性と耐熱性に優れている為、胃酸や体温で分解されにくく、確実に大腸にまで達し、その生理作用を発揮しやすい(特許文献1参照)。
【0007】
キシロオリゴ糖には、コーンコブやバガスから酵素処理により製造されるものや、リグノセルロースから酵素処理及びNF膜濃縮により製造されるものがあり、何れも整腸作用については既に開示されている(特許文献2及び3参照)。しかし、リグノセルロース材料より酵素処理及び陰イオン交換樹脂を用いて得られる
酸性キシロオリゴ糖の経口摂取における生理効果の開示は、全くなされていない。なお、酸性キシロオリゴ糖はウロン酸残基を有している為、他のオリゴ糖やキシロオリゴ糖と比較して、長鎖であっても水溶性が非常に高いという特徴がある。
【0008】
酸性キシロオリゴ糖の生理効果に関しては、水耕栽培に於けるスギ挿穂の発根促進効果の記載(非特許文献7参照)があるが、腸内環境改善剤に関する開示はなされていない。
【0009】
【非特許文献1】
光岡知足 編;腸内細菌学
【非特許文献2】
Bauer,H.Gら;Cancer Res.,41,2518−2523(1981).
【非特許文献3】
印南 敏ら;食物繊維.,p313−314.(第一出版(株)刊,1995年5月発行)
【非特許文献4】
印南 敏ら;食物繊維.,p95−98,p226.(第一出版(株)刊,1995年5月発行)
【非特許文献5】
光岡知足 編著;ビフィズス菌の研究.,p130−142.((財)日本ビフィズス菌センター刊,1998年8月発行)
【非特許文献6】
セルラーゼ研究会報第16巻、2001年6月14日、P17−26
【特許文献1】
特許2549638
【特許文献2】
特許2643368
【特許文献3】
特開2000−333692
【0010】
【発明が解決しようとする課題】
本発明に於いては、腸内環境改善効果に優れ、かつ安全性及び安定性が高く、人体に適用可能な腸内環境改善剤を提供することを目的とした。
【0011】
【課題を解決するための手段】
前記課題を解決する為、酸性キシロオリゴ糖組成物を添加した食餌を一定期間ラットに投与し、試験期間終了後に解剖を行い腸内環境改善度を測定した。その結果、ウロン酸残基が付加した酸性キシロオリゴ糖組成物が優れた腸内環境改善効果を有することを見出し、安全性及び安定性も優れることより、本発明を完成するに至った。
【0012】
本発明は以下の構成を採用する。即ち、本発明の第1は、「キシロオリゴ糖分子中にウロン酸残基を有する酸性キシロオリゴ糖を有効成分とする腸内環境改善剤」である。
【0013】
本発明の第2は、前記第1発明において、該酸性キシロオリゴ糖は「キシロースの重合度が異なるオリゴ糖の混合組成物であり、平均重合度が2.0〜15.0であることを特徴とする腸内環境改善剤」である。
【0014】
本発明の第3は、前記第1または第2の発明において、前記酸性キシロオリゴ糖が、「リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得、次いで該複合体を酸加水分解処理してキシロオリゴ糖混合物を得、得られるキシロオリゴ糖混合物から、1分子中に少なくとも1つ以上のウロン酸残基を側鎖として有するキシロオリゴ糖を分離して得たもの」であることを特徴とするで腸内環境改善剤ある。
【0015】
本発明の第4は、前記第1〜第3の発明において、ウロン酸がグルクロン酸もしくは4−O−メチル−グルクロン酸であることを特徴とする腸内環境改善剤である。
【0016】
【発明の実施の形態】
以下、本発明の構成について詳述する。キシロオリゴ糖とは、キシロースの2量体であるキシロビオース、3量体であるキシロトリオース、あるいは4量体〜15量体程度のキシロースの重合体を言う。本発明で使用する酸性キシロオリゴ糖とは、キシロオリゴ糖1分子中に少なくとも1つ以上のウロン酸残基を有するものを言う。
また、キシロースの重合度が異なるオリゴ糖の混合組成物であっても良い。一般的には、天然物から製造するために、このような組成物として得られることが多く、以下、主として酸性キシロオリゴ糖組成物について説明する。
該組成物は、平均重合度で示す数値は正規分布をとる酸性キシロオリゴ糖のキシロース鎖長の平均値で、2.0〜15.0が好ましく、2.0〜11.0がより好ましい。キシロース鎖長の上限と下限との差は10以下が好ましく、2以下がより好ましい。ウロン酸は天然では、ペクチン、ペクチン酸、アルギン酸、ヒアルロン酸、ヘパリン、コンドロイチン硫酸、デルマタン硫酸等の種々の生理活性を持つ多糖の構成成分として知られている。本発明におけるウロン酸としては特に限定されないが、グルクロン酸もしくは4−O−メチル−グルクロン酸が好ましい。
【0017】
上記のような酸性キシロオリゴ糖組成物を得ることが出来れば、その製法は特に限定されないが、(1)木材からキシランを抽出し、それを酵素的に分解する方法(セルラーゼ研究会発行、セルラーゼ研究会報第16巻、2001年6月14日発行、P17−26)と、(2)リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得、次いで該複合体を酸加水分解処理してキシロオリゴ糖混合物を得、得られるキシロオリゴ糖混合物から、1分子中に少なくとも1つ以上のウロン酸残基を側鎖として有するキシロオリゴ糖を分離する方法が挙げられる。
特に、(2)の方法が5〜15量体のように比較的高い重合度のものを大量に安価に製造することが可能である点で好ましく、以下にその概要を示す。
【0018】
酸性キシロオリゴ糖組成物は、化学パルプ由来のリグノセルロース材料を原料とし、加水分解工程、濃縮工程、希酸処理工程、精製工程を経て得ることができる。加水分解工程では、希酸処理、高温高圧の水蒸気(蒸煮・爆砕)処理もしくは、ヘミセルラーゼによってリグノセルロース中のキシランを選択的に加水分解し、キシロオリゴ糖とリグニンからなる高分子量の複合体を中間体として得る。濃縮工程では逆浸透膜等により、キシロオリゴ糖−リグニン様物質複合体が濃縮され、低重合度のオリゴ糖や低分子の夾雑物などを除去することができる。濃縮工程は逆浸透膜を用いることが好ましいが、限外濾過膜、塩析、透析などでも可能である。得られた濃縮液の希酸処理工程により、複合体からリグニン様物質が遊離し、酸性キシロオリゴ糖と中性キシロオリゴ糖を含む希酸処理液を得ることができる。この時、複合体から切り離されたリグニン様物質は酸性下で縮合し沈殿するのでセラミックフィルターや濾紙などを用いたろ過等により除去することができる。希酸処理工程では、酸による加水分解を用いることが好ましいが、リグニン分解酵素などを用いた酵素分解などでも可能である。
【0019】
