JP2004181627A - Resin transfer molding method - Google Patents

Resin transfer molding method Download PDF

Info

Publication number
JP2004181627A
JP2004181627A JP2002312454A JP2002312454A JP2004181627A JP 2004181627 A JP2004181627 A JP 2004181627A JP 2002312454 A JP2002312454 A JP 2002312454A JP 2002312454 A JP2002312454 A JP 2002312454A JP 2004181627 A JP2004181627 A JP 2004181627A
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
fiber base
diffusion medium
molding method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002312454A
Other languages
Japanese (ja)
Other versions
JP4104422B2 (en
Inventor
Shunei Sekido
俊英 関戸
Kazuaki Kitaoka
一章 北岡
Koji Kotani
浩司 小谷
Shigeru Nishiyama
西山  茂
Masahiko Shimizu
正彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toray Industries Inc
Original Assignee
Mitsubishi Heavy Industries Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002312454A priority Critical patent/JP4104422B2/en
Application filed by Mitsubishi Heavy Industries Ltd, Toray Industries Inc filed Critical Mitsubishi Heavy Industries Ltd
Priority to EP13173654.8A priority patent/EP2644365B1/en
Priority to PCT/JP2003/012947 priority patent/WO2004033176A1/en
Priority to EP13173648.0A priority patent/EP2644363B1/en
Priority to US10/530,263 priority patent/US8420002B2/en
Priority to EP20130173653 priority patent/EP2644364A3/en
Priority to AU2003271139A priority patent/AU2003271139B2/en
Priority to EP03751403.1A priority patent/EP1555104B1/en
Priority to ES13173648.0T priority patent/ES2628600T3/en
Priority to ES13173654T priority patent/ES2727872T3/en
Publication of JP2004181627A publication Critical patent/JP2004181627A/en
Application granted granted Critical
Publication of JP4104422B2 publication Critical patent/JP4104422B2/en
Priority to AU2008203841A priority patent/AU2008203841B2/en
Priority to AU2008203839A priority patent/AU2008203839B2/en
Priority to AU2008203840A priority patent/AU2008203840B2/en
Priority to US13/834,072 priority patent/US20130228956A1/en
Priority to US13/833,606 priority patent/US9463587B2/en
Priority to US13/834,534 priority patent/US9120253B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/443Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding and impregnating by vacuum or injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould

Abstract

<P>PROBLEM TO BE SOLVED: To provide an RTM method which not only improves the quality of a design surface of a molded object but also molds a thick-walled structure with excellent resin impregnation properties. <P>SOLUTION: In the RTM method, the resin flow resistance of a second resin diffusing medium arranged on the second surface of a reinforcing fiber base material is made lower than that of the first resin diffusing medium arranged on the first surface of the reinforcing fiber base material in a mold and the reinforcing fiber base material is impregnated with a resin by sucking the resin through the second resin diffusing medium while injecting the resin into the first resin diffusion medium. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、繊維強化プラスチック(以下、FRPと言う。)製の構造体を成形する Resin Transfer Molding(以下、RTMと言う。)成形方法の改良に関し、とくに、厚物の成形が可能であり、かつ、表面性状について品質の向上が可能なRTM成形方法に関する。
【0002】
【従来の技術】
従来より、FRPは種々の分野に使用されているが、FRP構造体の製造方法としては、プリプレグによって予め成形すべき構造体の形状を有するプリフォームを形成した後に、これを所定の温度、圧力条件に設定されたオートクレーブ内で硬化させる、いわゆるプリプレグ/オートクレーブ成形方法が一般的であった。しかし、近年製造コスト低減のためにRTM成形方法が注目され、徐々にこの成形法が広まりつつある。
【0003】
代表的なRTM成形方法として、特許文献1に記載の成形方法が知られている。特許文献1に記載のRTM成形方法では、強化繊維材の積層体からなる強化繊維基材の両面に、ピールプライ/樹脂分散メディアを配置し、これらを成形型(ツール)面上に配置して、全体をバッグ材で覆うとともに、バッグ材によりシールされた内部に対し樹脂注入ゲートと減圧のための吸引ゲートを設ける。この状態において、常温または加熱雰囲気下で、吸引ゲートを通してバッグ内を吸引することにより減圧しながら樹脂注入ゲートより樹脂を注入して、基本的に、樹脂を強化繊維基材の上面側から下面側へまたは下面側から上面側へ流動させ、樹脂を強化繊維基材に含浸させる。そして、含浸が終了した後は、常温または加熱雰囲気下で樹脂を硬化させ、硬化後に、バッグ材を剥がして成形体を脱型する。
【0004】
しかしながら、この成形方法においては、以下のような問題がある。
まず、強化繊維基材の両面に樹脂分散メディアが配置されるものの、強化繊維基材に対しては基本的に片面側からの樹脂含浸が行われるため、基材の厚み方向に含浸可能な距離に限界があり、強化繊維基材が厚くなりすぎると、所定の含浸が不可能になる。
【0005】
厚い強化繊維基材に樹脂を含浸させるために、強化繊維基材の両面に配置された樹脂分散メディアの両方から強化繊維基材内に樹脂を含浸させることも考えられるが、上記成形方法では、両面側に実質的に同じ形状、特性の樹脂分散メディアが配置されるため、単に両面側から樹脂を含浸させると、樹脂が同時に同じように基材の厚み方向に含浸されていき、ボイドが側方等に押し出されにくくなって、基材内にボイドが閉じ込められやすくなる。ボイドが閉じ込められてしまうと、目標とする成形品の性能が得られなくなる。このようなボイドの閉じ込めを回避するために、基本的に片面側からの樹脂含浸が行われている。
【0006】
また、上記成形方法における別の問題として、成形品の意匠面について良好な平滑性を得にくいという問題がある。すなわち、上記樹脂分散メディアは、樹脂の分散性能を高めるために、通気抵抗の低い比較的凹凸の度合いの大きな部材に構成されるが、このような比較的大きな凹凸を有する樹脂分散メディアが強化繊維基材の両面に配置されて成形されるので、成形品の一方の面である意匠面にも樹脂分散メディアの比較的大きな凹凸が反映されてしまう。その結果、意匠性が損なわれるとともに、成形品の表面に凹凸が形成されてしまうため、空気力学特性等が低下するという問題が生じることもある。
【0007】
このような問題に対処するために、樹脂分散メディアとして凹凸の度合いの小さいものを使用することが考えられるが、そうすると通気抵抗が大きくなりすぎて、目標とする樹脂の分散性能が得られない。また、吸引の際の強化繊維基材内からの通気も悪くなるため、真空度が上がらず、とくに厚い基材に対してその厚み方向に完全に含浸させることが困難になる。
【0008】
このように、樹脂分散メディアの凹凸の大きさが樹脂拡散、通気性能を左右することになるが、樹脂拡散、通気性能を改善するための樹脂分散メディアの凹凸(比較的大きな凹凸)と、成形品の表面性状を改善するための樹脂分散メディアの凹凸(比較的小さな凹凸)とは、相反する関係にある。したがって、強化繊維基材の両面に、実質的に同じ樹脂分散メディアを配置する上記従来方法では、樹脂の含浸性向上と成形品の表面性状向上との両方をともに達成することは困難であり、厚い強化繊維基材を使用する成形では、とくに困難となる。
【0009】
ここで、樹脂の強化繊維基材への含浸性(パーミアビリティ)については、一般に以下の式で表されることが知られている。
I=(ε/(1−ε))√(αP/2)×∫〔dt/√(μ(t)t)〕
I:パーミアビリティ、ε:基材の抵抗、α:定数、P:基材内の真空圧
μ(t):粘度、t:経過時間
ここで、パーミアビリティは樹脂が基材に含浸する距離(厚み)に相当する。
【0010】
成形品の表面性状に関する品質を向上させるために、ツール面側に通気材料を配設しないことも考えられるが、その場合、基材内の通気が悪くなり、真空度が上がらないため、特に厚物(厚板)を成形する場合に、完全に含浸させることが困難となる。したがって、厚物を成形するためには、ツール面側に通気のためのメディアを配置することが必要となるが、そうすると前述の如く、反対面側の樹脂拡散性能を維持しつつ、ツール面側の表面性状を向上することが困難となる。
【0011】
また、強化繊維基材への樹脂含浸に関し、基材と樹脂の種類により上記式における各値や定数、粘度は異なるものの、時間が経過するに伴い含浸距離は収束し、さらに、樹脂の粘度上昇が生じる上、やがて樹脂がゲル化するため、樹脂が含浸できる距離には限界が生じ、強化繊維基材がある厚み以上になると、もはや上記の従来方法では、完全に含浸させることが不可能となっていた。
【0012】
【特許文献1】
米国特許5,052,906号明細書(請求項1、第1図)
【0013】
【発明が解決しようとする課題】
本発明の課題は、上記従来技術における上記のような問題点を解決し、成形品の意匠面の品質を向上させるとともに、厚物構造体を良好な樹脂含浸性をもって成形できるRTM成形方法を提供することにある。
【0014】
【課題を解決するための手段】
上記課題を解決するために、本発明に係るRTM成形方法は、成形型内に強化繊維基材を配置するとともに、該強化繊維基材の両面上に樹脂流動抵抗が前記強化繊維基材よりも低い樹脂拡散媒体を配置し、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を前記強化繊維基材中に含浸させるRTM成形方法において、前記強化繊維基材の第1の面上に配置される第1の樹脂拡散媒体の樹脂流動抵抗を、第2の面上に配置される第2の樹脂拡散媒体の樹脂流動抵抗よりも低く設定し、前記第1の樹脂拡散媒体に樹脂を注入しつつ前記第2の樹脂拡散媒体を介して吸引することにより、前記強化繊維基材中に樹脂を含浸させることを特徴とする方法からなる(第1の方法)。
【0015】
すなわち、本発明に係るRTM成形方法においては、強化繊維基材の両面に配置される樹脂拡散媒体の樹脂流動抵抗に意図的に大小関係を持たせる。樹脂流動抵抗は、現実的には、通気抵抗を測定し、測定された通気抵抗に対応する値として把握できる。
【0016】
本発明において、強化繊維基材は単層のものでもよく、複数の強化繊維材の積層体からなるものでもよいが、本発明に係るRTM成形方法は特に厚物の成形、つまり、厚い強化繊維基材に樹脂を含浸させる成形に好適なものであることから、本発明は、主として、複数の強化繊維材の積層体からなる強化繊維基材を使用する場合を対象としている。
【0017】
この本発明に係るRTM成形方法においては、上記第2の樹脂拡散媒体の樹脂流動抵抗を上記強化繊維基材の樹脂流動抵抗の1/3以下とすることが好ましい。これによって、第2の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)は第1の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)よりは高いものの、強化繊維基材の樹脂流動抵抗(通気抵抗)に比べると十分に低く抑えられるので、強化繊維基材からの通気が悪くなって基材内の真空度が下がることが抑えられ、厚い強化繊維基材に対しても樹脂含浸性が損なわれることが回避される。
【0018】
また、上記第1の樹脂拡散媒体の樹脂流動抵抗を上記強化繊維基材の樹脂流動抵抗の1/10以下とすることが好ましい。これによって、第1の樹脂拡散媒体に注入された樹脂の、強化繊維基材の面方向への拡散性が十分に高く確保され、第1の樹脂拡散媒体に注入された樹脂は、該面に沿う方向に迅速に拡散されつつ、強化繊維基材の厚み方向に迅速に含浸されていくことになる。このような第1の樹脂拡散媒体の樹脂流動抵抗、第2の樹脂拡散媒体の樹脂流動抵抗が満足された上で、第1の樹脂拡散媒体の樹脂流動抵抗と第2の樹脂拡散媒体の樹脂流動抵抗に大小関係が持たせられる。
【0019】
また、本発明に係るRTM成形方法においては、とくに、樹脂が上記第2の面に到達する前に、上記第2の樹脂拡散媒体からも樹脂の注入を開始することが好ましい。つまり、この時点から、実質的に両面からの樹脂含浸が開始される。
【0020】
また、本発明に係るRTM成形方法においては、少なくとも一方の樹脂拡散媒体と強化繊維基材との間に、成形後に樹脂拡散媒体と一体的に剥離可能なピールプライを介装することが好ましい。これによって樹脂拡散媒体を容易に剥離させることができる。ただし、成形品を脱型後、少なくとも一方の樹脂拡散媒体を、成形品から剥離せずに成形品内に残存させることもできる。この場合には、樹脂拡散媒体を残存させる側に対してピールプライは不要である。
【0021】
また、本発明に係るRTM成形方法においては、少なくとも一方の樹脂拡散媒体と強化繊維基材との間に多孔性シートを介装することもできる。この多孔性シートは、上記ピールプライとは異なる機能を有し、樹脂拡散媒体の樹脂拡散機能を保ちつつ樹脂拡散媒体の凹凸の強化繊維基材側への転写を抑制するためのシートである。したがって、成形品の意匠面側への配置が好ましいものである。
【0022】
さらに、本発明に係るRTM成形方法においては、少なくとも一方の樹脂拡散媒体を、成形型の内面に樹脂流路としての溝を設けることにより構成することもできる。この場合、別途樹脂拡散媒体を作成しなくても、成形型の内面自体を樹脂拡散媒体として用いることが可能となる。
【0023】
また、本発明は、とくに優れた意匠面を成形する観点から、次のようなRTM成形方法も提供する。すなわち、本発明に係るRTM成形方法は、成形型に強化繊維基材を配置するとともに、該強化繊維基材の、成形型と反対側の面に、樹脂流動抵抗が前記基材よりも低い樹脂拡散媒体を配置するとともに、該強化繊維基材と成形型面との間に、気体透過膜と通気性基材からなる脱気媒体を設け、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を、前記気体透過膜と成形型間に形成された脱気空間から吸引することにより、前記強化繊維基材内に樹脂を含浸させることを特徴とする方法からなる(第2の方法)。
【0024】
この第2の方法において、上記強化繊維基材は、たとえば強化繊維の積層体からなる。
【0025】
また、上記第2の方法においては、上記気体透過膜としては、成形後に、成形品から剥離可能な離型性を有するものを使用することが好ましい。
【0026】
また、上記第2の方法において、とくの面積の広い成形品を成形する場合には、上記樹脂拡散媒体の上部に、少なくとも2カ所以上の樹脂注入ゲートを配置するとともに、樹脂注入に際して、少なくとも隣り合う樹脂注入ゲート2カ所から、または、すべての樹脂注入ゲートから、同時に樹脂注入することが好ましい。
【0027】
さらに、上記第2の方法において、とくの面積の広い成形品を成形する場合には、上記気体透過膜と成形型間に形成された脱気空間からの吸引経路に加えて、成形型内に少なくとも1つの別の吸引経路を設けることが好ましい。
【0028】
上記のような本発明に係るRTM成形方法(第1の方法)においては、より低い樹脂流動抵抗を有する第1の樹脂拡散媒体に樹脂が注入され、注入された樹脂が、強化繊維基材の第1の面に沿う方向に迅速にかつ十分に広く拡散されつつ、強化繊維基材内の厚み方向に迅速に含浸されていく。そして、基本的に、より高い樹脂流動抵抗を有する第2の樹脂拡散媒体を介しての吸引により成形型内が減圧され、上記注入樹脂が吸引・減圧状態の強化繊維基材内に含浸されていく。このとき、第2の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)は第1の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)よりは高いものの、強化繊維基材の樹脂流動抵抗(通気抵抗)に比べると十分に低く抑えられているので、強化繊維基材からの通気が悪くなって基材内の真空度が下がることが抑えられ、樹脂の迅速な含浸性が確保される。したがって、厚い強化繊維基材に対しても十分に良好な樹脂含浸性が確保される。第2の樹脂拡散媒体は、その樹脂流動抵抗(通気抵抗)が第1の樹脂拡散媒体のそれよりも高く設定されるので、第2の樹脂拡散媒体は、第1の樹脂拡散媒体に比べ、凹凸の小さな媒体に形成でき、この第2の樹脂拡散媒体の表面形態の成形品表面への転写が生じたとしても、その転写による成形品表面の凹凸の度合いは小さく抑えられる。したがって、この表面側を意匠面側とすることにより、凹凸の小さな望ましい成形品の意匠面が得られることになる。
【0029】
そして、さらに厚い強化繊維基材への樹脂含浸が要求される成形においては、とくに、上記のように第1の樹脂拡散媒体側からの強化繊維基材への樹脂含浸だけでは、強化繊維基材の第2の樹脂拡散媒体側表面まで十分に樹脂を含浸させることが困難な場合(従来の樹脂含浸限界を越える場合)には、第1の樹脂拡散媒体側からの強化繊維基材内に含浸されてきた樹脂が強化繊維基材の第2の面に到達する前に、第2の樹脂拡散媒体からも樹脂の注入を開始することができる。この第2の樹脂拡散媒体側からの樹脂注入により、強化繊維基材内の樹脂が十分に含浸されにくかった部分、つまり、第2の面側の部分に対しても、樹脂含浸が補われるようになり、強化繊維基材の厚み方向の全体にわたって、十分に樹脂を含浸させることが可能になる。すなわち、このプロセスにおいては、強化繊維基材の厚み方向への樹脂含浸は、主に第1の樹脂拡散媒体側からの含浸によることになり、含浸不足分が第2の樹脂拡散媒体側からの含浸により補われることになる。また、第1の樹脂拡散媒体と第2の樹脂拡散媒体に通気抵抗(樹脂流動抵抗)に大小関係を持たせてあるので、第1の樹脂拡散媒体側からは樹脂の迅速な含浸が行われつつ、第2の樹脂拡散媒体側においては、樹脂含浸が補われるとともに、第1の樹脂拡散媒体側から含浸される樹脂により押し出されてきたボイドが、第2の樹脂拡散媒体側から含浸されてくる樹脂によって強化繊維基材内に閉じ込められるのではなく、側方へと、つまり、強化繊維基材の第2の面に沿う方向へと、比較的遅い速度で押し出されることになる。その結果、両面側からの樹脂含浸であるにもかかわらず、ボイドが強化繊維基材内に閉じ込められることが回避され、しかも、第2の面側での樹脂含浸が補われることになり、ボイド封入の問題を伴うことなく良好に厚物を成形することが可能になる。しかもこのとき、上述したように第2の樹脂拡散媒体側を成形品の意匠面とすることにより、凹凸の小さな優れた意匠面も同時に得られることになる。つまり、厚物成形と表面品質の向上が同時に達成される。
【0030】
また、前述の本発明に係るRTM成形方法(第2の方法)は、次のような場合に有効である。すなわち、成形型側の成形面(意匠面)の平滑性がさらに強く要求される場合や、さらに厚くかつ大面積の強化繊維基材への樹脂含浸が要求される成形においては、とくに、成形型面のあらゆる場所からの脱気経路をつねに有効に働かせる手段として、該強化繊維基材と成形型面との間に、気体透過膜と通気性基材からなる脱気媒体を設けることができる。それにより、樹脂注入時に、強化繊維基材の下面側(意匠面成形側)に樹脂が到達する時間に差があって含浸部分の遅い箇所が生じようとしても、気体透過膜と成形型間に形成された脱気空間から吸引することにより、最終的にその面のすべての部分にわたって樹脂を完全に含浸させることが可能となる。その結果、成形型面に沿った平滑性の良好な意匠面が得られる。
【0031】
また、少なくとも隣り合った樹脂注入ゲートから、さらには、すべての樹脂注入ゲートから同時に樹脂注入した場合、通常は、樹脂の流れが重なる部分ができて、吸引しきれない領域が発生し、未含浸部ができることが多いが、上記方法によれば、常に脱気経路が確保されているため、最終的にすべての面を完全に含浸させることが可能となる。
【0032】
また、気体透過膜は、例えば表面に非常に微細な穴があいており、平滑な面を形成しているものが好ましいが、このような態様のものを用いると、前記通気性基材に薄い凹凸の少ない基材を用いることと併せて、成形品の表面品位を向上させることができる。
【0033】
【発明の実施の形態】
以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の第1実施態様に係るRTM成形方法に用いられる成形装置の概略縦断面図である。ベースとなる成形型1は、たとえば、ステンレスから作製され、平板状のものに構成される。
【0034】
本実施態様においては、成形型1上に第2の樹脂拡散媒体としてのブリーザー2が配置される。ここでブリーザーとは、前述した従来の樹脂拡散メディア程には樹脂の流動抵抗が低くないが、樹脂が強化繊維基材を流れる流動抵抗よりも遙かに低い樹脂流動抵抗を有するものである。定量的には、ブリーザー2の樹脂流動抵抗は、強化繊維基材の樹脂流動抵抗の1/3以下であることが好ましい。さらに、ブリーザー2の表面の凹凸(表面粗さ)は、強化繊維基材の表面凹凸(表面粗さ)の1.3倍以下であることが好ましい。ブリーザー2としては、具体的には、強化繊維であるガラス繊維や炭素繊維からなる低目付(100g/m2 以下)のサーフェスマットや平織物、メッシュ織物、または合成繊維からなる太デニール(200デニール以上)の織物や編物が好ましい。
【0035】
ブリーザー2の上には、ピールプライ3aが配置される。ピールプライ3aは、成形体からメディア等を容易に除去するために敷布され、ピールプライ3aとしては、たとえば、ナイロン製タフタのように離型の機能をなす織物が使用される。
【0036】
ピールプライ3aの上には、強化繊維基材4が配置される。本実施態様では、強化繊維基材4は、複数の強化繊維材、とくに複数の強化繊維織物を積層したものに形成されている。本発明は、とくにこのような複数の強化繊維材が積層された厚い強化繊維基材4を用いた成形に好適なものである。ただし、1枚の強化繊維材からなる強化繊維基材を使用する場合にも、もちろん、本発明の適用は可能であり、その場合にも、本発明はとくに厚い強化繊維基材を使用する成形に好適なものである。
【0037】
強化繊維基材4の上には、ピールプライ3bを介して第1の樹脂拡散媒体5が配置される。第1の樹脂拡散媒体5は、表面に凹凸を有し、樹脂の流動抵抗が強化繊維基材4(強化繊維材の積層体)の樹脂流動抵抗の1/10以下の媒体である。第1の樹脂拡散媒体5と第2の樹脂拡散媒体としてのブリーザー2には、樹脂流動抵抗に大小関係が付与されており、ブリーザー2の樹脂流動抵抗の方が第1の樹脂拡散媒体5の樹脂流動抵抗よりも高く設定されている。第1の樹脂拡散媒体5としては、具体的には、ポリエチレンやポリプロピレン樹脂製のメッシュ織物で、目開きが#400以下のものが好ましい。この配置の結果、強化繊維基材4の第1の面に対しては、第1の樹脂拡散媒体5が配置され、反対側の第2の面に対しては、第2の樹脂拡散媒体としてのブリーザー2が配置されることになる。
【0038】
このように成形型1上に配置されたものの全体がバッグ材8で覆われる。バッグ材8は、減圧キャビティを形成するための気密材料であるが、バッグ材8には、耐熱性等を考慮して、たとえばナイロン製のフィルムを用いることが好ましい。バッグ材8で覆われた内部に、第1の樹脂拡散媒体5に対して樹脂注入ゲート6cが設けられ、第2の樹脂拡散媒体としてのブリーザー2に対して吸引により内部を減圧する吸引ゲート6a、6bが設けられる。これらゲート6a、6b、6cは、たとえば、アルミニウム製のCチャンネル材等を使用して構成され、これらチャンネル材は、プラスチック製のチューブを介して外部部材と接続される。バッグ材8の縁部と成形型1との間には、粘着性の高い合成ゴム製のシーラント7が介装され、この間がシールされて、バッグ材8内を減圧状態に保つために外部からの空気の流入が防止される。プラスチック製のポット12内には含浸すべきFRPマトリックス樹脂としての熱硬化性樹脂10が貯留されており、適切なタイミングでバルブ9を開けることにより、樹脂注入ゲート6cを介して樹脂が注入される。真空ポンプ11により、吸引ゲート6a、6bを介してバッグ材8で覆われたキャビティ内が減圧状態に保持される。なお、バッグ材8として、第1のバッグ材をさらに第2のバッグ材で覆い二重バッグとすることで、空気漏れを防ぐことができ、その結果、強化繊維の体積含有率(Vf)を向上させることができる。
【0039】
また、バッグ材8が一重バッグであっても、その外周縁にシーラント7を二重に並列配置することでも空気漏れを防ぐことができ、二重バッグと同様な効果を上げることができる。この場合は、二重バッグとすることよりも副資材の使用量と取付時間を低減でき、より低コストに成形できるメリットがある。
【0040】
なお、図1に示した成形装置においては、強化繊維基材4の上面には、従来通り、ピールプライ3b/樹脂分散媒体5を配置し、強化繊維基材4の下面側にはピールプライ3a/ブリーザー2を配置したが、ピールプライ3aを配置せずに、成形後、ブリーザー2を成形体にそのまま残すようにしてもよい。
【0041】
本実施態様における成形は次のように行われる。
常温または加熱雰囲気下で、図1に示した構成の積層体を成形型1(ツール)面上に配置し、上側に配置した樹脂注入ゲート6cと下側に配置した吸引ゲート6a、6bを含めてバッグ材で覆う。この状態において、バッグ材8内を吸引ゲート6a、6bを通しての吸引により減圧しながら、樹脂注入ゲート6cより樹脂を注入すると、マトリックス樹脂10は第1の樹脂拡散媒体5内を強化繊維基材4の上面に沿う方向に迅速に拡散しつつ強化繊維基材4の上面から下面に向けて流動し強化繊維基材4内に含浸していく。含浸が終了した後、常温または加熱雰囲気下で樹脂を硬化させた後、バッグ材8を剥がして成形体を脱型する。その後ピールプライ3a、3b、樹脂分散媒体5とブリーザー2は剥脱して製品から取り除く。ただし、一形態としてブリーザー2は成型品にそのまま残してもよい。
【0042】
この成形においては、第1の樹脂拡散媒体5の樹脂流動抵抗は低く設定されているので、第1の樹脂拡散媒体5に注入された樹脂は、強化繊維基材4の第1の面に沿う方向に迅速にかつ十分に広く拡散されつつ、強化繊維基材4内にその厚み方向に迅速に含浸されていく。このときバッグ材8内部を減圧するために、第2の樹脂拡散媒体としてのブリーザー2を介してバッグ材8内部から吸引されるが、ブリーザー2の樹脂流動抵抗(通気抵抗)は第1の樹脂拡散媒体5の樹脂流動抵抗(通気抵抗)よりは高いものの、強化繊維基材4の樹脂流動抵抗(通気抵抗)に比べると十分に低く抑えられているので、強化繊維基材からの通気が悪くなって基材内の真空度が下がることが抑えられ、樹脂の迅速な含浸性が確保される。したがって、厚い強化繊維基材4に対しても第1の樹脂拡散媒体5側からの十分に良好な樹脂含浸性が確保される。そして、ブリーザー2の樹脂流動抵抗(通気抵抗)が第1の樹脂拡散媒体5のそれよりも高く設定されているので、ブリーザー2は、第1の樹脂拡散媒体5に比べ、凹凸の小さな媒体に形成できる。したがって、たとえこのようなブリーザー2の表面形態が成形品の表面に転写したとしても、その転写による成形品表面の凹凸の度合いは小さく抑えられる。つまり、良好な樹脂含浸性を確保しつつ、第2の樹脂拡散媒体側における成形品表面の凹凸が小さく抑えられることになる。この凹凸の小さな成形品表面側を意匠面側とすることにより、望ましい表面性状の成形品が得られることになる。すなわち、従来方法において樹脂の硬化により成形品のツール面側に生じていたメディアの痕跡を、無くすることが可能になる。
【0043】
図2は、本発明の第2実施態様に係る成形装置の概略縦断面図で、ブリーザーの代わりに、強化繊維基材の片面に第2の樹脂拡散媒体5aと多孔シート20を配置したものを示している。図3は、本発明の第3実施態様に係る成形装置の概略縦断面図で、図2における成形型面上に配置した樹脂拡散媒体の代わりに、成形型に溝を加工することにより成形型面自体を樹脂注入側の樹脂拡散媒体として構成したものを示している。以下、図1の装置に比べて異なる点のみを説明する。
【0044】
20は多孔シートを示しており、多孔シート20の材料としては、金属薄板材(アルミニウムやステンレス材)、スチールのパンチングメタルで厚さが0.1mm以上、あるいは、樹脂フィルム(ナイロン、ポリエステル、ポリエチレン、ポリプロピレン、ポリイミド)で厚さが0.2mm以上、FRPシートで厚さが0.2mm以上のシート材を用いることが好ましい。孔は、加工上は丸型が好ましいが、特に形状は限定しない。多孔シート20を成形体から剥脱した後に成形体の表面にその痕跡が殆ど残らないようにするためには、孔径は3mm以下が望ましく、さらに好ましくは1.5mm以下が望ましい。孔の配置はランダムでも規則的でもよい。好ましい孔ピッチは、使用する強化繊維基材の仕様によって異なるが、15mm以下,望ましくは10mm以下がよい。多孔シート20への要求機能としては、平滑性が最終製品に要求される表面粗度と同等以上であり、剛性は樹脂分散媒体の凹凸の影響を反映させないだけの剛性であり、上記所要の剛性を保持しつつ、樹脂の通過が可能なように孔が多数開いているものである。30は成形型に加工した溝で、溝30は、幅が0.5mm〜5mm、深さが1mm〜6mm、ピッチは2mm〜25mm、断面形状は矩形や逆台形や三角形をなすことが好ましい。さらに好ましくは、幅が約1mm、深さが約3mmの断面矩形で、ピッチが約8mmの溝が望ましい。
【0045】
図2の成形装置において、強化繊維基材4の下面に、強化繊維基材4に接する側から、ピールプライ3a/多孔シート20/第2の樹脂分散媒体5aを配置する。ただし、多孔シート20とピールプライ3aの配置は逆でもよい。また、実施の一態様として図2の成形装置において、樹脂分散媒体5aを使わずに、図3のごとくツール面(成形面)に樹脂注入用(図示例)あるいは減圧吸引用の溝を設ける。この場合は、上記樹脂分散媒体を用いる場合よりも、樹脂注入或いは減圧吸引が全面に渡ってより均一にすることが可能になるため、よりボイドや欠肉の発生を少なくし安定して良品が得られやすくなる。そして、強化繊維基材4の上面には、従来通りのピールプライ3b/樹脂分散媒体5(強化繊維基材4側にピールプライを配置)或いは該強化繊維基材4の下面側と同様のものを配置して、後は、図1と同様の方法で成形を実施する。
【0046】
図4は本発明の第4実施態様に係る成形装置の概略縦断面図で、図3の強化繊維基材の上部に減圧のための2つの吸引ゲート6d、6eを設置して、途中で一方のゲート6dを樹脂の注入口に切り換えて、強化繊維基材の両面側から樹脂の注入を行うようにしたものを示している。以下に、図1〜図3の装置に比べて異なる点のみを説明する。
【0047】
吸引ゲート6dについては、成形途中に樹脂の注入口に切り換える。吸引ゲートとして使用する場合には、バルブ42を閉じてからバルブ41を開き、樹脂注入ゲートに切り換える場合には、バルブ41を閉じてバルブ42を開く。
【0048】
図4の成形装置において、常温または加熱雰囲気下で、溝30を加工した成形型(ツール)面上に多孔シート20、ピールプライ3aを介して強化繊維基材4を配置し、上面側に複数個配置した減圧のための吸引ゲート6d、6eと下面側に配置した樹脂注入ゲート(溝30)を含めてバッグ材で覆う。この状態において、バルブ41を開、バルブ42およびバルブ9を閉としてバッグ材8内を吸引ゲートより吸引して減圧しながら、バルブ9を開けて樹脂注入ゲートとしての溝30に樹脂を注入すると、マトリックス樹脂10は強化繊維基材4の下面から上面へ流動し含浸していく。ただし、強化繊維基材4の板厚が10mm以上の場合、樹脂と強化繊維基材の組み合わせによっては、樹脂が上面まで完全に含浸することが困難となる場合がある。したがって、上面まで良好に含浸できない場合は、樹脂が強化繊維基材4の上面に到達する前に、上面側の吸引ゲートの少なくとも一つ(図4では6d)を、バルブ41を閉、バルブ42を開として樹脂注入ゲートに切り換えることができる。樹脂注入ゲートに切り換えた場合、上面側からも樹脂が注入されることになり、上記樹脂含浸不足が補われる。同時に、ゲート6d側から吸引ゲート6e側へと樹脂が流動されるので、この樹脂の流動に伴って吸引ゲート6e方向にボイドが押し出される。つまり、第1の樹脂拡散媒体としての成形型の溝30側から迅速な樹脂含浸が行われつつ、厚い強化繊維基材4の上面側に対して樹脂含浸不足が補われ、同時にボイドが側方に押し出されて強化繊維基材4内に閉じ込められることが防止される。その結果、従来方法では含浸限界厚さの存在により十分に含浸させることができなかった厚い強化繊維基材4を使用した場合にも成形が可能になり、同時にその成形の際にボイドが閉じ込められることを回避して、成形品の良好な品質を確保することが可能となる。
【0049】
含浸が終了した後、常温または加熱雰囲気下で樹脂を硬化させるが、媒体自体の凹凸形状や硬化の際に生じる媒体に溜まった樹脂の硬化ヒケの影響を、適度な剛性を有する多孔シート20が遮断する。そのため、脱型後多孔シート20/ピールプライ3a、3b/樹脂分散媒体5を剥がして取り出した成形品のツール面側の表面性状としては、殆どツール面の平滑性を反映したものが得られる。
【0050】
図5は、本発明の第5実施態様に係るRTM成形方法の実施に用いる成形装置の概略断面図で、前述の実施態様と基本的部位は同じであるが、成形型1上に気体透過膜50、通気性基材51およびシールテープ52からなる脱気媒体54を設け、気体透過膜50と成形型1との間に形成された脱気空間から脱気孔53を通して吸引できるようになっている点が異なっている。以下、本実施態様による成形方法について、前述の実施態様と異なる点のみ説明する。
【0051】
まず、常温または加熱雰囲気下で、強化繊維基材の積層体4を成形型1(ツール)面上に配置し、上側に配置した樹脂注入ゲート6fと、成形型1と積層体4の間に配置した気体透過膜50および通気性基材51を含めて、バッグ材8で覆う。この場合、気体透過膜50の外周は、すべて、シールテープ52で、成形型面に貼り付けてシールする。この状態において、真空ポンプ11で吸引し、気体通過膜50、脱気空間を通してバッグ8内を減圧しながら、樹脂注入ゲート6fより、樹脂を注入すると、マトリックス樹脂10は第1の樹脂拡散媒体5内を強化繊維基材4の上面に沿う方向(平面方向)に迅速に拡散しつつ、強化繊維基材4の上面から下面に向けて流動し、強化繊維基材4内に含浸していく。含浸が終了した後、常温または加熱雰囲気下で樹脂を硬化させた後、バッグ材8をはがして成形体を脱型する。
【0052】
ここで、気体透過膜50は、微多孔質のシートや樹脂フィルム、紙や布などに微多孔膜をコーティングした基材など、気体は通すが、樹脂や液体を通さないものであれば、どのようなものを使用してもよい。また、表面の平滑性があるものの方が、成形品の表面品位を良いものにすることができる。また、気体透過膜50には、離型性があることが望ましいが、場合によっては成形品と一体化させることも可能である。
【0053】
通気性基材51は、含浸性向上のためには、通気性がよいことが好ましく、成形品の平滑性向上のためには、できるだけ凹凸がないことが好ましい。
【0054】
このRTM成形方法においては、成形型1内を吸引により減圧した後、該成形型1内に樹脂拡散媒体8を介して樹脂を注入しつつ、注入した樹脂を、気体透過膜50と成形型1との間に形成された脱気空間から吸引しながら、注入されてきた樹脂を強化繊維基材4内に含浸させることができるので、意匠面となる成形型側の成形面において、樹脂を迅速かつ十分に拡がらせることができ、優れた品位の意匠面を成形できる。しかも、気体透過膜50に微小気孔の平滑性の高いものを使用することにより、凹凸の極めて小さい、平滑性の高い意匠面を成形できる。したがって、強化繊維基材4の積層体で厚みの厚いものに対しても、積層体全体に良好に樹脂含浸できるようになり、かつ、上記の如く凹凸の極めて小さい、平滑性の高い意匠面が得られる。
【0055】
図6は第6実施態様を示しており、図5に示した第5実施態様の応用例である。複数の樹脂注入ゲート6g、6hのうち、少なくとも2つの隣り合った樹脂注入ゲートから、同時に樹脂を注入する方法であり、面積の広い大型の成形品に対して有効である。図では、積層体4が平板状であるが、突起や板厚変化のある成形品、曲面板など樹脂の流れの制御が難しい積層体であっても、樹脂を全体に行き渡らせることが可能となる。
【0056】
そして、気体透過膜50と成形型1との間に形成された脱気空間からの吸引経路(吸引孔53)も、複数設けられており、大型の成形品に対しても、十分に吸引できるようになっている。また、必要に応じて、上記脱気空間からの吸引経路に加え、これとは別に吸引ゲート6a(吸引経路)を設けることも可能であり、これによって、樹脂注入時の含浸方向の制御や、樹脂含浸後の余剰樹脂の吸引などに活用することができる。
【0057】
【実施例】
以下に、本発明を実施例に基づいて説明する。
実施例1
図1のRTM用成形装置において、成形型1の成形面にブリーザー2(ガラス繊維のサーフェースマット、80g/m2 目付)を配置し、両端部に吸引ゲート6a、6bを配設して、真空ポンプ11に接続した。ブリーザー2上にピールプライ3aを配置し、その上に炭素繊維織物(東レ(株)製、T300の炭素繊維を使用した平織物CO6343、目付;200g/m2 )を120プライ積層した強化繊維基材4を配置した。このとき、ブリーザー2と強化繊維基材4の間のピールプライ3aは省略する場合があるが、これはブリーザーを成形後の製品に残すことが前提であり、そのときのブリーザーとしては炭素繊維のメッシュ織物が望ましい。
【0058】
強化繊維基材4の上にピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である樹脂拡散媒体5((株)東京ポリマー製、”ネトロン”TSX−400P)を配置して、その上には樹脂注入ゲート6cを配置してバルブ9を介して樹脂ポット12と接続した。これら全体にバッグ材8(バッグシート)を被せて周囲をシーラント7でシールした(なお、この図では省略しているが、二重バッグとした)。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で吸引、減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより媒体5内に拡散しつつ、強化繊維基材4の厚み方向に上から下へ含浸され、約25mm厚の基材が未含浸部なく完全に樹脂含浸された。樹脂含浸後、約50分後にバルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持し、マトリックス樹脂を硬化させた。その後、室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを引き剥がすことにより、成形品の表面の硬化樹脂及び媒体とブリーザーを取り除いた。媒体の接していた面には凹凸がみられるのに対して、ブリーザーの接していた面は表面平滑性の良い面が得られた。
【0059】
実施例2
図2のRTM用成形装置において、その成形型1の成形面にポリプロピレン製メッシュ材である媒体5a((株)東京ポリマー製、”ネトロン”TSX−400P)を配置し、その周辺部には吸引ゲート6a、6bを置き、それらを真空ポンプ11に接続した。媒体5a上に多孔シート20(0.2mm厚みのポリエステルフィルムで直径1mmの穴が10mmピッチで配設されたもの)を配置し、その上にピールプライ3aを、その上に炭素繊維織物(東レ(株)製、T300の炭素繊維を使用した平織物CO6343、目付;200g/m2 )を120プライ積層した強化繊維基材4を配置した。
【0060】