精製工程は、限外濾過工程、脱色工程、吸着工程からなる。一部のリグニン様物質は可溶性高分子として溶液中に残存するが、限外濾過工程で除去され、着色物質等の夾雑物は活性炭を用いた脱色工程によってそのほとんどが取り除かれる。限外濾過工程は限外濾過膜を用いることが好ましいが、逆浸透膜、塩析、透析などでも可能である。こうして得られた糖液中には酸性キシロオリゴ糖と中性キシロオリゴ糖が溶解している。イオン交換樹脂を用いた吸着工程により、この糖液から酸性キシロオリゴ糖のみを取り出すことができる。糖液をまず強陽イオン交換樹脂にて処理し、糖液中の金属イオンを除去する。ついで強陰イオン交換樹脂を用いて糖液中の硫酸イオンなどを除去する。この工程では、硫酸イオンの除去と同時に弱酸である有機酸の一部と着色成分の除去も同時に行っている。強陰イオン交換樹脂で処理された糖液はもう一度強陽イオン交換樹脂で処理し更に金属イオンを除去する。最後に弱陰イオン交換樹脂で処理し、酸性キシロオリゴ糖を樹脂に吸着させる。
【0020】
樹脂に吸着した酸性オリゴ糖を、低濃度の塩(NaCl、CaCl、KCl、MgClなど)によって溶出させることにより、夾雑物を含まない酸性キシロオリゴ糖溶液を得ることができる。この溶液を、例えば、スプレードライや凍結乾燥処理により、白色の酸性キシロオリゴ糖組成物の粉末を得ることができる。
【0021】
化学パルプ由来のリグノセルロースを原料とし、キシロオリゴ糖とリグニンからなる高分子量の複合体を中間体とした酸性キシロオリゴ糖組成物の上記製造法のメリットは、経済性とキシロースの平均重合度の高い酸性キシロオリゴ糖組成物が容易に得られる点にある。平均重合度は、例えば、希酸処理条件を調節するか、再度ヘミセルラーゼで処理することによって変えることが可能である。また、弱陰イオン交換樹脂溶出時に用いる溶出液の塩濃度を変化させることによって、1分子あたりに結合するウロン酸残基の数が異なる酸性キシロオリゴ糖組成物を得ることもできる。さらに、適当なキシラナーゼ、ヘミセルラーゼを作用させることによってウロン酸結合部位が末端に限定された酸性キシロオリゴ糖組成物を得ることも可能である。
【0022】
このようにして得られた酸性キシロオリゴ糖組成物は、水に溶解させたりまたはスプレードライヤーで乾燥し粉体に加工後、腸内環境改善剤とすることができる。また、経口摂取に支障のない材質を用いてマイクロカプセル化したりリポソームに内含させて添加してもよい。腸内環境改善剤に於ける酸性キロオリゴ糖または、酸性キシロオリゴ糖組成物の含有率としては、0.001〜20%(以下全て質量%)の範囲で使用することができるが、0.01〜10%がより好ましい。
【0023】
本発明の酸性キシロオリゴ糖組成物を配合した腸内環境改善剤の形態としては、酸性キシロオリゴ糖自身を直接摂取することもできるが、飲料に添加したり食品にも添加することが可能である。また更に、直接摂取する場合は粉体化しても良いし打錠により錠剤化してもよい、さらには酸性キシロオリゴ糖の精製後の水溶液のまま摂取しても良い。
【0024】
本発明に於いては、酸性キシロオリゴ糖は他の経腸栄養剤や他の栄養成分、医薬品らと混合して使用することができ、単なる腸内環境改善剤としてだけではなく医療用食品や医薬品として提供することも出来る。
【0025】
【実施例】
以下、本発明について実施例により詳説する。本発明はこれにより限定されるものではない。まず、各測定法の概要、本発明で有効成分として含有させた酸性キシロオリゴ糖組成物UX10及びUX2の調製例を示す。
<測定法の概要>
(1) 全糖量の定量:
全糖量は検量線をD−キシロース(和光純薬工業(株)製)を用いて作製し、フェノール硫酸法(還元糖の定量法、学会出版センター発行)にて定量した。
(2) 還元糖量の定量:
還元糖量は検量線をD−キシロース(和光純薬工業(株)製)を用いて作製、ソモジ−ネルソン法(還元糖の定量法、学会出版センター発行)にて定量した。
(3) ウロン酸量の定量:
ウロン酸は検量線をD−グルクロン酸(和光純薬工業(株)製)を用いて作製、カルバゾール硫酸法(還元糖の定量法、学会出版センター発行)にて定量した。
(4) 平均重合度の決定法:
サンプル糖液を50℃に保ち15000rpmにて15分遠心分離し不溶物を除去し上清液の全糖量を還元糖量(共にキシロース換算)で割って平均重合度を求めた。
(5) 酸性キシロオリゴ糖の分析方法:
オリゴ糖鎖の分布はイオンクロマトグラフ(ダイオネクス社製、分析用カラム:Carbo Pac PA−10)を用いて分析した。分離溶媒には100mM NaOH溶液を用い、溶出溶媒には前述の分離溶媒に酢酸ナトリウムを500mMとなるように添加し、溶液比で、分離溶媒:溶出溶媒=10:0〜4:6となるような直線勾配を組み分離した。得られたクロマトグラムより、キシロース鎖長の上限と下限との差を求めた。
(6) オリゴ糖1分子あたりのウロン酸残基数の決定法
サンプル糖液を50℃に保ち15000rpmにて15分遠心分離し不溶物を除去し上清液のウロン酸量(D−グルクロン酸換算)を還元糖量(キシロース換算)で割ってオリゴ糖1分子あたりのウロン酸残基数を求めた。
(7) 酵素力価の定義:
酵素として用いたキシラナーゼの活性測定にはカバキシラン(シグマ社製)を用いた。酵素力価の定義はキシラナーゼがキシランを分解することで得られる還元糖の還元力をDNS法(還元糖の定量法、学会出版センター発行)を用いて測定し、1分間に1マイクロモルのキシロースに相当する還元力を生成させる酵素量を1ユニットとした。
【0026】
<調整例:酸性キシロオリゴ糖組成物UX10及びUX2の調整例>
混合広葉樹チップ(国内産広葉樹70%、ユーカリ30%)を原料として、クラフト蒸解及び酸素脱リグニン工程により、酸素脱リグニンパルプスラリー(カッパー価9.6、パルプ粘度25.1cps)を得た。スラリーからパルプを濾別、洗浄した後、パルプ濃度10%、pH8に調製したパルプスラリーを用いて以下のキシラナーゼによる酵素処理を行った。
【0027】
バチルスsp.S−2113株(独立行政法人産業技術総合研究所特許微生物寄託センター、寄託菌株FERM BP−5264)の生産するキシラナーゼを1単位/パルプgとなるように添加した後、60℃で120分間処理した。その後、ろ過によりパルプ残渣を除去し、酵素処理液1050Lを得た。
【0028】
次に、得られた酵素処理液を濃縮工程、希酸処理工程、精製工程の順に供した。
濃縮工程では、逆浸透膜(日東電工(株)製、RO NTR−7410)を用いて濃縮液(40倍濃縮)を調製した。希酸処理工程では、得られた濃縮液のpHを3.5に調整した後、121℃で60分間加熱処理し、リグニンなどの高分子夾雑物の沈殿を形成させた。さらに、この沈殿をセラミックフィルターろ過で取り除くことにより、希酸処理溶液を得た。
【0029】
精製工程では、限外濾過・脱色工程、吸着工程の順に供した。限外濾過・脱色工程では、希酸処理溶液を限外濾過膜(オスモニクス社製、分画分子量8000)を通過させた後、活性炭(和光純薬(株)製)770gの添加及びセラミックフィルターろ過により脱色処理液を得た。吸着工程では、脱色処理液を強陽イオン交換樹脂(三菱化学(株)製PK218)、強陰イオン交換樹脂(三菱化学(株)製PA408)、強陽イオン交換樹脂(三菱化学(株)製PK218)各100kgを充填したカラムに順次通過させた後、弱陰イオン交換樹脂(三菱化学(株)製WA30)100kgを充填したカラムに供した。この弱陰イオン交換樹脂充填カラムから75mM NaCl溶液によって溶出した溶液をスプレードライ処理することによって、酸性キシロオリゴ糖組成物の粉末(全糖量353g、回収率13.1%)を得た。以下、この酸性キシロオリゴ糖組成物をUX10とする。前述の測定方法により、UX10は平均重合度10.3、キシロース鎖長の上限と下限との差は10、酸性キシロオリゴ糖1分子あたりウロン酸残基を1つ含む糖組成化合物であった。
【0030】
得られたUX10の10%水溶液100mlに、スミチームX(新日本化学工業(株)製のキシラナーゼ)50mgを添加し、60℃、20時間反応後、弱アニオン交換樹脂(WA30)10gを充填したカラムに供した。カラムを水洗した後、75mM NaCl溶液によって溶出した溶液を凍結乾燥することによって、酸性キシロオリゴ糖組成物粉末(全糖量2.1g、回収率21%)を得た。以下、この酸性キシロオリゴ糖組成物をUX2とする。前述の測定方法により、UX2は平均重合度2.3、キシロース鎖長の上限と下限との差は2、酸性キシロオリゴ糖1分子あたりウロン酸残基を1つ含む糖組成化合物であった。
【0031】
次に、得られた酸性キシロオリゴ糖組成物を用いた腸内環境改善試験の概要と結果を実施例1(pH)、実施例2(ビフィズス菌数)及び実施例3(β−グルクロニダーゼ活性)に示す。
【0032】
<実施例1:pH>
日本チャールズリバーより4週齡のSD系雄性ラットを購入し、温度23±1℃、湿度55%±5%に設定した飼育室において、金属性ケージ内で個別飼育した。1週間の予備飼育後、UX2を1%含む合成飼料投与群(UX2添加食群)、UX−10を1%含む合成飼料投与群(UX10添加食群)、オリゴ糖無添加合成飼料投与群(無添加食群)の3群(各群6匹)に分け、各試験食を自由摂取させた。試験食摂取4週間後に、頚椎脱臼法で屠殺・解剖し、盲腸内容物を得た。なお、試験期間中のラットの死亡例は無く、また、異常な体重増減を示した個体も見られなかった。これはUX2及びUX−10の安全性の高さを示す。各群の試験食の組成を表1に示す。
【0033】
【表1】

Figure 2004182609
【0034】
盲腸内容物のpHは、ビフィズス菌等により生成される有機酸量を反映する。各ラットの盲腸内容物を蒸留水15mlに懸濁した後、pHメーターにて測定した結果を、図1に示す。
【0035】
UX2及びUX10添加食群では、オリゴ糖無添加食群と比較して、盲腸内容物のpHが有意に低下していた。これは酸性キシロオリゴ糖を腸内細菌が資化して有機酸を生成した為と考えられる。
【0036】
<実施例2:ビフィズス菌数>
実施例1のpH測定に用いたラット盲腸内容物懸濁液中のビフィズス菌数を、以下のようにして測定した。CPLX培地に適宜希釈した盲腸内容物希釈液を播種し、無酸素条件下で培養した(48時間、37℃)。5mm以上のコロニーのみをビフィズス菌としてカウントした。なお、5mm以上のコロニーを無作為に5個選び、アプライドバイオシステム社製16SrDNA解析キット(Cat.no 403085)にてコロニーの菌種を解析したところ、5個全てがビフィドバクテリウムアニマリスであった。盲腸内容物1g中のビフィズス菌数の測定結果を図2に示す。
【0037】
UX2及びUX10添加食群では、オリゴ糖無添加食群と比較して、盲腸内容物中のビフィズス菌数が有意に増加していることが判明した。これは酸性キシロオリゴ糖をビフィズス菌が資化して選択的に増殖した為である。
【0038】
<実施例3:β−グルクロニダーゼ活性>
実施例1で得たラット盲腸内容物中のβ−グルクロニダーゼ活性を以下のようにして測定した。シグマ社製4−O−methyl−umberiferyl−β−D−glucuronide(Cat.no M−9130)を100mMリン酸バッファーを用いて2mMに調製し、基質溶液とした。測定サンプルとしては、実施例1でpH測定に用いたラット盲腸内容物懸濁液1mlを遠心処理後(15,000rpm)の上清を用いた。まず、基質溶液10μlに測定サンプル10μlを加え、攪拌後、37℃にて30分間、反応させた。次に、500mMグリシン−NaOHバッファー100μlを反応液に加え、酵素反応を停止させた後、β−グルクロニダーゼにより生成した4−O−methyl−umberiferone量を測定した(励起波長355nm、測定波長450nm)。β−グルクロニダーゼ活性は、1分間に1nMの4−O−methyl−umberiferoneを生成する酵素活性を1ユニット(U)として、予め、作成した検量線から求めた。盲腸内容物中1g当たりの酵素活性の測定結果を図3に示す。
【0039】
UX2及びUX10添加食群では、オリゴ糖無添加食群と比較して、盲腸内容物中のβ−グルクロニダーゼ活性が有意に低下していることが判明した。これは、酸性キシロオリゴ糖によりビフィズス菌等が選択的に増殖した為、β−グルクロニダーゼを産生する大腸菌等の増殖が相対的に抑えられたことによると考えられる。β−グルクロニダーゼ活性の低下は、大腸における発がんリスクの低減効果を示唆している。
【0040】
【発明の効果】
本発明で得られる酸性キシロオリゴ糖組成物を含有した製剤は、優れた生理活性を有しており、便秘改善や大腸発がんリスク低減等の整腸作用を目的とした腸内環境改善剤として利用することができる。
【図面の簡単な説明】
【図1】盲腸内容物pHに対するキシロオリゴ糖摂取の影響を示す図。
【図2】盲腸内容物中のビフィズス菌数に対するキシロオリゴ糖摂取の影響を示す図。
【図3】盲腸内容物βグルクロニダーゼ活性に対するキシロオリゴ糖摂取の影響を示す図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a novel intestinal environment improving agent used in the food and pharmaceutical fields. More specifically, the present invention relates to an intestinal environment improving agent having excellent physiological activity and high safety.