強化繊維基材4の上にはピールプライ3bを配置し、その上に媒体5bを配置してその上には樹脂注入口6cを置き、これを樹脂注入ゲートとしてバルブ9を介して樹脂ポット12と接続した。このときピールプライ3bの代わりに多孔シートを配置してもよい。これら全体にバッグ材8を二重に被せて周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより上側の媒体5bに拡散しつつ、炭素繊維織物積層体4の厚み方向に上から下へ含浸され、約25mm厚の強化繊維基材4が未含浸部なく完全に樹脂含浸された。樹脂含浸の後、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持してマトリックス樹脂を硬化させ、そのあと室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを除去して、硬化樹脂及び媒体と多孔シートを取り除いた結果、媒体の接していた面には凹凸がみられるのに対して、多孔シートの接していた面は表面平滑性の良い面が得られた。
【0061】
実施例3
図3のRTM用成形装置において、その樹脂拡散用の井型の溝30(幅1mm、深さ3mmの断面矩形の溝でピッチが8mm)を加工した成形型を用いて、該溝にバルブ9を介して樹脂ポット12を接続した。成形面上に多孔シート20(0.2mm厚みのポリエステルフィルムで直径1mmの穴が10mmピッチで配設されたもの)を配置し、その上にピールプライ3aを、その上に炭素繊維織物(東レ(株)製、T300の炭素繊維を使用した平織物CO6343、目付;200g/m2 )を120プライ積層した強化繊維基材4を配置した。強化繊維基材4の上にはピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である媒体5((株)東京ポリマー製、”ネトロン”TSX−400p)を配置し、その上には吸引ゲート6を置き、真空ポンプ11に接続した。全体にバッグ材8を二重に被せて周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより溝付き成形面に拡散しつつ、炭素繊維織物積層体4の厚み方向に下から上へ含浸され、25mm厚の積層体が未含浸部なく完全に樹脂含浸された。樹脂含浸の後、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持してマトリックス樹脂を硬化させ、そのあと室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを引き剥がすことにより、成型品の表面についていた硬化樹脂及び媒体と多孔シートが取り去られて成型品の表面が現れたが、媒体の接していた面には媒体の跡である凹凸が見られるのに対して、多孔シートの接していた面は表面平滑性の良い面が得られた。
【0062】
実施例4
図4のRTM用成形装置において、その樹脂拡散用の井形の溝30(幅1mm深さ3mmの断面矩形の溝でピッチが8mm)を加工した成形型を用いて、溝30にバルブ9を介して樹脂ポット12を接続した。成形面上に多孔シート20(0.2mm厚みのステンレス製パンチングメタルで直径1mmの穴が15mmピッチに加工されているもの)を配置し、その上にピールプライ3aを、その上に炭素繊維織物(東レ(株)製、T800Sの炭素繊維を使用した一方向織物、目付;285g/m2 )を120プライ積層した強化繊維基材4を配置した。強化繊維基材4の上にはピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である媒体5((株)東京ポリマー製、”ネトロン”TSX−400p)を配置し、その上には吸引ゲート6d、6eを置き、真空ポンプ11に接続した。全体にバッグ材8を二重に被せて周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより溝付き成形面に拡散しつつ、炭素繊維織物積層体4の厚み方向に下から上へ含浸された。しかし、該状態を保持した場合、強化繊維基材4の厚さの約2/3まで含浸した時点で、樹脂の含浸が収束してしまう。
【0063】
そこで、樹脂が強化繊維基材4の厚さの1/2以上に含浸した時、バルブ41を閉じ、バルブ42を開放して、吸引ゲート6dを樹脂注入ゲートに切り換えた。ゲート6dより注入された樹脂は、拡散媒体5内を吸引ゲート6eの方向に拡散するとともに、媒体5内を介して樹脂が下方向に基材内へと含浸した。やがて、基材内全てに樹脂が含浸した。そして、バルブ9、42を閉じて樹脂の供給を中止した。
【0064】
約2℃/分で全体を130℃に昇温して2時間保持してマトリックス樹脂を硬化させ、そのあと室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを引き剥がすことにより、成型品の表面についていた硬化樹脂及び媒体と多孔シートが取り去られて成型品の表面が現れたが、媒体の接していた面には媒体の跡である凹凸が見られるのに対して、多孔シートの接していた面は表面平滑性の良い面が得られた。
【0065】
実施例5
図5のRTM成形装置において、成形型1の成形面に通気性基材51として、米国RICHMOND社製の「ピールプライ#60001」を配置し、さらにその上に、離型性がある気体透過性膜50として、米国RICHMOND社製の「T.S.B. system 」に使用されている Vapor Permeable Release Film 「E3760」を配置して、周囲すべてを耐熱性のニトフロンテープ52でシールした。気体透過膜50と成形型1で囲まれた脱気空間から成形型1に設けた脱気孔53を通して、真空ポンプ11に接続した。
【0066】
続いて、気体透過膜50の上に、炭素繊維織物(東レ(株)製、T300の炭素繊維織物を使用した平織物CO6343、目付;200g/m2 )を120ply積層した強化繊維基材4(厚み約25mm)を配置した。
【0067】
次に、強化繊維基材4の上にピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である樹脂拡散媒体5(東京ポリマー製、”ネトロン”TSXー400P)を配置し、さらにその上に樹脂注入ゲート6fを配置して、バルブ9を介して、樹脂ポット12と接続した。これら全体にバッグ材8をかぶせて、周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で吸引・減圧するとともに、全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘土が320mPa・sのエポキシ樹脂)を樹脂ポット内に収容し、バルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより、媒体5内に拡散しつつ、強化繊維基材4の厚み方向に上から下へ含浸された。この場合、気体透過膜50が存在しないと、強化繊維基材4の下面が成形型1の表面に圧着してしまい、基材下面近傍に存在する気体が抜けきらず、得られた成形体は表面が「あばた状」になるが、気体透過膜50を設けたことで成形型1と該膜50との間に脱気空間が形成され、上記気体が強化繊維基材4の下面全体から通気性基材51を介して完全に脱気されるので、基材は厚みが25mmでありながら未含浸部なく完全に樹脂含浸され、特に表面品位が著しく向上した。樹脂含浸後、所定の樹脂量が注入された段階で、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持し、マトリックス樹脂を硬化させた。その後、室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化した成形品の下面は、気体透過膜50を引き剥がすことにより、表面平滑性の良い面が得られた。
【0068】
実施例6
図6のRTM成形装置において、実施例5と同様に、成形型1の成形面に通気性基材51として、米国RICHMOND社製の「ピールプライ#60001」を配置し、さらにその上に、離型性がある気体透過膜50として、米国RICHMOND社製の「T.S.B. system 」に使用されている Vapor Permeable Release Film 「E3760」を配置して、周囲すべてを耐熱性のニトフロンテープ52でシールした。気体透過膜50と成形型1で囲まれた脱気空間から成形型1に設けた脱気孔53を通して、真空ポンプ11に接続した。
【0069】
続いて、気体透過膜50の上に、炭素繊維織物(東レ(株)製、T300の炭素繊維織物を使用した平織物CO6343、目付;200g/m2 )を120ply積層した強化繊維基材4を配置した。その際、強化繊維基材下面の1辺にも吸引ゲート6aを配置した。
【0070】
強化繊維基材4の上にピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である樹脂拡散媒体5(東京ポリマー(株)製、”ネトロン”TSXー400P)を配置して、その上には、樹脂注入ゲート6g、6hの2本のゲートを配置して、バルブ9を介して、樹脂ポット12と接続した。これら全体にバッグ材8をかぶせて、周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で吸引・減圧するとともに、全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘土が320mPa・sのエポキシ樹脂)を樹脂ポット内に収容し、バルブ9を開放すると、マトリックス樹脂10が2本樹脂注入ライン6g、6hより同時に、媒体5内に流れ、面上に拡散しつつ、強化繊維基材4の厚み方向に上から下へ含浸され、約25mmの基材が未含浸部なく完全に樹脂含浸された。
【0071】
その際、注入ゲート6g、6hの真下の領域は樹脂が強化繊維基材4の下面まで到達するのが速く、すなわち2本の注入ゲートの中間領域は、樹脂が強化繊維基材の下面まで到達するのが遅かったが、最終的には、気体透過膜50の脱気経路による吸引により完全に樹脂含浸された。
【0072】
樹脂含浸後、所定の樹脂量が注入された段階で、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持し、マトリックス樹脂を硬化させた。吸引ゲート8からも吸引したことにより、実施例5と比較して、樹脂含浸時間が速かった。
【0073】
その後、室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化した成形品の下面は、気体透過膜50を引き剥がすことにより、表面平滑性の良い面が得られた。
【0074】
【発明の効果】
以上説明したように、本発明のRTM成形方法によれば、樹脂含浸の際に要求される通気性を十分に確保しつつ、強化繊維基材内に十分に良好に樹脂を含浸させることができ、成形品の意匠面に形成される凹凸を小さく抑えて、優れた表面性状の成形品を得ることができる。また、とくに厚物成形において、従来方法では不具合を生じることなく基材の厚み方向全体にわたって樹脂を含浸させることが不可能であった場合に対しても、ボイド等を発生させることなく、目標とする成形を行うことが可能となる。
【0075】
したがって、本発明は、とくに厚物成形品のRTM成形に適しており、本発明を適用すれば、10mm厚以上が要求されるような構造体(たとえば、航空機部材の翼部材等)の成形を、問題を生じさせることなく容易に行うことが可能となる。
【図面の簡単な説明】
【図1】本発明の第1実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。
【図2】本発明の第2実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。
【図3】本発明の第3実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。
【図4】本発明の第4実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。
【図5】本発明の第5実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。
【図6】本発明の第6実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。
【符号の説明】
1 成形型
2 第2の樹脂拡散媒体としてのブリーザー
3a、3b ピールプライ
4 強化繊維基材
5、5a、5b 樹脂拡散媒体
6、6a、6b、6d、6e 吸引ゲート
6c、6f、6g、6h 樹脂注入ゲート
7 シーラント
8 バッグ材
9、41、42 バルブ
10 マトリックス樹脂
11 真空ポンプ
12 樹脂ポット
20 多孔シート
30 樹脂拡散用型溝
50 気体透過膜
51 通気性基材
52 シールテープ
53 脱気孔
54 脱気媒体
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a resin transfer molding (hereinafter, referred to as RTM) molding method for molding a structure made of fiber reinforced plastic (hereinafter, referred to as FRP). Also, the present invention relates to an RTM molding method capable of improving the quality of surface properties.
[0002]
[Prior art]
Conventionally, FRP has been used in various fields. As a method of manufacturing an FRP structure, after forming a preform having a shape of a structure to be preliminarily formed by a prepreg, the preform is subjected to a predetermined temperature and pressure. A so-called prepreg / autoclave molding method of curing in an autoclave set to conditions has been common. However, in recent years, the RTM molding method has attracted attention for reducing manufacturing costs, and this molding method is gradually spreading.
[0003]
As a typical RTM molding method, a molding method described in Patent Document 1 is known. In the RTM molding method described in Patent Literature 1, peel ply / resin dispersion media are arranged on both surfaces of a reinforcing fiber base made of a laminate of reinforcing fiber materials, and these are arranged on a mold (tool) surface. The whole is covered with a bag material, and a resin injection gate and a suction gate for reducing pressure are provided in the interior sealed with the bag material. In this state, at room temperature or under a heated atmosphere, the resin is injected from the resin injection gate while reducing the pressure by sucking the inside of the bag through the suction gate. Or from the lower surface side to the upper surface side to impregnate the resin into the reinforcing fiber base material. After completion of the impregnation, the resin is cured at room temperature or in a heated atmosphere, and after curing, the bag material is peeled off and the molded article is released.
[0004]
However, this molding method has the following problems.
First, although the resin-dispersed media are arranged on both sides of the reinforcing fiber base material, the reinforcing fiber base material is basically impregnated with the resin from one side, so that the impregnable distance in the thickness direction of the base material is sufficient. When the reinforcing fiber base material is too thick, the specified impregnation becomes impossible.
[0005]
In order to impregnate the resin into the thick reinforcing fiber base, it is also conceivable to impregnate the resin into the reinforcing fiber base from both the resin dispersion media arranged on both sides of the reinforcing fiber base, but in the above molding method, Since resin dispersion media of substantially the same shape and characteristics are arranged on both sides, simply impregnating the resin from both sides simultaneously impregnates the resin in the same direction in the thickness direction of the base material. It becomes difficult to be extruded to the other side, and the voids are easily trapped in the base material. If the voids are trapped, the desired performance of the molded article cannot be obtained. In order to avoid such confinement of voids, resin impregnation from one side is basically performed.
[0006]
Another problem in the molding method is that it is difficult to obtain good smoothness on the design surface of the molded product. That is, the resin dispersion medium is formed of a member having a low airflow resistance and a relatively large degree of unevenness in order to enhance the resin dispersion performance. Since it is arranged and molded on both surfaces of the base material, relatively large irregularities of the resin dispersion medium are reflected on the design surface which is one surface of the molded product. As a result, the design property is impaired, and irregularities are formed on the surface of the molded product, which may cause a problem that the aerodynamic characteristics and the like are deteriorated.
[0007]
In order to cope with such a problem, it is conceivable to use a resin dispersion medium having a small degree of unevenness as a resin dispersion medium. However, in this case, the airflow resistance becomes too large, and the target resin dispersion performance cannot be obtained. In addition, the ventilation from the inside of the reinforcing fiber base during suction is deteriorated, so that the degree of vacuum does not increase, and it becomes difficult to completely impregnate a particularly thick base in the thickness direction.
[0008]
As described above, the size of the unevenness of the resin dispersion medium affects the resin diffusion and ventilation performance. The irregularities (relatively small irregularities) of the resin-dispersed media for improving the surface properties of the product are in an opposite relationship. Therefore, it is difficult to achieve both the improvement of the resin impregnation property and the improvement of the surface property of the molded article by the above-mentioned conventional method in which substantially the same resin dispersion medium is arranged on both surfaces of the reinforcing fiber base material. Molding using a thick reinforcing fiber base is particularly difficult.
[0009]
Here, it is known that the impregnating property (permeability) of the resin into the reinforcing fiber substrate is generally represented by the following formula.
I = (ε / (1−ε)) √ (αP / 2) × ∫ [dt / √ (μ (t) t)]
I: Permeability, ε: Resistance of substrate, α: Constant, P: Vacuum pressure in substrate
μ (t): viscosity, t: elapsed time
Here, the permeability corresponds to the distance (thickness) at which the resin impregnates the substrate.
[0010]
In order to improve the quality of the surface properties of the molded product, it is conceivable not to provide a ventilation material on the tool surface side, but in this case, the ventilation inside the base material will be poor and the degree of vacuum will not be increased. When molding an object (thick plate), it is difficult to completely impregnate it. Therefore, in order to form a thick product, it is necessary to arrange a media for ventilation on the tool surface side. Then, as described above, while maintaining the resin diffusion performance on the opposite surface side, the tool surface side It is difficult to improve the surface properties of the.
[0011]
Further, regarding the resin impregnation into the reinforcing fiber base material, although the values, constants, and viscosities in the above formulas vary depending on the type of the base material and the resin, the impregnation distance converges as time passes, and the viscosity of the resin increases. In addition, because the resin gels in time, the distance that the resin can be impregnated is limited, and when the reinforcing fiber base material has a certain thickness or more, it is no longer possible to completely impregnate with the above conventional method. Had become.
[0012]
[Patent Document 1]
U.S. Pat. No. 5,052,906 (Claim 1, FIG. 1)
[0013]
[Problems to be solved by the invention]
An object of the present invention is to provide an RTM molding method which solves the above-mentioned problems in the above-mentioned prior art, improves the quality of the design surface of a molded product, and can mold a thick structure with good resin impregnation. Is to do.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the RTM molding method according to the present invention arranges a reinforcing fiber base in a molding die, and has a resin flow resistance on both surfaces of the reinforcing fiber base that is higher than that of the reinforcing fiber base. RTM for disposing a low resin diffusion medium, depressurizing the inside of the mold by suction, injecting the resin into the mold via the resin diffusion medium, and impregnating the injected resin into the reinforcing fiber base material. In the molding method, the resin flow resistance of the first resin diffusion medium disposed on the first surface of the reinforcing fiber base is reduced by the resin flow resistance of the second resin diffusion medium disposed on the second surface. Lower than the first resin diffusion medium, and the resin is impregnated into the reinforcing fiber base by sucking the resin through the second resin diffusion medium while injecting the resin into the first resin diffusion medium. (First method).
[0015]
That is, in the RTM molding method according to the present invention, the resin flow resistance of the resin diffusion media disposed on both surfaces of the reinforcing fiber base is intentionally given a magnitude relation. In practice, the resin flow resistance can be determined as a value corresponding to the measured flow resistance by measuring the flow resistance.
[0016]
In the present invention, the reinforcing fiber substrate may be a single layer or may be a laminate of a plurality of reinforcing fiber materials. However, the RTM molding method according to the present invention is particularly suitable for forming a thick material, that is, a thick reinforcing fiber. The present invention is mainly directed to a case where a reinforcing fiber base made of a laminate of a plurality of reinforcing fiber materials is used because the base is suitable for molding in which a base is impregnated with a resin.
[0017]
In the RTM molding method according to the present invention, it is preferable that the resin flow resistance of the second resin diffusion medium is not more than 3 of the resin flow resistance of the reinforcing fiber base. Thereby, although the resin flow resistance (air flow resistance) of the second resin diffusion medium is higher than the resin flow resistance (air flow resistance) of the first resin diffusion medium, the resin flow resistance (air flow resistance) of the reinforcing fiber base material is reduced. Since it is suppressed sufficiently low, the ventilation from the reinforcing fiber base is deteriorated, the degree of vacuum in the base is prevented from lowering, and the resin impregnating property is impaired even for thick reinforcing fiber base. Be avoided.
[0018]
Preferably, the resin flow resistance of the first resin diffusion medium is 1/10 or less of the resin flow resistance of the reinforcing fiber base. This ensures that the resin injected into the first resin diffusion medium has a sufficiently high diffusibility in the surface direction of the reinforcing fiber base, and the resin injected into the first resin diffusion medium has While being rapidly diffused along the direction along the axis, the fiber is rapidly impregnated in the thickness direction of the reinforcing fiber base material. After satisfying the resin flow resistance of the first resin diffusion medium and the resin flow resistance of the second resin diffusion medium, the resin flow resistance of the first resin diffusion medium and the resin flow resistance of the second resin diffusion medium are satisfied. The flow resistance has a magnitude relation.
[0019]
In addition, in the RTM molding method according to the present invention, it is particularly preferable to start injecting the resin from the second resin diffusion medium before the resin reaches the second surface. That is, from this point, the resin impregnation from both sides is substantially started.
[0020]
Further, in the RTM molding method according to the present invention, it is preferable that a peel ply that can be peeled off integrally with the resin diffusion medium after molding is interposed between at least one resin diffusion medium and the reinforcing fiber base material. Thereby, the resin diffusion medium can be easily separated. However, after the molded article is released from the mold, at least one of the resin diffusion media may be left in the molded article without being separated from the molded article. In this case, no peel ply is required on the side where the resin diffusion medium remains.
[0021]
Further, in the RTM molding method according to the present invention, a porous sheet may be interposed between at least one of the resin diffusion medium and the reinforcing fiber base. The porous sheet has a function different from that of the peel ply, and is a sheet for suppressing the transfer of the unevenness of the resin diffusion medium to the reinforcing fiber base while maintaining the resin diffusion function of the resin diffusion medium. Therefore, the arrangement of the molded article on the design surface side is preferable.
[0022]
Furthermore, in the RTM molding method according to the present invention, at least one of the resin diffusion media may be configured by providing a groove as a resin flow path on the inner surface of the molding die. In this case, it is possible to use the inner surface of the mold itself as a resin diffusion medium without separately preparing a resin diffusion medium.
[0023]
Further, the present invention also provides the following RTM molding method from the viewpoint of molding a particularly excellent design surface. That is, the RTM molding method according to the present invention comprises disposing a reinforcing fiber base on a molding die, and forming a resin having a resin flow resistance lower than that of the base on a surface of the reinforcing fiber base opposite to the molding die. Along with disposing a diffusion medium, a deaeration medium comprising a gas-permeable membrane and a gas-permeable substrate is provided between the reinforcing fiber base and the mold surface, and the inside of the mold is depressurized by suction. The resin is injected into the mold through the resin diffusion medium, and the injected resin is sucked from a degassing space formed between the gas permeable membrane and the molding die, thereby introducing the resin into the reinforcing fiber base material. It comprises a method characterized by impregnation (second method).
[0024]
In the second method, the reinforcing fiber base is made of, for example, a laminate of reinforcing fibers.
[0025]
In the second method, it is preferable to use, as the gas permeable membrane, one having a releasability that can be separated from a molded product after molding.
[0026]
In the second method, when molding a molded product having a particularly large area, at least two or more resin injection gates are arranged above the resin diffusion medium, and at least two adjacent resin injection gates are used for resin injection. It is preferable to inject resin simultaneously from two matching resin injection gates or from all resin injection gates.
[0027]
Further, in the second method, when a molded product having a particularly large area is molded, in addition to the suction path from the degassing space formed between the gas permeable membrane and the molding die, the molded product is placed in the molding die. Preferably, at least one further suction path is provided.
[0028]
In the RTM molding method (first method) according to the present invention as described above, a resin is injected into a first resin diffusion medium having lower resin flow resistance, and the injected resin is used as a reinforcing fiber base material. While being diffused quickly and sufficiently widely in the direction along the first surface, it is rapidly impregnated in the thickness direction in the reinforcing fiber base material. Then, basically, the inside of the mold is depressurized by suction through the second resin diffusion medium having a higher resin flow resistance, and the injected resin is impregnated into the reinforced fiber base material in the suction / decompression state. Go. At this time, although the resin flow resistance (air flow resistance) of the second resin diffusion medium is higher than the resin flow resistance (air flow resistance) of the first resin diffusion medium, the resin flow resistance (air flow resistance) of the reinforced fiber base material is lower. Since the pressure is sufficiently low as compared with the above, it is possible to prevent the ventilation from the reinforcing fiber base material from being deteriorated and the degree of vacuum in the base material from being lowered, thereby ensuring the quick impregnation of the resin. Therefore, a sufficiently good resin impregnation property is ensured even for a thick reinforcing fiber base material. Since the second resin diffusion medium has a higher resin flow resistance (ventilation resistance) than that of the first resin diffusion medium, the second resin diffusion medium is smaller than the first resin diffusion medium. Even if the surface morphology of the second resin diffusion medium is transferred to the surface of the molded article, the degree of irregularities on the molded article surface due to the transfer can be suppressed to a small level. Therefore, by setting this surface side as the design surface side, it is possible to obtain a design surface of a desirable molded product with small irregularities.
[0029]
In the molding in which the resin impregnation into the thicker reinforcing fiber base is required, particularly, as described above, the resin impregnation only from the first resin diffusion medium side into the reinforcing fiber base is not sufficient. When it is difficult to impregnate the resin sufficiently to the surface of the second resin diffusion medium side (when exceeding the conventional resin impregnation limit), the impregnation into the reinforcing fiber base material from the first resin diffusion medium side is performed. Before the applied resin reaches the second surface of the reinforcing fiber base material, the injection of the resin from the second resin diffusion medium can be started. By injecting the resin from the second resin diffusion medium side, the resin impregnation is compensated for even in the portion where the resin in the reinforcing fiber base material is hardly impregnated, that is, in the portion on the second surface side. Thus, the resin can be sufficiently impregnated over the entire thickness direction of the reinforcing fiber base material. That is, in this process, the resin impregnation in the thickness direction of the reinforcing fiber base is mainly due to impregnation from the first resin diffusion medium side, and the impregnation shortage is caused by the second resin diffusion medium side. It will be supplemented by impregnation. In addition, since the first resin diffusion medium and the second resin diffusion medium have a magnitude relation in airflow resistance (resin flow resistance), the resin is rapidly impregnated from the first resin diffusion medium side. Meanwhile, on the second resin diffusion medium side, the resin impregnation is supplemented, and the voids pushed out by the resin impregnated from the first resin diffusion medium side are impregnated from the second resin diffusion medium side. Instead of being confined within the reinforcing fiber substrate by the coming resin, it will be extruded laterally, that is, in a direction along the second surface of the reinforcing fiber substrate, at a relatively slow speed. As a result, despite the impregnation of the resin from both sides, it is avoided that the voids are trapped in the reinforcing fiber base material, and the resin impregnation on the second side is supplemented. Thick articles can be molded well without enclosing problems. In addition, at this time, as described above, by using the second resin diffusion medium side as the design surface of the molded product, an excellent design surface with small irregularities can be obtained at the same time. That is, the improvement of the thickness and the surface quality are achieved at the same time.
[0030]
Further, the above-described RTM molding method (second method) according to the present invention is effective in the following cases. That is, in the case where the smoothness of the molding surface (design surface) on the molding die side is more strongly required, or in the molding where the thicker and larger area reinforcing fiber base material is required to be impregnated with the resin, the molding die is particularly required. As means for always effectively operating the deaeration path from any part of the surface, a deaeration medium comprising a gas-permeable membrane and a gas-permeable substrate can be provided between the reinforcing fiber base and the mold surface. Thereby, even when there is a difference in time for the resin to reach the lower surface side (designed surface molding side) of the reinforcing fiber base material at the time of resin injection and a slow impregnated portion is generated, the gap between the gas permeable membrane and the molding die is generated. By suction from the formed degassing space, it becomes possible to finally completely impregnate the resin over all parts of the surface. As a result, a design surface having good smoothness along the mold surface is obtained.
[0031]
Also, when resin is injected from at least the adjacent resin injection gates, and further from all the resin injection gates at the same time, usually, there is a portion where the flow of the resin overlaps, and a region that cannot be completely sucked occurs, and the unimpregnated region is formed. However, according to the above method, since the deaeration path is always secured, it is possible to finally completely impregnate all the surfaces.
[0032]
In addition, the gas permeable membrane has, for example, very fine holes on its surface and preferably forms a smooth surface. The surface quality of the molded article can be improved in addition to the use of the substrate having less unevenness.
[0033]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view of a molding apparatus used in the RTM molding method according to the first embodiment of the present invention. The mold 1 serving as a base is made of, for example, stainless steel, and is formed in a flat plate shape.
[0034]
In the present embodiment, a breather 2 as a second resin diffusion medium is disposed on the mold 1. Here, the breather has a resin flow resistance that is not as low as that of the above-described conventional resin diffusion medium, but is much lower than the flow resistance of the resin flowing through the reinforcing fiber base material. Quantitatively, the resin flow resistance of the breather 2 is preferably not more than 1/3 of the resin flow resistance of the reinforcing fiber base. Furthermore, the surface irregularities (surface roughness) of the breather 2 are preferably 1.3 times or less the surface irregularities (surface roughness) of the reinforcing fiber base material. As the breather 2, specifically, a low basis weight (100 g / m2) made of glass fiber or carbon fiber as a reinforcing fiber. Two The following surface mats, plain woven fabrics, mesh woven fabrics, and thick denier (200 denier or more) woven or knitted fabrics made of synthetic fibers are preferable.
[0035]
On the breather 2, a peel ply 3a is arranged. The peel ply 3a is laid to easily remove media and the like from the molded body. As the peel ply 3a, for example, a woven fabric having a releasing function such as a nylon taffeta is used.
[0036]
The reinforcing fiber base 4 is disposed on the peel ply 3a. In the present embodiment, the reinforcing fiber base 4 is formed of a plurality of reinforcing fiber materials, in particular, a structure in which a plurality of reinforcing fiber fabrics are laminated. The present invention is particularly suitable for molding using a thick reinforcing fiber base material 4 in which a plurality of such reinforcing fiber materials are laminated. However, the present invention is of course applicable to the case where a reinforcing fiber base made of a single reinforcing fiber material is used, and in this case, the present invention also applies to a molding method using a particularly thick reinforcing fiber base. It is suitable for.
[0037]
The first resin diffusion medium 5 is disposed on the reinforcing fiber base 4 via the peel ply 3b. The first resin diffusion medium 5 is a medium having irregularities on the surface and having a resin flow resistance of 1/10 or less of the resin flow resistance of the reinforcing fiber base material 4 (the laminated body of the reinforcing fiber material). The first resin diffusion medium 5 and the breather 2 as the second resin diffusion medium are given a magnitude relation in the resin flow resistance, and the resin flow resistance of the breather 2 is larger than that of the first resin diffusion medium 5. It is set higher than the resin flow resistance. More specifically, the first resin diffusion medium 5 is preferably a mesh fabric made of polyethylene or polypropylene resin and having an opening of # 400 or less. As a result of this arrangement, the first resin diffusion medium 5 is disposed on the first surface of the reinforcing fiber base material 4 and the second resin diffusion medium is disposed on the opposite second surface as the second resin diffusion medium. Is arranged.
[0038]
In this way, the whole of the components arranged on the mold 1 is covered with the bag material 8. The bag material 8 is an airtight material for forming a reduced-pressure cavity, but it is preferable to use a nylon film, for example, in consideration of heat resistance and the like. A resin injection gate 6c is provided in the interior covered with the bag material 8 for the first resin diffusion medium 5, and a suction gate 6a for depressurizing the inside of the breather 2 as a second resin diffusion medium by suction. , 6b are provided. These gates 6a, 6b, 6c are formed using, for example, a C channel material made of aluminum or the like, and these channel materials are connected to an external member via a plastic tube. A highly adhesive synthetic rubber sealant 7 is interposed between the edge of the bag material 8 and the mold 1, and the sealant 7 is sealed between the sealant 7 and the outside to keep the inside of the bag material 8 under reduced pressure. Air is prevented from flowing in. A thermosetting resin 10 as an FRP matrix resin to be impregnated is stored in a plastic pot 12, and the resin is injected through a resin injection gate 6c by opening a valve 9 at an appropriate timing. . The vacuum pump 11 keeps the inside of the cavity covered with the bag material 8 in a reduced pressure state via the suction gates 6a and 6b. In addition, as the bag material 8, the first bag material is further covered with the second bag material to form a double bag, whereby air leakage can be prevented. As a result, the volume content (Vf) of the reinforcing fibers can be reduced. Can be improved.
[0039]
Further, even if the bag material 8 is a single bag, air leakage can be prevented by arranging the sealant 7 on the outer peripheral edge of the bag in a double layer, and the same effect as the double bag can be obtained. In this case, the use amount and the installation time of the auxiliary material can be reduced as compared with a double bag, and there is an advantage that the molding can be performed at lower cost.
[0040]
In the molding apparatus shown in FIG. 1, the peel ply 3b / the resin dispersion medium 5 is disposed on the upper surface of the reinforcing fiber base 4 as usual, and the peel ply 3a / the breather is disposed on the lower surface side of the reinforcing fiber base 4. 2, the breather 2 may be left on the molded body after molding without disposing the peel ply 3a.
[0041]
The molding in this embodiment is performed as follows.