[0002]
[Prior art]
In recent years, oligosaccharides have been attracting attention as prebiotics that improve the intestinal environment by oral ingestion and have intestinal effects such as improvement of constipation and reduction of the risk of colorectal carcinogenesis.
[0003]
Indigestible oligosaccharides are hardly decomposed by digestive juices secreted in the stomach and small intestine, and reach the large intestine. Good intestinal bacteria (such as bifidobacteria and lactic acid bacteria) have a strong ability to assimilate oligosaccharides, and conversely, bad intestinal bacteria (bacterium belonging to the genus Escherichia coli and Clostridium) are weak, so they are selectively treated by oligosaccharides that have reached the intestine. In addition, the growth of good intestinal bacteria is promoted. As a result, the balance between good bacteria and bad bacteria in the colonic flora shifts to a state in which good bacteria predominate (see Non-Patent Document 1).
[0004]
Various organic acids produced by beneficial bacteria in the intestine improve many environments in the large intestine, that is, promote the excretion of large intestinal contents by improving peristaltic movement of the large intestine (improve constipation), and maintain the normal state of intestinal mucosal cells. In addition, it causes the inhibition of the production of strong colon carcinogens (nitrosamines and the like) due to a decrease in intestinal pH (see Non-Patent Documents 2, 3, and 4). In addition, the cell wall of the intestinal beneficial bacteria itself acts on immune cells via the intestinal tract and enhances immunity (see Non-Patent Document 5).
[0005]
On the other hand, β-glucuronidase produced by intestinal bad bacteria is involved in promoting the absorption of carcinogens produced from bile acids in the large intestine from the intestinal tract. It is also presumed that this leads to a decrease in glucuronidase activity, that is, a reduction in the risk of colorectal carcinogenesis.
[0006]
Oligosaccharides having an intestinal action (improvement of constipation and reduction of the risk of colorectal carcinogenesis) include fructooligosaccharides, galactooligosaccharides, lactosucrose, raffinose and the like, but none of them have a sufficient effect. Xylooligosaccharides are particularly effective in terms of their strength of action, but have the problem of water solubility, especially in long chains. However, compared to other oligosaccharides, xylo-oligosaccharides are superior in acid resistance and heat resistance, so they are less likely to be decomposed by stomach acid and body temperature, reach the large intestine reliably, and easily exert their physiological effects (Patent Document 1).
[0007]
Xylooligosaccharides include those produced from corn cob and bagasse by enzymatic treatment, and those produced from lignocellulose by enzymatic treatment and NF membrane concentration. 2 and 3). However, there is no disclosure of the physiological effect of orally ingesting acidic xylo-oligosaccharides obtained from lignocellulose materials by enzymatic treatment and using an anion exchange resin. In addition, since acidic xylo-oligosaccharides have uronic acid residues, they have a feature that they have very high water solubility even in long chains, as compared with other oligosaccharides and xylo-oligosaccharides.
[0008]
With respect to the physiological effects of acidic xylo-oligosaccharides, there is a description of the root-promoting effect of Japanese cedar cuttings in hydroponic culture (see Non-Patent Document 7), but there is no disclosure of an intestinal environment improving agent.
[0009]
[Non-patent document 1]
Edited by Toshimitsu Mitsuoka; Intestinal bacteriology [Non-patent document 2]
Bauer, H .; G et al., Cancer Res. , 41, 2518-2523 (1981).
[Non-Patent Document 3]
Satoshi Innan; dietary fiber. , P313-314. (Published by Daiichi Shuppan Co., Ltd., published in May 1995)
[Non-patent document 4]
Satoshi Innan; dietary fiber. , P95-98, p226. (Published by Daiichi Shuppan Co., Ltd., published in May 1995)
[Non-Patent Document 5]
Edited by Toshimitsu Mitsuoka; Research on bifidobacteria. , P130-142. (Published by Japan Bifidobacterium Center, August 1998)
[Non-Patent Document 6]
Cellulase Research Bulletin Vol. 16, June 14, 2001, pp. 17-26
[Patent Document 1]
Patent 2549638
[Patent Document 2]
Patent 2643368
[Patent Document 3]
JP 2000-333892
[0010]
[Problems to be solved by the invention]
An object of the present invention is to provide an intestinal environment improving agent which is excellent in intestinal environment improving effect, has high safety and stability, and can be applied to the human body.
[0011]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, a diet to which the acidic xylo-oligosaccharide composition was added was administered to rats for a certain period of time, and dissection was performed after the test period to measure the degree of improvement in the intestinal environment. As a result, they have found that an acidic xylo-oligosaccharide composition to which a uronic acid residue has been added has an excellent intestinal environment-improving effect, and that its safety and stability are also excellent, thereby completing the present invention.