At room temperature or under a heated atmosphere, the laminate having the structure shown in FIG. 1 is disposed on the mold 1 (tool) surface, and includes a resin injection gate 6c disposed on the upper side and suction gates 6a and 6b disposed on the lower side. Cover with bag material. In this state, when the resin is injected from the resin injection gate 6c while the inside of the bag material 8 is depressurized by suction through the suction gates 6a and 6b, the matrix resin 10 moves through the first resin diffusion medium 5 into the reinforcing fiber base material 4. While flowing rapidly from the upper surface to the lower surface of the reinforcing fiber base material 4 while rapidly diffusing in the direction along the upper surface of the reinforcing fiber base material 4. After completion of the impregnation, the resin is cured at room temperature or in a heated atmosphere, and then the bag material 8 is peeled off to release the molded body. Thereafter, the peel plies 3a and 3b, the resin dispersion medium 5 and the breather 2 are peeled off and removed from the product. However, as an embodiment, the breather 2 may be left as it is on a molded product.
[0042]
In this molding, the resin flow resistance of the first resin diffusion medium 5 is set low, so that the resin injected into the first resin diffusion medium 5 follows the first surface of the reinforcing fiber base 4. While being diffused quickly and sufficiently widely in the direction, it is rapidly impregnated in the reinforcing fiber substrate 4 in the thickness direction. At this time, in order to decompress the inside of the bag material 8, the inside of the bag material 8 is sucked through the breather 2 as a second resin diffusion medium, but the resin flow resistance (ventilation resistance) of the breather 2 is reduced by the first resin. Although the flow resistance is higher than the resin flow resistance (air flow resistance) of the diffusion medium 5, it is sufficiently low as compared with the resin flow resistance (air flow resistance) of the reinforcing fiber base material 4, so that the ventilation from the reinforcing fiber base material is poor. As a result, the degree of vacuum in the substrate is prevented from lowering, and rapid impregnation of the resin is ensured. Therefore, sufficiently good resin impregnation from the first resin diffusion medium 5 side is ensured even for the thick reinforcing fiber base material 4. Since the resin flow resistance (ventilation resistance) of the breather 2 is set higher than that of the first resin diffusion medium 5, the breather 2 can be used for a medium having smaller irregularities than the first resin diffusion medium 5. Can be formed. Therefore, even if the surface morphology of the breather 2 is transferred to the surface of the molded product, the degree of unevenness of the surface of the molded product due to the transfer can be suppressed to a small value. In other words, it is possible to suppress the unevenness of the surface of the molded article on the second resin diffusion medium side while ensuring good resin impregnation. By setting the surface side of the molded product having small irregularities as the design surface side, a molded product having desirable surface properties can be obtained. That is, it is possible to eliminate the trace of the media that has been generated on the tool surface side of the molded product due to the curing of the resin in the conventional method.
[0043]
FIG. 2 is a schematic vertical sectional view of a molding apparatus according to a second embodiment of the present invention, in which a second resin diffusion medium 5a and a porous sheet 20 are arranged on one surface of a reinforcing fiber base instead of a breather. Is shown. FIG. 3 is a schematic longitudinal sectional view of a molding apparatus according to a third embodiment of the present invention. The molding die is formed by machining grooves in the molding die instead of the resin diffusion medium arranged on the molding die surface in FIG. The surface itself is configured as a resin diffusion medium on the resin injection side. Hereinafter, only different points from the apparatus of FIG. 1 will be described.
[0044]
Reference numeral 20 denotes a porous sheet. The material of the porous sheet 20 is a thin metal plate (aluminum or stainless steel), a punched metal steel having a thickness of 0.1 mm or more, or a resin film (nylon, polyester, polyethylene). , Polypropylene, and polyimide) and a FRP sheet having a thickness of 0.2 mm or more is preferably used. The hole is preferably round in terms of processing, but the shape is not particularly limited. The pore diameter is desirably 3 mm or less, more desirably 1.5 mm or less, in order that almost no trace of the porous sheet 20 remains on the surface of the molded article after the porous sheet 20 is peeled off from the molded article. The arrangement of the holes may be random or regular. The preferred hole pitch varies depending on the specifications of the reinforcing fiber base used, but is preferably 15 mm or less, and more preferably 10 mm or less. The required function of the porous sheet 20 is that the smoothness is equal to or higher than the surface roughness required for the final product, and the rigidity is a rigidity that does not reflect the influence of the unevenness of the resin dispersion medium. And a large number of holes are opened so that the resin can pass therethrough. Reference numeral 30 denotes a groove processed into a molding die. The groove 30 preferably has a width of 0.5 mm to 5 mm, a depth of 1 mm to 6 mm, a pitch of 2 mm to 25 mm, and a cross-sectional shape of a rectangle, an inverted trapezoid, or a triangle. More preferably, a groove having a rectangular section with a width of about 1 mm and a depth of about 3 mm and a pitch of about 8 mm is desirable.
[0045]
2, the peel ply 3a / the porous sheet 20 / the second resin dispersion medium 5a is arranged on the lower surface of the reinforcing fiber base 4 from the side in contact with the reinforcing fiber base 4. However, the arrangement of the porous sheet 20 and the peel ply 3a may be reversed. Further, as an embodiment, in the molding apparatus shown in FIG. 2, a groove for resin injection (illustrated example) or a vacuum suction groove is provided on the tool surface (molding surface) as shown in FIG. 3 without using the resin dispersion medium 5a. In this case, since the resin injection or the suction under reduced pressure can be made more uniform over the entire surface as compared with the case where the resin dispersion medium is used, the occurrence of voids and underfill is reduced, and a good product is stably obtained. It is easier to obtain. Then, on the upper surface of the reinforcing fiber substrate 4, a conventional peel ply 3b / resin dispersion medium 5 (peel ply is disposed on the reinforcing fiber substrate 4 side) or the same as the lower surface side of the reinforcing fiber substrate 4 is disposed. Thereafter, molding is performed in the same manner as in FIG.
[0046]
FIG. 4 is a schematic longitudinal sectional view of a molding apparatus according to a fourth embodiment of the present invention, in which two suction gates 6d and 6e for decompression are installed above the reinforcing fiber base material of FIG. Is switched to a resin injection port to inject resin from both sides of the reinforcing fiber base material. Hereinafter, only different points from the apparatus of FIGS. 1 to 3 will be described.
[0047]
The suction gate 6d is switched to a resin injection port during molding. When used as a suction gate, the valve 41 is opened after the valve 42 is closed, and when switching to the resin injection gate, the valve 41 is closed and the valve 42 is opened.
[0048]
In the molding apparatus shown in FIG. 4, the reinforcing fiber base material 4 is disposed at normal temperature or in a heated atmosphere via the porous sheet 20 and the peel ply 3a on the surface of the molding die (tool) on which the groove 30 has been processed, and a plurality of The bag is covered with a bag material including the arranged suction gates 6d and 6e for decompression and the resin injection gate (groove 30) arranged on the lower surface side. In this state, when the valve 41 is opened, the valve 42 and the valve 9 are closed, and the inside of the bag material 8 is suctioned from the suction gate and the pressure is reduced, the resin is injected into the groove 30 as the resin injection gate by opening the valve 9. The matrix resin 10 flows from the lower surface to the upper surface of the reinforcing fiber base 4 and is impregnated. However, when the thickness of the reinforcing fiber base 4 is 10 mm or more, it may be difficult to completely impregnate the resin to the upper surface depending on the combination of the resin and the reinforcing fiber base. Therefore, when the upper surface cannot be sufficiently impregnated, at least one of the suction gates (6d in FIG. 4) on the upper surface side is closed with the valve 41 and the valve 42 before the resin reaches the upper surface of the reinforcing fiber base material 4. Can be opened to switch to the resin injection gate. When switching to the resin injection gate, the resin is also injected from the upper surface side, which compensates for the insufficient resin impregnation. At the same time, the resin flows from the gate 6d side to the suction gate 6e side, so that voids are pushed out toward the suction gate 6e with the flow of the resin. That is, while the resin is rapidly impregnated from the groove 30 side of the molding die as the first resin diffusion medium, insufficient resin impregnation is compensated for on the upper surface side of the thick reinforcing fiber base material 4 and at the same time, the voids are To be trapped in the reinforcing fiber substrate 4. As a result, molding can be performed even when a thick reinforcing fiber base material 4 that cannot be sufficiently impregnated due to the existence of the impregnation limit thickness in the conventional method is used, and at the same time, voids are confined during the molding. By avoiding this, it is possible to ensure good quality of the molded article.
[0049]
After the impregnation is completed, the resin is cured at room temperature or in a heated atmosphere. However, the porous sheet 20 having a moderate rigidity is affected by the uneven shape of the medium itself and the effect of the resin sink set in the medium generated during the curing. Cut off. Therefore, as a surface property on the tool surface side of the molded article taken out by peeling the porous sheet 20 / peel ply 3a, 3b / resin dispersion medium 5 after demolding, almost reflects the smoothness of the tool surface.
[0050]
FIG. 5 is a schematic sectional view of a molding apparatus used for carrying out the RTM molding method according to the fifth embodiment of the present invention. A deaeration medium 54 consisting of a gas permeable substrate 50 and a sealing tape 52 is provided, and can be sucked through a deaeration hole 53 from a deaeration space formed between the gas permeable membrane 50 and the mold 1. The points are different. Hereinafter, the molding method according to the present embodiment will be described only with respect to differences from the above-described embodiment.
[0051]
First, the laminated body 4 of the reinforcing fiber base is placed on the surface of the molding die 1 (tool) at room temperature or under a heated atmosphere, and the resin injection gate 6f disposed on the upper side is disposed between the molding die 1 and the laminated body 4. It covers with the bag material 8 including the arrange | positioned gas permeable membrane 50 and the air-permeable base material 51. In this case, the entire outer periphery of the gas permeable membrane 50 is affixed to the mold surface with a seal tape 52 to be sealed. In this state, when the resin is injected from the resin injection gate 6f while sucking by the vacuum pump 11 and depressurizing the inside of the bag 8 through the gas passage membrane 50 and the degassing space, the matrix resin 10 becomes the first resin diffusion medium 5 While rapidly diffusing in the direction (planar direction) along the upper surface of the reinforcing fiber base 4, it flows from the upper surface to the lower surface of the reinforcing fiber base 4, and is impregnated into the reinforcing fiber base 4. After the impregnation is completed, the resin is cured at room temperature or in a heated atmosphere, and then the bag material 8 is peeled off and the molded body is released.
[0052]
Here, the gas permeable membrane 50 can pass any gas, such as a microporous sheet or resin film, or a base material obtained by coating paper or cloth with a microporous membrane, as long as it does not allow resin or liquid to pass through. Such a thing may be used. Further, a molded article having a smooth surface can improve the surface quality of the molded article. Further, it is desirable that the gas permeable film 50 has mold release properties, but in some cases, it can be integrated with a molded product.
[0053]
The air-permeable base material 51 preferably has good air permeability for improving impregnation, and preferably has as little unevenness as possible for improving the smoothness of the molded product.
[0054]
In this RTM molding method, after the inside of the mold 1 is depressurized by suction, the resin is injected into the mold 1 via the resin diffusion medium 8 and the injected resin is removed from the gas permeable membrane 50 and the mold 1. The injected resin can be impregnated into the reinforcing fiber base 4 while being sucked from the degassing space formed between the mold and the resin. In addition, it can be sufficiently expanded, and a design surface of excellent quality can be formed. In addition, by using a gas permeable membrane 50 having a fine pore with high smoothness, a design surface with extremely small irregularities and high smoothness can be formed. Therefore, even for a thick laminated body of the reinforcing fiber base material 4, the entire laminated body can be satisfactorily impregnated with the resin, and the design surface with extremely small irregularities and high smoothness as described above is obtained. can get.
[0055]
FIG. 6 shows a sixth embodiment, which is an application of the fifth embodiment shown in FIG. This is a method of simultaneously injecting resin from at least two adjacent resin injection gates among the plurality of resin injection gates 6g and 6h, and is effective for a large molded product having a large area. In the figure, the laminated body 4 has a flat plate shape, but it is possible to spread the resin over the entire laminated body even if it is difficult to control the flow of the resin, such as a molded product having projections, plate thickness changes, and a curved plate. Become.
[0056]
Also, a plurality of suction paths (suction holes 53) from the degassing space formed between the gas permeable membrane 50 and the mold 1 are provided, so that a large molded product can be sufficiently sucked. It has become. In addition, if necessary, in addition to the suction path from the degassing space, a suction gate 6a (suction path) may be provided separately, thereby controlling the impregnation direction during resin injection, It can be used for suction of excess resin after resin impregnation.
[0057]
【Example】
Hereinafter, the present invention will be described based on examples.
Example 1
In the molding apparatus for RTM shown in FIG. 1, a breather 2 (glass fiber surface mat, 80 g / m Two The suction gates 6a and 6b were provided at both ends, and connected to the vacuum pump 11. A peel ply 3a is arranged on the breather 2, and a carbon fiber fabric (a plain fabric CO6343 using T300 carbon fiber, manufactured by Toray Industries, Inc., weight per unit area; 200 g / m2) Two ) Were placed in a 120-ply lamination. At this time, the peel ply 3a between the breather 2 and the reinforcing fiber base material 4 may be omitted, but this is based on the premise that the breather is left in the product after molding. Textiles are preferred.
[0058]