[0012]
The present invention employs the following configuration. That is, the first aspect of the present invention is an "intestinal environment improving agent containing an acidic xylo-oligosaccharide having a uronic acid residue in a xylo-oligosaccharide molecule as an active ingredient".
[0013]
In a second aspect of the present invention, in the first aspect, the acidic xylo-oligosaccharide is a mixed composition of oligosaccharides having different degrees of polymerization of xylose, and has an average degree of polymerization of 2.0 to 15.0. Intestinal environment improving agent. "
[0014]
A third aspect of the present invention is the method according to the first or second aspect, wherein the acidic xylo-oligosaccharide is obtained by treating a lignocellulosic material enzymatically and / or physicochemically to form a complex of a xylo-oligosaccharide component and a lignin component. Then, the complex is subjected to an acid hydrolysis treatment to obtain a xylooligosaccharide mixture. From the obtained xylooligosaccharide mixture, a xylooligosaccharide having at least one uronic acid residue as a side chain in one molecule is separated from the resulting xylooligosaccharide mixture. Intestinal environment-improving agent.
[0015]
A fourth aspect of the present invention is the intestinal environment improving agent according to the first to third aspects, wherein the uronic acid is glucuronic acid or 4-O-methyl-glucuronic acid.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail. Xylooligosaccharide refers to xylobiose which is a dimer of xylose, xylotriose which is a trimer, or a polymer of xylose of about a tetramer to a 15-mer. The acidic xylo-oligosaccharide used in the present invention refers to an xylo-oligosaccharide having at least one uronic acid residue in one molecule.
Further, a mixed composition of oligosaccharides having different degrees of polymerization of xylose may be used. In general, such a composition is often obtained because it is produced from a natural product. Hereinafter, the acidic xylo-oligosaccharide composition will be mainly described.
In the composition, the numerical value represented by the average degree of polymerization is an average value of the xylose chain length of the acidic xylo-oligosaccharide having a normal distribution, and is preferably 2.0 to 15.0, more preferably 2.0 to 11.0. The difference between the upper and lower limits of the xylose chain length is preferably 10 or less, more preferably 2 or less. Uronic acid is naturally known as a constituent component of polysaccharides having various physiological activities such as pectin, pectic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and dermatan sulfate. The uronic acid in the present invention is not particularly limited, but is preferably glucuronic acid or 4-O-methyl-glucuronic acid.
[0017]
As long as the acidic xylo-oligosaccharide composition as described above can be obtained, its production method is not particularly limited, but (1) a method of extracting xylan from wood and enzymatically decomposing it (published by the Cellulase Research Society, Cellulase Research Bulletin Vol. 16, published on June 14, 2001, p. 17-26) and (2) treating a lignocellulosic material enzymatically and / or physicochemically to obtain a complex of a xylo-oligosaccharide component and a lignin component, Then, the complex is subjected to an acid hydrolysis treatment to obtain a xylo-oligosaccharide mixture, and a xylo-oligosaccharide having at least one uronic acid residue as a side chain in one molecule is separated from the obtained xylo-oligosaccharide mixture. Can be
In particular, the method (2) is preferable in that it can produce a large amount of a polymer having a relatively high degree of polymerization such as a 5- to 15-mer at a low cost, and the outline thereof is described below.
[0018]
The acidic xylo-oligosaccharide composition can be obtained by using a lignocellulose material derived from a chemical pulp as a raw material, through a hydrolysis step, a concentration step, a dilute acid treatment step, and a purification step. In the hydrolysis step, xylan in lignocellulose is selectively hydrolyzed by dilute acid treatment, high-temperature high-pressure steam (steaming / explosion) treatment, or hemicellulase, and a high-molecular-weight complex consisting of xylo-oligosaccharide and lignin is converted into an intermediate. Get as a body. In the concentration step, the xylo-oligosaccharide-lignin-like substance complex is concentrated by a reverse osmosis membrane or the like, so that oligosaccharides having a low degree of polymerization and low molecular impurities can be removed. It is preferable to use a reverse osmosis membrane for the concentration step, but it is also possible to use an ultrafiltration membrane, salting out, dialysis, or the like. A lignin-like substance is released from the complex by the dilute acid treatment step of the obtained concentrate, and a dilute acid treatment liquid containing acidic xylo-oligosaccharide and neutral xylo-oligosaccharide can be obtained. At this time, the lignin-like substance separated from the complex is condensed and precipitated under acidic conditions, and can be removed by filtration using a ceramic filter, filter paper, or the like. In the dilute acid treatment step, it is preferable to use hydrolysis with an acid, but enzymatic decomposition using a lignin-degrading enzyme or the like is also possible.
[0019]
The purification step includes an ultrafiltration step, a decolorization step, and an adsorption step. Some lignin-like substances remain in the solution as soluble polymers, but are removed in an ultrafiltration step, and most of impurities such as coloring substances are removed in a decolorization step using activated carbon. It is preferable to use an ultrafiltration membrane in the ultrafiltration step, but it is also possible to use a reverse osmosis membrane, salting out, dialysis or the like. Acid xylo-oligosaccharide and neutral xylo-oligosaccharide are dissolved in the sugar solution thus obtained. By the adsorption step using an ion exchange resin, only the acidic xylo-oligosaccharide can be extracted from the sugar solution. The sugar solution is first treated with a strong cation exchange resin to remove metal ions in the sugar solution. Next, sulfate ions and the like in the sugar solution are removed using a strong anion exchange resin. In this step, a part of the organic acid, which is a weak acid, and the coloring component are simultaneously removed at the same time as the removal of the sulfate ion. The sugar solution treated with the strong anion exchange resin is again treated with the strong cation exchange resin to further remove metal ions. Finally, the resin is treated with a weak anion exchange resin to adsorb the acidic xylo-oligosaccharide to the resin.
[0020]
The acidic xylo-oligosaccharide solution containing no impurities can be obtained by eluting the acidic oligosaccharide adsorbed on the resin with a low-concentration salt (NaCl, CaCl 2 , KCl, MgCl 2 or the like). A white powder of the acidic xylo-oligosaccharide composition can be obtained by, for example, spray-drying or freeze-drying this solution.
[0021]
Using lignocellulose derived from chemical pulp as a raw material, the advantages of the above-described method for producing an acidic xylo-oligosaccharide composition using a high-molecular-weight complex consisting of xylo-oligosaccharide and lignin as intermediates are economical and acidic with high average degree of polymerization of xylose. The xylo-oligosaccharide composition is easily obtained. The average degree of polymerization can be changed by, for example, adjusting the dilute acid treatment conditions or treating again with hemicellulase. In addition, by changing the salt concentration of the eluate used for elution of the weak anion exchange resin, an acidic xylo-oligosaccharide composition having a different number of uronic acid residues bound per molecule can be obtained. Furthermore, it is also possible to obtain an acidic xylo-oligosaccharide composition in which the uronic acid binding site is restricted at the terminal by reacting an appropriate xylanase or hemicellulase.
[0022]
The acidic xylo-oligosaccharide composition thus obtained can be used as an intestinal environment improving agent after being dissolved in water or dried with a spray drier and processed into powder. Alternatively, the material may be microencapsulated using a material that does not interfere with oral ingestion, or may be added by being included in liposomes. The content of the acidic kilo-oligosaccharide or the acidic xylo-oligosaccharide composition in the intestinal environment-improving agent can be used in the range of 0.001 to 20% (hereinafter, all mass%), but 0.01 to 20%. 10% is more preferred.
[0023]
As a form of the intestinal environment improving agent containing the acidic xylo-oligosaccharide composition of the present invention, the acidic xylo-oligosaccharide itself can be directly ingested, but it can be added to a beverage or a food. Further, when taken directly, it may be powdered or tableted by tableting, or may be taken as an aqueous solution after purification of acidic xylo-oligosaccharide.
[0024]
In the present invention, acidic xylo-oligosaccharides can be used by mixing with other enteral nutrients, other nutritional components, and pharmaceuticals, and are used not only as intestinal environment improving agents but also as medical foods and pharmaceuticals. It can also be provided as
[0025]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. The present invention is not limited by this. First, an outline of each measurement method and preparation examples of acidic xylo-oligosaccharide compositions UX10 and UX2 contained as an active ingredient in the present invention are shown.
<Outline of measurement method>
(1) Determination of total sugar content:
The total sugar amount was prepared using a calibration curve using D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) and quantified by the phenol-sulfuric acid method (reducing sugar quantification method, published by Gakkai Shuppan Center).
(2) Quantification of reducing sugar amount:
The amount of reducing sugar was prepared by using a calibration curve with D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) and quantified by the Somogyi-Nelson method (a method for determining reducing sugar, published by Gakkai Shuppan Center).
(3) Determination of uronic acid amount:
For uronic acid, a calibration curve was prepared using D-glucuronic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and quantified by the carbazole sulfate method (a method for determining reducing sugars, published by Gakkai Shuppan Center).
(4) Method for determining average degree of polymerization:
The sample sugar solution was kept at 50 ° C. and centrifuged at 15000 rpm for 15 minutes to remove insolubles, and the total amount of sugar in the supernatant was divided by the amount of reducing sugar (both in terms of xylose) to determine the average degree of polymerization.
(5) Method for analyzing acidic xylo-oligosaccharides:
The distribution of the oligosaccharide chains was analyzed using an ion chromatograph (manufactured by Dionex, analytical column: Carbo Pac PA-10). As a separation solvent, a 100 mM NaOH solution is used, and as an elution solvent, sodium acetate is added to the above-mentioned separation solvent so as to have a concentration of 500 mM, and the separation solvent: elution solvent = 10: 0 to 4: 6 in a solution ratio. A linear gradient was set and separated. From the obtained chromatogram, the difference between the upper and lower limits of the xylose chain length was determined.
(6) Method for determining the number of uronic acid residues per oligosaccharide molecule The sample sugar solution was kept at 50 ° C. and centrifuged at 15000 rpm for 15 minutes to remove insolubles, and the amount of uronic acid in the supernatant solution (D-glucuronic acid) ) Was divided by the reducing sugar amount (xylose conversion) to obtain the number of uronic acid residues per oligosaccharide molecule.
(7) Definition of enzyme titer:
The activity of xylanase used as the enzyme was measured using Kabaxylan (Sigma). The enzyme titer is defined by measuring the reducing power of reducing sugars obtained by xylanase by decomposing xylan using the DNS method (quantifying method for reducing sugars, published by Gakkai Shuppan Center) and measuring 1 micromole of xylose per minute. The amount of the enzyme that generates a reducing power corresponding to was set to 1 unit.
[0026]
<Example of adjustment: Example of adjusting acidic xylo-oligosaccharide compositions UX10 and UX2>
Using mixed hardwood chips (domestic hardwood 70%, eucalyptus 30%) as raw materials, an oxygen delignified pulp slurry (Kappa number 9.6, pulp viscosity 25.1 cps) was obtained by a kraft digestion and oxygen delignification step. After the pulp was separated from the slurry by filtration and washed, a pulp slurry prepared at a pulp concentration of 10% and a pH of 8 was subjected to the following enzyme treatment with xylanase.
[0027]
Bacillus sp. Xylanase produced by the S-2113 strain (National Institute of Advanced Industrial Science and Technology, Patented Microorganisms Depositary Center, deposited strain FERM BP-5264) was added at 1 unit / g of pulp, followed by treatment at 60 ° C. for 120 minutes. . Thereafter, the pulp residue was removed by filtration to obtain 1050 L of an enzyme-treated solution.
[0028]
Next, the obtained enzyme-treated solution was subjected to a concentration step, a dilute acid treatment step, and a purification step in this order.
In the concentration step, a concentrate (40-fold concentration) was prepared using a reverse osmosis membrane (RONTR-7410, manufactured by Nitto Denko Corporation). In the dilute acid treatment step, the pH of the obtained concentrated solution was adjusted to 3.5, followed by heat treatment at 121 ° C. for 60 minutes to form precipitates of high molecular impurities such as lignin. Further, the precipitate was removed by filtration with a ceramic filter to obtain a dilute acid-treated solution.