A peel ply 3b is arranged on the reinforcing fiber base material 4, and a resin diffusion medium 5 (manufactured by Tokyo Polymer Co., Ltd., "Netron" TSX-400P), which is a polypropylene mesh material, is arranged thereon. Is arranged with a resin injection gate 6c and connected to a resin pot 12 via a valve 9. The whole was covered with a bag material 8 (bag sheet), and the periphery thereof was sealed with a sealant 7 (not shown in this figure, but a double bag). The valve 9 was closed, and the inside of the cavity covered with the bag material 8 was sucked and depressurized by the vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is contained in a resin pot 12 and a valve. When the substrate 9 is opened, the matrix resin 10 is impregnated from the top to the bottom in the thickness direction of the reinforcing fiber base 4 while diffusing into the medium 5 from the resin injection line, and the base having a thickness of about 25 mm is completely impregnated without an unimpregnated portion. Resin impregnated. About 50 minutes after the impregnation of the resin, the valve 9 was closed to stop the supply of the resin, and the whole was heated to 130 ° C. at about 2 ° C./min and held for 2 hours to cure the matrix resin. Thereafter, the temperature was lowered to room temperature at about 2 ° C./min, the whole was removed from the mold, and the bag material 8 was removed. By peeling the peel ply from the cured product, the cured resin, the medium, and the breather on the surface of the molded product were removed. The surface in contact with the medium had irregularities, while the surface in contact with the breather had a surface with good surface smoothness.
[0059]
Example 2
In the molding apparatus for RTM shown in FIG. 2, a medium 5a (manufactured by Tokyo Polymer Co., Ltd., "Netron" TSX-400P), which is a polypropylene mesh material, is placed on the molding surface of the molding die 1, and suction is applied to the periphery thereof. Gates 6a and 6b were placed and they were connected to vacuum pump 11. A porous sheet 20 (a 0.2 mm thick polyester film having holes of 1 mm diameter arranged at a pitch of 10 mm) is arranged on the medium 5a, a peel ply 3a is placed thereon, and a carbon fiber woven fabric (Toray ( Co., Ltd., plain fabric CO6343 using carbon fiber of T300, basis weight: 200 g / m Two ) Were placed in a 120-ply lamination.
[0060]
The peel ply 3b is disposed on the reinforcing fiber base material 4, the medium 5b is disposed thereon, and the resin injection port 6c is disposed thereon. Connected. At this time, a porous sheet may be arranged instead of the peel ply 3b. A bag material 8 was doubly covered over the entirety, and the periphery was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was depressurized by the vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is contained in a resin pot 12 and a valve. 9 is released, the matrix resin 10 is impregnated from the top to the bottom in the thickness direction of the carbon fiber fabric laminate 4 while diffusing into the medium 5b above the resin injection line. The resin was completely impregnated without any impregnation part. After the resin impregnation, the valve 9 is closed to stop the supply of the resin, the whole is heated to 130 ° C. at a rate of about 2 ° C./min and held for 2 hours to cure the matrix resin, and then to about 2 ° C./min. The temperature was lowered in minutes, the whole was removed from the mold, and the bag material 8 was removed. As a result of removing the peel ply from the cured product and removing the cured resin and the medium and the porous sheet, the surface in contact with the medium has irregularities, while the surface in contact with the porous sheet has a smooth surface. Good side was obtained.
[0061]
Example 3
In the RTM forming apparatus shown in FIG. 3, a resin mold is used to form a well 30 (1 mm in width, 3 mm in depth, rectangular cross section with a pitch of 8 mm) and a valve 9 is formed in the groove. To the resin pot 12. A porous sheet 20 (0.2 mm thick polyester film having holes of 1 mm diameter arranged at a pitch of 10 mm) is arranged on the molding surface, a peel ply 3a is placed thereon, and a carbon fiber fabric (Toray ( Co., Ltd., plain fabric CO6343 using carbon fiber of T300, basis weight: 200 g / m Two ) Were placed in a 120-ply lamination. A peel ply 3b is arranged on the reinforcing fiber base material 4, and a medium 5 ("Netron" TSX-400p, manufactured by Tokyo Polymer Co., Ltd.), which is a polypropylene mesh material, is arranged on the peel ply 3b. The gate 6 was placed and connected to the vacuum pump 11. The bag material 8 was double covered over the whole, and the periphery was sealed with the sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was depressurized by the vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is contained in a resin pot 12 and a valve. When 9 is released, the matrix resin 10 is impregnated from the bottom into the top in the thickness direction of the carbon fiber fabric laminate 4 while diffusing from the resin injection line to the grooved molding surface, and the laminate having a thickness of 25 mm is completely impregnated without unimpregnated portions. Was impregnated with resin. After the resin impregnation, the valve 9 is closed to stop the supply of the resin, the whole is heated to 130 ° C. at a rate of about 2 ° C./min and held for 2 hours to cure the matrix resin, and then to about 2 ° C./min. The temperature was lowered in minutes, the whole was removed from the mold, and the bag material 8 was removed. By peeling the peel ply from the cured product, the cured resin and the medium and the porous sheet on the surface of the molded product were removed, and the surface of the molded product appeared, but there was a trace of the medium on the surface in contact with the medium. While unevenness was observed, the surface in contact with the porous sheet was a surface having good surface smoothness.
[0062]
Example 4
In the RTM molding apparatus shown in FIG. 4, a resin-diffused well-shaped groove 30 (a rectangular groove having a width of 1 mm and a depth of 3 mm and a pitch of 8 mm) is machined into the groove 30 via the valve 9. To connect the resin pot 12. A porous sheet 20 (having a stainless steel punching metal having a thickness of 0.2 mm and a hole having a diameter of 1 mm and processed at a pitch of 15 mm) is arranged on the molding surface, and a peel ply 3a is placed thereon, and a carbon fiber fabric ( Unidirectional woven fabric using carbon fiber of T800S manufactured by Toray Industries, Inc .; Two ) Were placed in a 120-ply lamination. A peel ply 3b is arranged on the reinforcing fiber base material 4, and a medium 5 ("Netron" TSX-400p, manufactured by Tokyo Polymer Co., Ltd.), which is a polypropylene mesh material, is arranged on the peel ply 3b. The gates 6d and 6e were placed and connected to the vacuum pump 11. The bag material 8 was double covered over the whole, and the periphery was sealed with the sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was depressurized by the vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is contained in a resin pot 12 and a valve. When 9 was opened, the matrix resin 10 was impregnated from below to above in the thickness direction of the carbon fiber fabric laminate 4 while diffusing from the resin injection line to the grooved molding surface. However, when this state is maintained, the impregnation of the resin converges at the time of impregnation up to about / of the thickness of the reinforcing fiber base material 4.
[0063]
Then, when the resin was impregnated into the reinforcing fiber substrate 4 to a thickness of 2 or more, the valve 41 was closed, the valve 42 was opened, and the suction gate 6d was switched to the resin injection gate. The resin injected from the gate 6d diffused in the diffusion medium 5 in the direction of the suction gate 6e, and the resin was impregnated into the base material downward through the medium 5. Eventually, the entire resin was impregnated in the substrate. Then, the valves 9 and 42 were closed to stop the supply of the resin.
[0064]
The temperature of the whole is raised to 130 ° C. at about 2 ° C./min and held for 2 hours to cure the matrix resin. Then, the temperature is lowered to room temperature at about 2 ° C./min. Removed. By peeling the peel ply from the cured product, the cured resin and the medium and the porous sheet on the surface of the molded product were removed, and the surface of the molded product appeared, but there was a trace of the medium on the surface in contact with the medium. While unevenness was observed, the surface in contact with the porous sheet was a surface having good surface smoothness.
[0065]
Example 5
In the RTM molding apparatus shown in FIG. 5, "peel ply # 60001" manufactured by US RICHMOND Co., Ltd. is disposed on the molding surface of the molding die 1 as a gas permeable base material 51, and a releasable gas permeable membrane is further placed thereon. As 50, a Vapor Permeable Release Film “E3760” used for “TSB system” manufactured by RICHMOND, USA was placed, and the entire periphery was sealed with a heat-resistant nitroflon tape 52. The vacuum pump 11 was connected from a degassing space surrounded by the gas permeable membrane 50 and the mold 1 through a degassing hole 53 provided in the mold 1.
[0066]
Subsequently, on the gas permeable membrane 50, a carbon fiber fabric (a plain fabric CO6343 using a carbon fiber fabric of T300, manufactured by Toray Industries, Inc., weight: 200 g / m2) Two ) Was placed on the reinforcing fiber substrate 4 (about 25 mm in thickness).
[0067]
Next, the peel ply 3b is arranged on the reinforcing fiber base material 4, and the resin diffusion medium 5 (manufactured by Tokyo Polymer, "Netron" TSX-400P), which is a polypropylene mesh material, is arranged thereon, and further thereon. The resin injection gate 6f was arranged and connected to the resin pot 12 via the valve 9. The whole was covered with a bag material 8 and the periphery thereof was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was suctioned and depressurized by the vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin clay of 320 mPa · s after 1 hour at 70 ° C.) is housed in a resin pot, and a valve 9. Is released, the matrix resin 10 is impregnated from above to below in the thickness direction of the reinforcing fiber base 4 while diffusing into the medium 5 from the resin injection line. In this case, if the gas permeable membrane 50 is not present, the lower surface of the reinforcing fiber base 4 will be pressed against the surface of the molding die 1, and the gas existing near the lower surface of the base material will not be able to escape. Becomes “pocked”, but by providing the gas permeable membrane 50, a degassing space is formed between the mold 1 and the membrane 50, and the gas is permeable from the entire lower surface of the reinforcing fiber base 4. Since the substrate was completely degassed via the substrate 51, the substrate was completely impregnated with resin without a non-impregnated portion while having a thickness of 25 mm, and the surface quality was particularly remarkably improved. After the resin impregnation, when a predetermined amount of resin is injected, the valve 9 is closed to stop the supply of the resin, the whole is heated to 130 ° C. at a rate of about 2 ° C./min, and held for 2 hours to cure the matrix resin. I let it. Thereafter, the temperature was lowered to room temperature at about 2 ° C./min, the whole was removed from the mold, and the bag material 8 was removed. On the lower surface of the cured molded product, a surface with good surface smoothness was obtained by peeling off the gas permeable membrane 50.
[0068]
Example 6
In the RTM molding apparatus of FIG. 6, "peel ply # 60001" manufactured by RICHMOND of the United States is disposed on the molding surface of the molding die 1 as the air-permeable base material 51 in the same manner as in the fifth embodiment. Vapor Permeable Release Film “E3760” used for “TSB system” manufactured by RICHMOND, USA, was disposed as a gas permeable membrane 50 having a property, and the entire periphery was sealed with a heat-resistant nitroflon tape 52. The vacuum pump 11 was connected from a degassing space surrounded by the gas permeable membrane 50 and the mold 1 through a degassing hole 53 provided in the mold 1.
[0069]
Subsequently, on the gas permeable membrane 50, a carbon fiber fabric (a plain fabric CO6343 using a carbon fiber fabric of T300, manufactured by Toray Industries, Inc., weight: 200 g / m2) Two ) Were placed in a 120 ply lamination. At this time, the suction gate 6a was also arranged on one side of the lower surface of the reinforcing fiber base.
[0070]
A peel ply 3b is arranged on the reinforcing fiber base material 4, and a resin diffusion medium 5 (manufactured by Tokyo Polymer Co., Ltd., "Netron" TSX-400P), which is a polypropylene mesh material, is arranged thereon. The two resin injection gates 6g and 6h were arranged and connected to the resin pot 12 via the valve 9. The whole was covered with a bag material 8 and the periphery thereof was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was suctioned and depressurized by the vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin clay of 320 mPa · s after 1 hour at 70 ° C.) is housed in a resin pot, and a valve 9. Is released, the matrix resin 10 simultaneously flows into the medium 5 from the two resin injection lines 6g and 6h, and is impregnated from the top to the bottom in the thickness direction of the reinforcing fiber base 4 while diffusing on the surface, and about 25 mm Was completely impregnated with resin without unimpregnated portions.
[0071]
At this time, the resin immediately reaches the lower surface of the reinforcing fiber base 4 in the region directly below the injection gates 6g and 6h, that is, the resin reaches the lower surface of the reinforcing fiber base in the intermediate region between the two injection gates. It was late, but finally, the resin was completely impregnated by suction of the gas permeable membrane 50 through the degassing path.
[0072]
After the resin impregnation, when a predetermined amount of resin is injected, the valve 9 is closed to stop the supply of the resin, the whole is heated to 130 ° C. at a rate of about 2 ° C./min, and held for 2 hours to cure the matrix resin. I let it. By sucking from the suction gate 8 as well, the resin impregnation time was shorter than in Example 5.
[0073]
Thereafter, the temperature was lowered to room temperature at about 2 ° C./min, the whole was removed from the mold, and the bag material 8 was removed. On the lower surface of the cured molded product, a surface with good surface smoothness was obtained by peeling off the gas permeable membrane 50.
[0074]
【The invention's effect】
As described above, according to the RTM molding method of the present invention, it is possible to sufficiently sufficiently impregnate a resin into a reinforcing fiber base material while ensuring sufficient air permeability required during resin impregnation. In addition, it is possible to obtain a molded product having excellent surface properties by suppressing irregularities formed on the design surface of the molded product to be small. In addition, especially in the case of forming a thick material, even if it is impossible to impregnate the resin in the entire thickness direction of the base material without causing a problem with the conventional method, without generating voids and the like, Can be performed.
[0075]
Therefore, the present invention is particularly suitable for the RTM molding of a thick molded product. By applying the present invention, it is possible to mold a structure (for example, a wing member of an aircraft member) requiring a thickness of 10 mm or more. Can be easily performed without causing a problem.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a molding apparatus used in an RTM molding method according to a first embodiment of the present invention.
FIG. 2 is a schematic longitudinal sectional view of a molding apparatus used in an RTM molding method according to a second embodiment of the present invention.
FIG. 3 is a schematic longitudinal sectional view of a molding apparatus used in an RTM molding method according to a third embodiment of the present invention.
FIG. 4 is a schematic longitudinal sectional view of a molding apparatus used in an RTM molding method according to a fourth embodiment of the present invention.
FIG. 5 is a schematic longitudinal sectional view of a molding apparatus used in an RTM molding method according to a fifth embodiment of the present invention.
FIG. 6 is a schematic longitudinal sectional view of a molding apparatus used in an RTM molding method according to a sixth embodiment of the present invention.
[Explanation of symbols]
1 Mold
2 Breather as a second resin diffusion medium
3a, 3b peel ply
4 Reinforced fiber substrate
5, 5a, 5b resin diffusion medium
6, 6a, 6b, 6d, 6e Suction gate
6c, 6f, 6g, 6h Resin injection gate
7 Sealant
8 Bag materials
9, 41, 42 valves
10 Matrix resin
11 Vacuum pump
12 Resin pot
20 perforated sheet
30 Mold groove for resin diffusion
50 gas permeable membrane
51 breathable substrate
52 Seal tape
53 deaeration hole
54 Degassing medium