[0029]
In the purification step, the ultrafiltration / decolorization step and the adsorption step were performed in this order. In the ultrafiltration / decolorization step, the diluted acid-treated solution was passed through an ultrafiltration membrane (manufactured by Osmonics, fractionation molecular weight: 8000), and then 770 g of activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.) was added, followed by ceramic filtration. As a result, a decolorization treatment liquid was obtained. In the adsorption step, a strong cation exchange resin (PK218 manufactured by Mitsubishi Chemical Corporation), a strong anion exchange resin (PA408 manufactured by Mitsubishi Chemical Corporation), and a strong cation exchange resin (manufactured by Mitsubishi Chemical Corporation) PK218) was sequentially passed through a column packed with 100 kg, and then supplied to a column filled with 100 kg of a weak anion exchange resin (WA30, manufactured by Mitsubishi Chemical Corporation). The solution eluted with the 75 mM NaCl solution from the column packed with this weak anion exchange resin was spray-dried to obtain an acidic xylo-oligosaccharide composition powder (total saccharide amount: 353 g, recovery rate: 13.1%). Hereinafter, this acidic xylo-oligosaccharide composition is referred to as UX10. According to the measurement method described above, UX10 was a saccharide composition compound having an average degree of polymerization of 10.3, a difference between the upper and lower limits of the xylose chain length of 10, and one uronic acid residue per molecule of acidic xylooligosaccharide.
[0030]
To 100 ml of the obtained 10% aqueous solution of UX10 was added 50 mg of Sumiteam X (xylanase manufactured by Shin Nippon Chemical Co., Ltd.), and the mixture was reacted at 60 ° C. for 20 hours, and then filled with 10 g of weak anion exchange resin (WA30). Was served. After washing the column with water, the solution eluted with a 75 mM NaCl solution was freeze-dried to obtain an acidic xylo-oligosaccharide composition powder (total sugar amount: 2.1 g, recovery rate: 21%). Hereinafter, this acidic xylo-oligosaccharide composition is referred to as UX2. According to the measurement method described above, UX2 was a saccharide composition compound having an average degree of polymerization of 2.3, a difference between the upper and lower limits of the xylose chain length of 2, and one uronic acid residue per molecule of acidic xylooligosaccharide.
[0031]
Next, the outline and results of an intestinal environment improvement test using the obtained acidic xylo-oligosaccharide composition were described in Example 1 (pH), Example 2 (Bifidobacterium count), and Example 3 (β-glucuronidase activity). Show.
[0032]
<Example 1: pH>
Four-week-old male SD rats were purchased from Charles River Japan, and individually bred in metal cages in a breeding room set at a temperature of 23 ± 1 ° C. and a humidity of 55% ± 5%. After pre-breeding for one week, a synthetic feed administration group containing 1% of UX2 (food group with UX2), a synthetic food administration group containing 1% of UX-10 (food group with UX10), a synthetic food administration group without oligosaccharide ( (Free food group) were divided into three groups (six animals in each group), and each test food was allowed to be freely taken. Four weeks after ingestion of the test meal, the animals were sacrificed and dissected by cervical dislocation, and the contents of the cecum were obtained. No rats died during the test period, and no individual showed abnormal weight gain or loss. This indicates the high security of UX2 and UX-10. Table 1 shows the composition of the test meal in each group.
[0033]
[Table 1]
Figure 2004182609
[0034]
The pH of the cecal contents reflects the amount of organic acids produced by bifidobacteria and the like. After suspending the cecal contents of each rat in 15 ml of distilled water, the results measured with a pH meter are shown in FIG.
[0035]
In the UX2 and UX10-added food groups, the pH of the cecal contents was significantly lower than in the oligosaccharide-free food group. This is considered to be because the intestinal bacteria assimilated the acidic xylo-oligosaccharide to produce an organic acid.
[0036]
<Example 2: Bifidobacterium count>
The number of bifidobacteria in the suspension of rat cecal contents used for the pH measurement in Example 1 was measured as follows. The cecal contents diluted solution appropriately diluted in a CPLX medium was inoculated, and cultured under anoxic conditions (48 hours, 37 ° C.). Only colonies of 5 mm or more were counted as bifidobacteria. In addition, five colonies of 5 mm or more were randomly selected, and the bacterial species of the colonies were analyzed using a 16S rDNA analysis kit (Cat. No. 403085) manufactured by Applied Biosystems. there were. FIG. 2 shows the measurement results of the number of bifidobacteria in 1 g of cecal contents.
[0037]
It was found that the number of bifidobacteria in cecal contents was significantly increased in the UX2 and UX10-added food groups as compared to the oligosaccharide-free food group. This is because the acidic xylo-oligosaccharide was assimilated by the bifidobacterium and selectively grown.
[0038]
<Example 3: β-glucuronidase activity>
Β-glucuronidase activity in the contents of the rat cecum obtained in Example 1 was measured as follows. 4-O-methyl-umberiferyl-β-D-glucuronide (Cat. No. M-9130) manufactured by Sigma was adjusted to 2 mM using a 100 mM phosphate buffer to prepare a substrate solution. As a measurement sample, the supernatant after centrifugation (15,000 rpm) of 1 ml of the rat cecal content suspension used for pH measurement in Example 1 was used. First, 10 μl of a measurement sample was added to 10 μl of the substrate solution, and the mixture was stirred and reacted at 37 ° C. for 30 minutes. Next, 100 μl of a 500 mM glycine-NaOH buffer was added to the reaction solution to stop the enzyme reaction, and then the amount of 4-O-methyl-umberiferone generated by β-glucuronidase was measured (excitation wavelength: 355 nm, measurement wavelength: 450 nm). The β-glucuronidase activity was determined from a previously prepared calibration curve, with the enzyme activity for producing 1 nM 4-O-methyl-umberiferone per minute as 1 unit (U). FIG. 3 shows the measurement results of the enzyme activity per 1 g of the cecal contents.
[0039]
In the UX2 and UX10 supplemented food groups, it was found that the β-glucuronidase activity in the cecal contents was significantly reduced as compared to the oligosaccharide-free supplemented food group. This is considered to be because the growth of Bifidobacterium and the like was selectively grown by the acidic xylo-oligosaccharide, and the growth of E. coli and the like producing β-glucuronidase was relatively suppressed. The decrease in β-glucuronidase activity suggests an effect of reducing the risk of carcinogenesis in the large intestine.
[0040]
【The invention's effect】
The preparation containing the acidic xylo-oligosaccharide composition obtained by the present invention has excellent physiological activity and is used as an intestinal environment improving agent for the purpose of intestinal regulation such as improvement of constipation and reduction of the risk of carcinogenesis in the large intestine. be able to.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of xylo-oligosaccharide intake on cecal contents pH.
FIG. 2 is a graph showing the effect of xylo-oligosaccharide intake on the number of bifidobacteria in cecal contents.
FIG. 3 shows the effect of xylo-oligosaccharide intake on cecal contents β-glucuronidase activity.

Claims (4)

キシロオリゴ糖分子中にウロン酸残基を有する酸性キシロオリゴ糖を有効成分とする腸内環境改善剤。An intestinal environment improving agent comprising an acidic xylo-oligosaccharide having a uronic acid residue in a xylo-oligosaccharide molecule as an active ingredient. 該酸性キシロオリゴ糖が、キシロースの重合度が異なるオリゴ糖の混合組成物であり、平均重合度が2.0〜15.0であることを特徴とする請求項1に記載の腸内環境改善剤。The intestinal environment improving agent according to claim 1, wherein the acidic xylooligosaccharide is a mixed composition of oligosaccharides having different polymerization degrees of xylose, and has an average polymerization degree of 2.0 to 15.0. . 前記酸性キシロオリゴ糖が、「リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得、次いで該複合体を酸加水分解処理してキシロオリゴ糖混合物を得、得られるキシロオリゴ糖混合物から、1分子中に少なくとも1つ以上のウロン酸残基を側鎖として有するキシロオリゴ糖を分離して得たもの」であることを特徴とする請求項1又は請求項2に記載の腸内環境改善剤。The acidic xylo-oligosaccharide is obtained by treating the lignocellulosic material enzymatically and / or physicochemically to obtain a complex of the xylo-oligosaccharide component and the lignin component, and then subjecting the complex to acid hydrolysis treatment to convert the xylo-oligosaccharide mixture. Obtained by separating a xylo-oligosaccharide having at least one uronic acid residue in one molecule as a side chain from the obtained xylo-oligosaccharide mixture ". 3. The intestinal environment improving agent according to 2. ウロン酸がグルクロン酸もしくは4−O−メチル−グルクロン酸であることを特徴とする請求項1〜請求項3のいずれかに記載の腸内環境改善剤。The intestinal environment improving agent according to any one of claims 1 to 3, wherein the uronic acid is glucuronic acid or 4-O-methyl-glucuronic acid.
JP2002348171A 2002-11-29 2002-11-29 Ameliorating agent for intraintestinal environment Pending JP2004182609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002348171A JP2004182609A (en) 2002-11-29 2002-11-29 Ameliorating agent for intraintestinal environment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002348171A JP2004182609A (en) 2002-11-29 2002-11-29 Ameliorating agent for intraintestinal environment

Publications (1)

Publication Number Publication Date
JP2004182609A true JP2004182609A (en) 2004-07-02

Family

ID=32751152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002348171A Pending JP2004182609A (en) 2002-11-29 2002-11-29 Ameliorating agent for intraintestinal environment

Country Status (1)

Country Link
JP (1) JP2004182609A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265170A (en) * 2005-03-24 2006-10-05 Sanwa Denpun Kogyo Kk Medicament which amplifies proliferative action on bacillus bifidus of sparingly digestible neutral oligosaccharide, and composition comprising the same and neutral oligosaccharide
EP1714660A1 (en) * 2005-04-21 2006-10-25 N.V. Nutricia Uronic acid and probiotics
JP2007022916A (en) * 2005-07-12 2007-02-01 Oji Paper Co Ltd Agent for ameliorating stomatitis
CN109984316A (en) * 2019-04-01 2019-07-09 安吉艾格赛思生物科技有限公司 A kind of adjusting intestinal microenvironment biological products containing xylo-oligosaccharide

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006265170A (en) * 2005-03-24 2006-10-05 Sanwa Denpun Kogyo Kk Medicament which amplifies proliferative action on bacillus bifidus of sparingly digestible neutral oligosaccharide, and composition comprising the same and neutral oligosaccharide
EP1714660A1 (en) * 2005-04-21 2006-10-25 N.V. Nutricia Uronic acid and probiotics
WO2006112714A3 (en) * 2005-04-21 2007-03-29 Nutricia Nv Uronic acid and probiotics
RU2419445C2 (en) * 2005-04-21 2011-05-27 Н.В. Нютрисиа Uronic acid and probiotics
EP2353601A1 (en) * 2005-04-21 2011-08-10 N.V. Nutricia Uronic acid and probiotics
US9168267B2 (en) 2005-04-21 2015-10-27 N.V. Nutricia Uronic acid and probiotics of Lactobacillus paracasei and Bifidobacterium breve for in vivo treatment of infection
JP2007022916A (en) * 2005-07-12 2007-02-01 Oji Paper Co Ltd Agent for ameliorating stomatitis
CN109984316A (en) * 2019-04-01 2019-07-09 安吉艾格赛思生物科技有限公司 A kind of adjusting intestinal microenvironment biological products containing xylo-oligosaccharide

Similar Documents

Publication Publication Date Title
US10117884B2 (en) Processing of natural polysaccharides by selected non-pathogenic microorganisms and methods of making and using the same
CN100438779C (en) Nutritional composition with health promoting action containing oligosaccharides
Jung et al. Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats
US20210177886A1 (en) Prebiotic for treating disorders associated with disturbed composition or functionality of the intestinal microbiome
CA2353544A1 (en) Preparation that contains oligosaccharides and probiotics
Gullón et al. Assessment on the fermentability of xylooligosaccharides from rice husks.
JP7024975B2 (en) Sugar and / or lipid metabolism improver
CA1300023C (en) Lactobacillus bifidus proliferation promoting composition
JP2002223727A (en) Functional food
US20120107449A1 (en) Mineral-absorption promoter, food and feed
JP2004182609A (en) Ameliorating agent for intraintestinal environment
JP2004269407A (en) Constipation ameliorant and food and beverage containing the same
JP2004182615A (en) Antihyperlipemic agent
JP2007022968A (en) Diarrhea ameliorating agent and diarrhea preventive
JP2004210666A (en) Atopic dermatitis-improving agent
JP2009044996A (en) Additive for fermented milk
JP4178927B2 (en) Osteoporosis preventive agent
JP2004182618A (en) Therapeutic agent for osteoporosis
JP4792845B2 (en) Stomatitis improving agent
JP2009023987A (en) Infectious disease inhibitor
JP2007022954A (en) Viral rhinitis-improving agent for animal
JP2007045812A (en) Dermatitis improving agent
JP2004210664A (en) Atopic dermatitis-improving preparation
Gullón Estévez et al. Assessment on the fermentability of xylooligosaccharides from rice husks
JP2008063237A (en) Antitumor agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081216