Claims (14)

成形型内に強化繊維基材を配置するとともに、該強化繊維基材の両面上に樹脂流動抵抗が前記強化繊維基材よりも低い樹脂拡散媒体を配置し、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を前記強化繊維基材中に含浸させるRTM成形方法において、前記強化繊維基材の第1の面上に配置される第1の樹脂拡散媒体の樹脂流動抵抗を、第2の面上に配置される第2の樹脂拡散媒体の樹脂流動抵抗よりも低く設定し、前記第1の樹脂拡散媒体に樹脂を注入しつつ前記第2の樹脂拡散媒体を介して吸引することにより、前記強化繊維基材中に樹脂を含浸させることを特徴とするRTM成形方法。Along with disposing the reinforcing fiber base in the mold, a resin diffusion medium having a resin flow resistance lower than that of the reinforcing fiber base on both surfaces of the reinforcing fiber base was depressurized by suction in the mold. Thereafter, in the RTM molding method of injecting a resin into the mold via the resin diffusion medium and impregnating the injected resin into the reinforcing fiber base, the resin is disposed on the first surface of the reinforcing fiber base. The resin flow resistance of the first resin diffusion medium is set lower than the resin flow resistance of the second resin diffusion medium disposed on the second surface, and the resin is injected into the first resin diffusion medium. An RTM molding method, wherein the reinforcing fiber base material is impregnated with a resin by suctioning through the second resin diffusion medium while the resin is being sucked. 前記強化繊維基材が強化繊維材の積層体からなる、請求項1に記載のRTM成形方法。The RTM molding method according to claim 1, wherein the reinforcing fiber base comprises a laminate of a reinforcing fiber material. 前記第2の樹脂拡散媒体の樹脂流動抵抗を前記強化繊維基材の樹脂流動抵抗の1/3以下とする、請求項1または2に記載のRTM成形方法。3. The RTM molding method according to claim 1, wherein the resin flow resistance of the second resin diffusion medium is set to not more than 3 of the resin flow resistance of the reinforcing fiber base. 4. 前記第1の樹脂拡散媒体の樹脂流動抵抗を前記強化繊維基材の樹脂流動抵抗の1/10以下とする、請求項1〜3のいずれかに記載のRTM成形方法。The RTM molding method according to any one of claims 1 to 3, wherein a resin flow resistance of the first resin diffusion medium is 1/10 or less of a resin flow resistance of the reinforcing fiber base. 樹脂が前記第2の面に到達する前に、前記第2の樹脂拡散媒体からも樹脂の注入を開始する、請求項1〜4のいずれかに記載のRTM成形方法。The RTM molding method according to claim 1, wherein before the resin reaches the second surface, the injection of the resin from the second resin diffusion medium is started. 少なくとも一方の樹脂拡散媒体と前記強化繊維基材との間に、成形後に樹脂拡散媒体と一体的に剥離可能なピールプライを介装する、請求項1〜5のいずれかに記載のRTM成形方法。The RTM molding method according to any one of claims 1 to 5, wherein a peel ply that can be peeled off integrally with the resin diffusion medium after molding is interposed between at least one resin diffusion medium and the reinforcing fiber base. 少なくとも一方の樹脂拡散媒体と前記強化繊維基材との間に多孔性シートを介装する、請求項1〜6のいずれかに記載のRTM成形方法。The RTM molding method according to any one of claims 1 to 6, wherein a porous sheet is interposed between at least one resin diffusion medium and the reinforcing fiber base. 少なくとも一方の樹脂拡散媒体を、成形型の内面に樹脂流路としての溝を設けることにより構成する、請求項1〜7のいずれかに記載のRTM成形方法。The RTM molding method according to any one of claims 1 to 7, wherein at least one of the resin diffusion media is configured by providing a groove as a resin flow path on an inner surface of a mold. 成形品を脱型後、少なくとも一方の樹脂拡散媒体を、成形品から剥離せずに成形品内に残存させる、請求項1〜8のいずれかに記載のRTM成形方法。The RTM molding method according to any one of claims 1 to 8, wherein after removing the molded product, at least one resin diffusion medium is left in the molded product without being separated from the molded product. 成形型に強化繊維基材を配置するとともに、該強化繊維基材の、成形型と反対側の面に、樹脂流動抵抗が前記基材よりも低い樹脂拡散媒体を配置するとともに、該強化繊維基材と成形型面との間に、気体透過膜と通気性基材からなる脱気媒体を設け、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を、前記気体透過膜と成形型間に形成された脱気空間から吸引することにより、前記強化繊維基材内に樹脂を含浸させることを特徴とするRTM成形方法。A reinforcing fiber base is arranged in a molding die, and a resin diffusion medium having a resin flow resistance lower than that of the base is arranged on a surface of the reinforcing fiber base opposite to the molding die, and the reinforcing fiber base is provided. A deaeration medium comprising a gas permeable membrane and a gas-permeable base material is provided between the material and the mold surface, and the inside of the mold is depressurized by suction. RTM molding method, wherein the resin is impregnated in the reinforcing fiber base material by injecting the injected resin from a degassing space formed between the gas permeable membrane and the molding die. 前記強化繊維基材が強化繊維の積層体からなる、請求項10に記載のRTM成形方法。The RTM molding method according to claim 10, wherein the reinforcing fiber base comprises a laminate of reinforcing fibers. 前記気体透過膜が、成形後に、成形品から剥離可能な離型性を有することを特徴とする、請求項10または11に記載のRTM成形方法。The RTM molding method according to claim 10, wherein the gas permeable film has a mold releasing property that can be peeled off from a molded product after molding. 前記樹脂拡散媒体の上部に、少なくとも2カ所以上の樹脂注入ゲートを配置するとともに、樹脂注入に際して、少なくとも隣り合う樹脂注入ゲート2カ所から、または、すべての樹脂注入ゲートから、同時に樹脂注入することを特徴とする、請求項10〜12のいずれかに記載のRTM成形方法。At least two resin injection gates are arranged above the resin diffusion medium, and at the time of resin injection, resin injection is performed simultaneously from at least two adjacent resin injection gates or simultaneously from all resin injection gates. The RTM molding method according to any one of claims 10 to 12, characterized in that: 前記気体透過膜と成形型間に形成された脱気空間からの吸引経路に加えて、成形型内に少なくとも1つの別の吸引経路を設けることを特徴とする請求項10〜13のいずれかに記載のRTM成形方法。14. The method according to claim 10, wherein at least one other suction path is provided in the mold in addition to the suction path from the degassing space formed between the gas permeable membrane and the mold. The RTM molding method described in the above.
JP2002312454A 2002-10-09 2002-10-28 RTM molding method Expired - Fee Related JP4104422B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2002312454A JP4104422B2 (en) 2002-10-09 2002-10-28 RTM molding method
ES13173654T ES2727872T3 (en) 2002-10-09 2003-10-09 RTM Molding Method
EP13173648.0A EP2644363B1 (en) 2002-10-09 2003-10-09 Method of RTM molding
US10/530,263 US8420002B2 (en) 2002-10-09 2003-10-09 Method of RTM molding
EP20130173653 EP2644364A3 (en) 2002-10-09 2003-10-09 Method of RTM molding
AU2003271139A AU2003271139B2 (en) 2002-10-09 2003-10-09 Method of RTM molding
EP03751403.1A EP1555104B1 (en) 2002-10-09 2003-10-09 Method of frp molding
ES13173648.0T ES2628600T3 (en) 2002-10-09 2003-10-09 RTM Molding Method
EP13173654.8A EP2644365B1 (en) 2002-10-09 2003-10-09 Method of RTM molding
PCT/JP2003/012947 WO2004033176A1 (en) 2002-10-09 2003-10-09 Method of rtm molding
AU2008203841A AU2008203841B2 (en) 2002-10-09 2008-08-12 Method of RTM molding
AU2008203839A AU2008203839B2 (en) 2002-10-09 2008-08-12 Method of RTM molding
AU2008203840A AU2008203840B2 (en) 2002-10-09 2008-08-12 Method of RTM molding
US13/834,072 US20130228956A1 (en) 2002-10-09 2013-03-15 Methods of rtm molding
US13/833,606 US9463587B2 (en) 2002-10-09 2013-03-15 Methods of RTM molding
US13/834,534 US9120253B2 (en) 2002-10-09 2013-03-15 Methods of RTM molding

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002295932 2002-10-09
JP2002312454A JP4104422B2 (en) 2002-10-09 2002-10-28 RTM molding method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008035709A Division JP4542588B2 (en) 2002-10-09 2008-02-18 RTM molding method

Publications (2)

Publication Number Publication Date
JP2004181627A true JP2004181627A (en) 2004-07-02
JP4104422B2 JP4104422B2 (en) 2008-06-18

Family

ID=32774308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312454A Expired - Fee Related JP4104422B2 (en) 2002-10-09 2002-10-28 RTM molding method

Country Status (1)

Country Link
JP (1) JP4104422B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175866A (en) * 2004-12-22 2006-07-06 General Electric Co <Ge> Mold tool for forming composite parts having reinforced matrix
JP2009528195A (en) * 2006-03-03 2009-08-06 エルエム・グラスファイバー・アクティーゼルスカブ Method and apparatus for providing a polymer for use in a vacuum injection method
JP2012045863A (en) * 2010-08-27 2012-03-08 Universal Shipbuilding Corp Method for vacuum impregnation molding of frp product and device for manufacturing the same
WO2012039409A1 (en) * 2010-09-24 2012-03-29 東レ株式会社 Method for producing fiber-reinforced plastic
WO2012117869A1 (en) * 2011-02-28 2012-09-07 三菱重工業株式会社 Rtm molding device, rtm molding method, and semi-molded body
JP2012245623A (en) * 2011-05-25 2012-12-13 Univ Of Tokyo Method and device of molding composite material using porous mold
JP2013056665A (en) * 2011-09-07 2013-03-28 Airbus Operations Sas Method for fabrication of structure comprising skin and stiffener
JP2013132853A (en) * 2011-12-27 2013-07-08 Kawasaki Heavy Ind Ltd Method for manufacturing resin impregnated material
US20130264751A1 (en) * 2010-06-25 2013-10-10 The Boeing Company Method of manufacturing resin infused composite parts using a perforated caul sheet
US20150125565A1 (en) * 2010-06-25 2015-05-07 The Boeing Company Resin Infusion of Composite Parts Using a Perforated Caul Sheet
EP3173221A3 (en) * 2015-11-26 2017-09-13 Airbus Operations GmbH Resin barrier device for an infusion tool and infusion tool with resin barrier device
WO2018030470A1 (en) * 2016-08-09 2018-02-15 三菱重工業株式会社 Method for producing fiber-reinforced resin molded articles
JP2018134863A (en) * 2017-01-30 2018-08-30 ゼネラル・エレクトリック・カンパニイ System, method, and apparatus for infusing composite structure
JP2018199325A (en) * 2017-05-26 2018-12-20 ザ・ボーイング・カンパニーThe Boeing Company Flexible vacuum securement of objects to complex surfaces
EP3495122A1 (en) * 2017-11-21 2019-06-12 The Boeing Company Apparatus and method for manufacturing molded composites using a discrete network of tool surface resin distribution grooves
JP2019089239A (en) * 2017-11-14 2019-06-13 東京R&Dコンポジット工業株式会社 Breather cloth
US10807324B2 (en) 2017-11-21 2020-10-20 The Boeing Company Apparatus and method for manufacturing liquid molded composites using a discrete network of tool surface resin distribution grooves
WO2022201453A1 (en) * 2021-03-25 2022-09-29 三菱重工業株式会社 Device for molding fiber-reinforced composite material and method for molding fiber-reinforced composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016121245A1 (en) * 2016-11-07 2018-05-09 Faserverbund Innovations UG (haftungsbeschränkt) Resin pipe with peripheral openings

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006175866A (en) * 2004-12-22 2006-07-06 General Electric Co <Ge> Mold tool for forming composite parts having reinforced matrix
JP2009528195A (en) * 2006-03-03 2009-08-06 エルエム・グラスファイバー・アクティーゼルスカブ Method and apparatus for providing a polymer for use in a vacuum injection method
US9682516B2 (en) 2010-06-25 2017-06-20 The Boeing Company Resin infusion of composite parts using a perforated caul sheet
US9682514B2 (en) 2010-06-25 2017-06-20 The Boeing Company Method of manufacturing resin infused composite parts using a perforated caul sheet
US20150125565A1 (en) * 2010-06-25 2015-05-07 The Boeing Company Resin Infusion of Composite Parts Using a Perforated Caul Sheet
US20130264751A1 (en) * 2010-06-25 2013-10-10 The Boeing Company Method of manufacturing resin infused composite parts using a perforated caul sheet
JP2012045863A (en) * 2010-08-27 2012-03-08 Universal Shipbuilding Corp Method for vacuum impregnation molding of frp product and device for manufacturing the same
JP2012086547A (en) * 2010-09-24 2012-05-10 Toray Ind Inc Method of producing fiber-reinforced plastic
US9205602B2 (en) 2010-09-24 2015-12-08 Toray Industries, Inc. Method for producing fiber-reinforced plastic
WO2012039409A1 (en) * 2010-09-24 2012-03-29 東レ株式会社 Method for producing fiber-reinforced plastic
JP2016137725A (en) * 2010-11-11 2016-08-04 ザ・ボーイング・カンパニーThe Boeing Company Resin infusion of composite parts using perforated caul sheet
US9919463B2 (en) 2011-02-28 2018-03-20 Mitsubishi Heavy Industries, Ltd. RTM molding device, RTM molding method, and semi-molded body
JP2012179760A (en) * 2011-02-28 2012-09-20 Mitsubishi Heavy Ind Ltd Rtm molding device, rtm molding method, and semi-molded body
WO2012117869A1 (en) * 2011-02-28 2012-09-07 三菱重工業株式会社 Rtm molding device, rtm molding method, and semi-molded body
RU2551517C2 (en) * 2011-02-28 2015-05-27 Мицубиси Хеви Индастрис, Лтд. Device for polymer transfer moulding (rtm), rtm moulding process and semi-finished moulded article
JP2012245623A (en) * 2011-05-25 2012-12-13 Univ Of Tokyo Method and device of molding composite material using porous mold
JP2013056665A (en) * 2011-09-07 2013-03-28 Airbus Operations Sas Method for fabrication of structure comprising skin and stiffener
JP2013132853A (en) * 2011-12-27 2013-07-08 Kawasaki Heavy Ind Ltd Method for manufacturing resin impregnated material
EP3173221A3 (en) * 2015-11-26 2017-09-13 Airbus Operations GmbH Resin barrier device for an infusion tool and infusion tool with resin barrier device
US10252479B2 (en) 2015-11-26 2019-04-09 Airbus Operations Gmbh Resin barrier device for an infusion tool
WO2018030470A1 (en) * 2016-08-09 2018-02-15 三菱重工業株式会社 Method for producing fiber-reinforced resin molded articles
US11040502B2 (en) 2016-08-09 2021-06-22 Mitsubishi Heavy Industries, Ltd. Method for producing fiber-reinforced resin molded articles
JPWO2018030470A1 (en) * 2016-08-09 2019-06-13 三菱重工業株式会社 Method of manufacturing fiber reinforced resin molded article
US10786957B2 (en) 2017-01-30 2020-09-29 General Electric Company System, method, and apparatus for infusing a composite structure
JP2018134863A (en) * 2017-01-30 2018-08-30 ゼネラル・エレクトリック・カンパニイ System, method, and apparatus for infusing composite structure
JP2018199325A (en) * 2017-05-26 2018-12-20 ザ・ボーイング・カンパニーThe Boeing Company Flexible vacuum securement of objects to complex surfaces
JP7111483B2 (en) 2017-05-26 2022-08-02 ザ・ボーイング・カンパニー Flexible vacuum fixation of objects to complex surfaces
US11654669B2 (en) 2017-05-26 2023-05-23 The Boeing Company Flexible vacuum securement of objects to complex surfaces
JP2019089239A (en) * 2017-11-14 2019-06-13 東京R&Dコンポジット工業株式会社 Breather cloth
US10759124B2 (en) 2017-11-21 2020-09-01 The Boeing Company Apparatus and method for manufacturing liquid molded composites using a discrete network of tool surface resin distribution grooves
US10807324B2 (en) 2017-11-21 2020-10-20 The Boeing Company Apparatus and method for manufacturing liquid molded composites using a discrete network of tool surface resin distribution grooves
EP3495122A1 (en) * 2017-11-21 2019-06-12 The Boeing Company Apparatus and method for manufacturing molded composites using a discrete network of tool surface resin distribution grooves
WO2022201453A1 (en) * 2021-03-25 2022-09-29 三菱重工業株式会社 Device for molding fiber-reinforced composite material and method for molding fiber-reinforced composite material
JPWO2022201453A1 (en) * 2021-03-25 2022-09-29
JP7225474B2 (en) 2021-03-25 2023-02-20 三菱重工業株式会社 Fiber-reinforced composite material molding device and fiber-reinforced composite material molding method

Also Published As

Publication number Publication date
JP4104422B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
JP2004181627A (en) Resin transfer molding method
US9120253B2 (en) Methods of RTM molding
US9205602B2 (en) Method for producing fiber-reinforced plastic
JP4542588B2 (en) RTM molding method
JPWO2018030470A1 (en) Method of manufacturing fiber reinforced resin molded article
DK176290B1 (en) Removable injection channels during the manufacture of laminates
JP4806866B2 (en) Vacuum RTM molding method
JP2009045924A (en) Frp production method
EP2327525A1 (en) Mold core for fabricating a part out of composite material
JP4432563B2 (en) Manufacturing method of FRP
JP4104413B2 (en) RTM molding method
JP2012245623A (en) Method and device of molding composite material using porous mold
JP2007176163A (en) Manufacturing process of fiber-reinforced plastic
JP2015003502A (en) Method and apparatus for production of fiber-reinforced plastic molding and wall of elevator
JP2020116771A (en) Molding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Ref document number: 4104422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees