JP2004180461A - Apparatus and method for controlling fuel cell powered vehicle - Google Patents

Apparatus and method for controlling fuel cell powered vehicle Download PDF

Info

Publication number
JP2004180461A
JP2004180461A JP2002345981A JP2002345981A JP2004180461A JP 2004180461 A JP2004180461 A JP 2004180461A JP 2002345981 A JP2002345981 A JP 2002345981A JP 2002345981 A JP2002345981 A JP 2002345981A JP 2004180461 A JP2004180461 A JP 2004180461A
Authority
JP
Japan
Prior art keywords
fuel cell
power
cell vehicle
regenerative
regenerative electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345981A
Other languages
Japanese (ja)
Other versions
JP3852841B2 (en
Inventor
Yoshinobu Hasuka
芳信 蓮香
Hibiki Saeki
響 佐伯
Kenichiro Ueda
健一郎 上田
Kazuhiro Wake
千大 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002345981A priority Critical patent/JP3852841B2/en
Publication of JP2004180461A publication Critical patent/JP2004180461A/en
Application granted granted Critical
Publication of JP3852841B2 publication Critical patent/JP3852841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accomplish smooth reacceleration by performing precooling during deceleration without giving a free running feeling in deceleration. <P>SOLUTION: A controller for fuel cell powered vehicle is provided with an operation control means (power consumption in regeneration control means 400). When regenerative power produced during deceleration exceeds the charging upper limit value of a power storing means, the operation controlling means causes the auxiliary machines in the cooling system of a fuel cell powered vehicle concerned to preferentially consume the regenerative power. Thus, regenerative power energy is ensured. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池によって駆動される燃料電池自動車の制御装置、及び燃料電池自動車の制御方法に関する。
【0002】
【従来の技術】
燃料電池自動車は電気自動車の一種であり、燃料電池を搭載して発電し、この発電電力で走行モータを駆動する。燃料電池は、空気供給系から酸化剤ガスとしての空気の供給を受けると共に、水素供給系から燃料ガスとしての水素の供給を受け、空気中の酸素と燃料ガス中の水素とから電気化学的に発電し、発電した電力を走行モータの他、コンプレッサ等の補機からなる電力消費系に供給する。
【0003】
ところで、この燃料電池自動車では、減速時や降坂時に走行モータに回生制動を行わせ、通常の自動車と同様の走行フィーリングが運転者に得られるようにしている。また、この回生制動により得られる回生電力を燃料電池の起動あるいは過渡状態に対処するために用意されたコンデンサや2次電池等の蓄電手段に蓄え、次の発進時や加速時等に利用することで燃費の改善が行われる。
このとき、蓄電手段が満充電に近い状態であってもなるべく回生電力量を多くして回生制動力を向上するために、トルクを発生させない無効電力を増やし、つまりコンプレッサ、冷却水循環ポンプ等燃料電池の補機の効率を落とし、回生電力を消費させるための制御が行われていた(特許文献1)。
【0004】
【特許文献1】
特開2002−204505号公報(段落番号13、18等)
【0005】
【発明が解決しようとする課題】
しかしならが、燃料電池の補機の効率を落として回生電力を消費させると、回生制動が効いて空走感はなくなるものの、効率を落とすために無駄な仕事によって熱が発生し、その熱を放熱するために、回生後の冷却系の負荷が高まるといった欠点があった。
【0006】
本発明は、前記事情に鑑みてなされたものであり、蓄電手段が満充電に近い場合でも回生電力量を確保することができる燃料電池自動車の制御装置、及び燃料電池自動車の制御方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記した課題を解決するために請求項1に記載の発明は、燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池または蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備えた燃料電池自動車の制御装置において、前記燃料電池自動車の減速時に発生する回生電力量が前記蓄電手段の充電上限値を超えるときに、回生電力を、前記補機のうち前記燃料電池自動車における冷却系の補機に優先的に消費させる運転制御手段を備えたことを特徴とする。
【0008】
請求項1に記載の発明によれば、運転制御手段が、燃料電池自動車の減速時に発生する回生電力量が蓄電手段の充電上限値を超えるときに、回生電力を、補機のうち燃料電池自動車における冷却系の補機に優先的に消費させることで回生電力量を確保できるため減速時に空走感を与えることなく、減速時に再加速時の発熱量の増大を予測した先取り的な冷却が可能となるため、迅速な再加速を実現できる。
【0009】
また、請求項2に記載の発明は、請求項1に記載の燃料電池自動車の制御装置において、前記運転制御手段は、車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された前記燃料電池自動車の冷却系の補機にその優先順位に応じて消費させることを特徴とする。
【0010】
請求項2に記載の発明によれば、運転制御手段が、目標アクセル回生電力量と蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された燃料電池自動車の冷却系の補機にその優先順位に応じて消費させることにより目標回生電力量を確保することができ、従って、減速時に空走感を与えることがなく、また、減速後の加速を想定して冷却系を先行して冷やすことができるため、迅速な再加速が可能となる。
【0011】
また、前記課題を解決した本発明は(請求項4)、燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池または蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備えた燃料電池自動車の減速時に発生させる回生電力量を、前記補機のうち前記燃料電池自動車における冷却系の補機に消費させることで、前記蓄電手段に充電しきれない回生電力の発生を許容する燃料電池自動車の制御方法である。
【0012】
この方法によれば、蓄電手段に充電できる電力量が少ない場合でも、冷却系の補機で電力を消費するので、蓄電手段に充電しきれない回生電力(余剰回生電力量)の発生を許容する。これにより、回生電力量を確保することができるので、回生制動を効かせて空走感を低減ないしは無くすことができる。しかも、冷却系の補機で消費させることで、減速の後に来る再加速時の発熱量の増大を先取りした冷却が可能となる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して詳細に説明する。図1は、本発明の制御装置及び制御方法が採用される燃料電池自動車の概略構造を説明するために引用した図、図2は、燃料電池自動車に使用される燃料電池システムの概略構成を示す模式図である。
【0014】
燃料電池自動車は電気自動車の一種であり、本実施形態では、走行モータ38は、床下に搭載された燃料電池システムFCSから電力供給を受ける仕組みになっている。燃料電池システムFCSは、燃料電池1(図3参照)を中核とした発電システムであり、燃料電池1は、燃料電池システムFCSが備える空気供給系2から酸化剤ガスとしての空気の供給を受けると共に、同じく燃料電池システムFCSが備える水素供給系3(水素タンクH2)から燃料ガスとしての水素の供給を受け、空気中の酸素と水素とから電気化学的に発電する。そして、発電した電力を走行モータ38(M)と、スーパチャージャ39(S/C)、冷却水ポンプ40、41(W/P)、ラジエタファン42,43等の補機からなる電力消費系に供給する。ここでスーパチャージャ39は、燃料電池1に酸化剤としての空気を供給する電動のエアコンプレッサである。
【0015】
なお、冷却水ポンプ40,41、ラジエタファン42,43およびラジエタ44,45は、走行モータ38を冷却するDT冷却系4、および燃料電池1を冷却するFC冷却系5、のそれぞれに設けられ、ここでは、FC冷却系5に設けられる冷却水ポンプ、ラジエタおよびラジエタファンを、それぞれFC冷却水ポンプ40、FCラジエタ44、FCラジエタファン42と称し、DT冷却系4に設けられる冷却水ポンプ、ラジエタおよびラジエタファンを、それぞれDT冷却水ポンプ、DTラジエタ45、DTラジエタファン43と称する。なお、総称するときには、例えばラジエタ44,45や冷却水ポンプ40,41のようにFC/DTを省略する。
ちなみに、ラジエタ44,45はいずれも燃料電池自動車の前面に配置され、冷却水ポンプ40、41によって循環される熱媒である冷却水の熱を系外に放出するための放熱手段となり動作する。
【0016】
図3は、本実施形態にかかる燃料電池自動車の運転制御装置における電力消費系を説明するために引用した図である。
図3において、燃料電池1は、蓄電手段としてのキャパシタ(電気二重層コンデンサ)32と共に電力消費系に電力を供給する。キャパシタ32は、燃料電池1が発電した電力および走行モータ38の回生電力を蓄えて燃料電池システムの始動時および過渡状態に対処する他、キャパシタ32の電圧と燃料電池1の発電電圧等との関係で充放電を繰り返し、燃料電池1の負荷変動を滑らかなものとする。
【0017】
具体的には、キャパシタ32は、加速時(運転者がアクセルペダルを踏み込んだとき)に、空気の増加指令に対してスーパチャージャ39の回転速度が上昇して空気の流量が増加し、その結果として燃料電池1の発電電力の増加が追従するまで走行モータ38に対して電力を供給し、燃料電池1の発電電力の不足分を補う。一方、減速時(運転者がアクセルペダルの踏み込みを解放したとき)に、空気の減少指令に対してスーパチャージャ39の回転速度が低下して空気の流量が減少し、その結果として燃料電池1の発電電力の減少が追従するまで燃料電池1の発電電力によって充電される。加えて、減速時は、走行モータ38による回生電流によっても充電される。なお、燃料電池1の電圧とキャパシタ32の電圧が同じ定常状態ではキャパシタ32の充放電は行われず、走行モータ38等が消費する電力は燃料電池1から供給される。
【0018】
なお、キャパシタ32の充電量はSOC(Status Of Charge)で表されるが、この値が大きいほどキャパシタ32はたくさん充電されていることを示す。一方、SOCの値が小さいほどキャパシタ32は少ししか充電されていないことを示す。ちなみに、SOCは、キャパシタ32の端子電圧の自乗に比例した値になる。
【0019】
次に、燃料電池1が発電した電力は、VCU(Voltage Control Unit)33を介して走行モータ38へ供給される他に、スーパチャージャ39、FC冷却水ポンプ40、12V負荷であるDT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43等補機にも供給される。キャパシタ32の蓄電電力もまた、前記した走行モータ38の他、前記した補機39…に供給される。なお、走行モータ38はPDU(Power Drive Unit)34を介して、スーパチャージャ39はスーパチャージャ(SC)インバータ35を介して、FC冷却水ポンプ40は冷却水ポンプインバータ36を介して、12V負荷(DT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43)は、12Vコンバータ37を介して、それぞれ燃料電池1やキャパシタ32から電力を供給される。
【0020】
VCU33は、リミッタ機能を持つ電力調整器であり、燃料電池1から取り出された電流を後述するECU(Electric Control Unit)50の制御の下で制限してPDU34、SCインバータ35、冷却水ポンプインバータ36、12Vコンバータ37に供給する。
【0021】
PDU34は、ECU50によって生成される走行モータ制御信号により走行モータ38の駆動を制御する。SCインバータ35はスーパチャージャ39に、冷却水ポンプインバータ36はFC冷却水ポンプ40に電力を供給する。SCインバータ35および冷却水ポンプインバータ36は、共にECU50から回転速度指令値を得てスーパチャージャ39およびFC冷却水ポンプ40の駆動制御を行う。12Vコンバータ37は、図示しない12Vバッテリに供給される電圧を12Vに電圧変換して12V負荷(DT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43)のそれぞれに供給する。
【0022】
なお、ECU50は、本実施形態における燃料電池自動車の制御装置の制御中枢となり、内蔵マイコンにより、前記した空気供給系2、水素供給系3、DT冷却系4、FC冷却系5、補機39〜45を含む電力消費系の全てを制御する。
本発明と特に関係するところでは、アクセルペダルから図示しないセンサを介してアクセル信号APを得、また、図示しない車速センサから車速信号VSPを得て走行モータ38の駆動を制御する走行モータ制御信号を生成し、また、燃料電池1に対して後述する目標発電電流指令値(IFCCMD)を設定し、燃料電池1の発電電流の制御も行う。
【0023】
更に、ECU50は、車速信号VSPと走行モータ38の回転速度を得、目標アクセル回生電力量を設定する。また、ECU50は、キャパシタ32のSOCを得、このSOCと設定した目標アクセル回生電力量とから、燃料電池自動車の減速時に発生させる回生電力量(目標アクセル回生電力量)がキャパシタ32の充電上限値を超えるときに、超える部分の余剰回生電力(キャパシタ32からすれば自己の容量の不足分)を、補機のうち燃料電池自動車における冷却系4,5の補機(FC冷却水ポンプ40、DT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43)に優先的に消費させる運転制御手段(次に説明する回生時電力消費制御手段400)としての機能も合わせ持つ。
【0024】
図4は、本実施形態の燃料電池自動車の制御装置における機能および動作を説明するために引用した機能ブロックである。この機能ブロック図に示されるのは、キャパシタ32の充電上限値を超えるときに、超える部分の回生電力量(余剰回生電力量)を、冷却系4,5の補機40〜43に優先的に消費させる回生時電力消費制御手段(運転制御手段)400である。
【0025】
この回生時電力消費制御手段400は、車速に基づいてアクセル全閉時の目標アクセル回生電力量を得、当該目標アクセル回生電力量とキャパシタ(蓄電手段)32の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベル判定のレベル値に応じて、余剰回生電力量をあらかじめ優先順位が付与された冷却系4,5の補機40,41…にその優先順位に応じて消費させる機能を有する。更に、この回生時電力消費制御手段400は、車速からアクセル全閉時の目標アクセル回生電力量を得、当該目標アクセル回生電力量とキャパシタ32の充電量との差によって決まる出力増加量を、燃料電池1の目標発電電流指令基準値に加算する機能を有する。
【0026】
この機能を実現するため、回生時電力消費制御手段400は、アクセル回生電力量マップ検索部401、アクセル回生電力量余剰レベル判断部402、偏差演算部403、FCラジエタファン消費電力増減判定部404、DTラジエタファン消費電力増減判定部405、FC冷却水ポンプ消費電力増減判定部406、DT冷却水ポンプ消費電力増減判定部407、PID制御部408、加算部409を含んで構成される。
【0027】
このうち、アクセル回生電力量マップ検索部401は、アクセルペダルの踏み込み解放時、車速(車速信号VSP)とモータ回転速度を入力して目標アクセル回生電力量を設定する機能を有する。アクセル回生電力量余剰レベル判断部402は、目標アクセル回生電力量とキャパシタ32の充電量であるSOCを入力して目標アクセル回生電力量の余剰量を求め、目標アクセル回生電力量の余剰レベルを0〜5までの6段階のフラグ(レベル値)として設定する機能を有する(図5参照)。偏差演算部403は、目標アクセル回生電力量とSOCとの偏差を演算する機能を有する。FCラジエタファン消費電力増減判定部404等、各判定部404〜407は、後で詳しく説明するように、レベル値に応じて冷却系4,5の補機40〜43の電力消費量増減を指示する機能を有する(消費電力量を増加する指示、増加した消費電力量をキャンセルする指示)。
【0028】
また、回生時電力消費制御手段400のPID制御部408は、偏差演算部403で演算された目標アクセル回生電力量とSOCの偏差(キャパシタ32に充電しきれない目標アクセル回生電力量)を入力してP(比例)、I(積分)、D(微分)の各処理を行って偏差がゼロになるように、IFCCMDベース値(目標発電電流指令基準値)に加算する値である出力増加量を設定する機能を有する。また、加算部409は、PID制御部408が設定した出力増加量(電流値)と、入力したIFCCMDベース値(電流値)を加算する機能を有する。ちなみに、出力増加量とIFCCMDベース値の加算量が大きな値になるほど、スーパチャージャ39の回転速度は速くなる(消費電力量が増加する)。
【0029】
次に、図4に示す機能ブロック図を参照しながら、図1〜図3に示す本実施形態の動作について詳細に説明する。また、各機能についての補足説明を行う。
【0030】
図4において(アクセルペダルの踏み込み解放時)、ECU50(回生時電力消費制御手段400のアクセル回生電力量マップ検索部401)は、まず、図示しないセンサを介して走行モータ38の回転速度と車速(車速信号VSP)を入力として得、アクセルペダルの踏み込み解放時の目標アクセル回生電力量をあらかじめ用意されたマップを検索して設定する。ここで用意される目標アクセル回生電力量を設定するマップ(目標アクセル回生電力量設定マップ)は、車速が早いほど、走行モータ38の回転速度が早いほど、大きな目標アクセル回生電力量が設定されるようになっている。
【0031】
次に、マップ検索の結果得られる目標アクセル回生電力量とキャパシタ32のSOCとを比較して、余剰回生電力量のレベル判定を行う。そしてそのレベル値に応じて燃料電池1の冷却系4,5の補機(DTラジエタファン43、DT冷却水ポンプ41、FCラジエタファン42、FC冷却水ポンプ40)を動作させてアクセル全閉時(アクセルペダルの踏み込み解放時)に発生する回生電力量を確保する構成になっている。
このとき、各消費電力増減判定部404〜407において消費電力の増減判定が行われ、この判定に基づいてDT冷却制御、FT冷却制御、あるいは燃料電池1の制御が行われる。この消費電力の増減判定は以下のように行われる。
【0032】
まず、図5に示すように、アクセルペダルの踏み込み解放時は、余剰回生電力量のレベルおよび補機39,40,41…の最大電力消費量に応じて、どの補機39,40,41…の消費電力を増加させるかが規定されている。図5では、余剰回生電力量が少ない場合は、最大消費電力が小さい補機であるFCラジエタファン42の消費電力が増加されるようになっている。
【0033】
ちなみに、この図5の表は、余剰回生電力量のレベルに応じて、余剰回生電力をあらかじめ優先順位が付与された冷却系4,5の補機40,41…に、その優先順位に応じて消費させるためのものである。なお、図5に示すように、レベル値は0から5までの6段階(6段階のフラグ)とし、レベル値が大きくなるにつれ余剰回生電力が大きくなるものとする。また、冷却系4,5の補機40,41は、右側に行くほど最大消費電力量が大きくなるものとする。ここで、キャパシタ32に充電できる電力量が目標アクセル回生電力量よりも大きな場合(レベル値0)は、最低限の回生電力量は確保されているため何も行わないこととする(消費電力の増加は行わない)。
【0034】
このように、レベル値0〜レベル値5までの6段階のフラグを用い、フラグの数字が大きくなるにつれて余剰回生電力を適切に消費できるようにするため、FCラジエタファン消費電力判定部404では、レベル値1〜レベル値5のフラグが入力された場合は、FCラジエタファン42の回転速度を増加するようにFC冷却系5を制御する。なお、回転速度が増加すると消費電力も増加する(以下同じである)。一方、レベル値0のフラグが入力された場合は、FCラジエタファン42の前記した回転速度の増加を取り止めるようにFC冷却系5を制御する。
【0035】
また、DTラジエタファン消費電力増減判定部405では、レベル値2〜レベル値5のフラグが入力された場合は、DTラジエタファン43の回転速度を増加するようにDT冷却系4の制御を行う。一方、レベル値0又はレベル値1のフラグが入力された場合は、DTラジエタファン43の前記した回転速度の増加を取り止めるようにDT冷却系4を制御する。
【0036】
また、FC冷却水ポンプ消費電力増減判定部406では、レベル値3〜レベル値5のフラグが入力された場合は、FC冷却水ポンプ40の回転速度を増加するようにFC冷却系5の制御を行う。一方、レベル値0〜レベル値2のフラグが入力された場合は、FC冷却水ポンプ40の前記した回転速度の増加を取り止めるようにFC冷却系5を制御する。
【0037】
また、DT冷却水ポンプ消費電力増減判定407では、レベル値4又はレベル値5のフラグが入力された場合は、DT冷却水ポンプ41の回転速度を増加するようにDT冷却系4の制御を行う。一方、レベル値0〜レベル値3のフラグが入力された場合は、DT冷却水ポンプ41の前記した回転速度の増加を取り止めるようにDT冷却系4を制御する。
【0038】
また、PID制御部408は、レベル値5のフラグが入力された場合は、偏差演算部403から入力した偏差に基づいて、IFCCMDベース値に加算する出力増加量を設定する制御を行う。一方、レベル値0〜レベル値4のフラグが入力された場合は、出力増加量を0にする。ちなみに、出力増加量が増えると、スーパチャージャ39の回転速度が増加するようになる。すなわち、燃料電池1に供給される空気量が増加する。
【0039】
これにより、余剰回生電力のレベルに応じて、消費電力の小さい補機(ここではFCラジエタファン42)から順に消費電力量が増加されていく。なお、増加する消費電力は、それぞれの補機40,41…ごとに設定されているものとする(例えば各補機40,41…ごとに増加するデューティを決めているものとする)。また、この実施形態では、余剰回生電力が最も大きいとき(レベル値5)は、最大消費電力が最も大きなスーパチャージャ39の消費電力が、偏差(余剰回生電力量)に応じて増加される。これにより、大きな余剰回生電力が生じても(目標アクセル回生電力量−SOCが大きくなって)、余剰回生電力を消費できる。
【0040】
このため、キャパシタ32に充電しきれない余剰回生電力が生じても(余剰回生電力の発生を許容しても)、回生制動をよく効かすことができ、空走感を低減ないしは無くすことができる。しかも、冷却を行うことができ、例えば、制動(減速)の次に来る加速の際に冷却能力が不足することを防止することができる。つまり、減速後に想定される再加速のための発熱量の増大を先取り的に冷却することで、スムーズな再加速を実現することができる。
【0041】
なお、発電電力指令値基準値に出力増加量を加算すると燃料電池1の発電量(発電電力量)が増加するが、発電量の増加は所定のタイムラグの後に生じるので、補機40…の消費電力を増加する一方で、全く同時に燃料電池1の発電量を増加することはない。
【0042】
ちなみに、前記説明した目標アクセル回生電力量設定マップは、余剰回生電力量を補機40…(及びスーパチャージャ39)で消費できることを踏まえて設定されている。
【0043】
なお、本発明は前記した実施形態に限定されることなく、幅広く変形実施することができる。例えば、レベル値により消費電力量を増加する機器の順序を変更してもよい。また、アクセル信号APはアクセルペダルが踏み込まれているか踏み込まれていないかのON/OFFを示す信号であったが、これをアクセル開度信号として、目標アクセル回生量をアクセル開度(アクセルの戻し量)に応じたものにしてもよい。この場合、前記した目標アクセル回生電力量設定マップは、アクセル戻し量の時間微分値が大きいほど目標アクセル回生電力量を大きく設定するマップになる。また、各補機40…の消費電力の増加は、補機40…の稼動状況を参照して、設定するようにしてもよい。また、走行モータ38からの回生電力量がキャパシタ32の充電上限値を超える場合のレベル判定(どの補機を動かすかの判定)は、例えばキャパシタ32に充電した後に判定しても、例えば回生電力が発生したときに判定してもよい。
【0044】
【発明の効果】
以上説明のように本発明(請求項1)によれば、回生電力量が蓄電手段の充電上限値を超える場合でも、回生電力を消費できるので、減速時の回生電力量を確保できる。このため、減速時に空走感を低減ないし無くすことができる。また、燃料電池の冷却系に優先的に回生電力を消費させることにより、例えば減速後の加速を想定して冷却系を先行冷却できるため、例えば迅速な再加速が可能となる。また、請求項2の発明によれば、余剰回生電力量のレベル判定を行うことで、蓄電手段から見て充電できる電力量がわずかな場合でも、より的確に回生電力量を確保することができる。また、本発明(請求項3)によれば、蓄電手段に充電できない回生電力の発生を許容できるので、回生制動により空走感を低減ないしは無くすことができる。また、この際、蓄電手段に充電しきれない回生電力を冷却系の作動に使用するので、例えば減速後の加速を想定して冷却系を先行冷却することができるため、例えば迅速な再加速が可能となる。
【図面の簡単な説明】
【図1】本発明が採用される燃料電池自動車の概略構造を説明するために引用した図である。
【図2】本発明において用いられる燃料電池システムの概略構成を示す模式図である。
【図3】本発明の燃料電池自動車の運転制御装置における電力消費系を説明するために引用した図である。
【図4】本発明の燃料電池自動車の制御装置における動作の流れを説明するために引用した機能ブロック図である。
【図5】本発明の燃料電池自動車の制御装置において用いられるアクセル余剰回生電力量レベルと補機の作動状態との関係を説明するために引用した図である。
【符号の説明】
31…燃料電池(FC)、32…キャパシタ(C:蓄電手段)、33…VCU、34…PDU、35…SCインバータ、36…冷却水インバータ、37…12Vコンバータ、38…走行モータ(M)、39…スーパチャージャ(S/C)、40…FC冷却水ポンプ、41…DT冷却水ポンプ、42…FCラジエタファン、43…DTラジエタファン,400…回生時電力消費制御手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a control device for a fuel cell vehicle driven by a fuel cell and a control method for the fuel cell vehicle.
[0002]
[Prior art]
2. Description of the Related Art A fuel cell vehicle is a type of electric vehicle, in which a fuel cell is mounted to generate power, and a driving motor is driven by the generated power. The fuel cell receives supply of air as an oxidizing gas from an air supply system and supply of hydrogen as a fuel gas from a hydrogen supply system, and electrochemically converts oxygen in the air and hydrogen in the fuel gas. The electric power is generated, and the generated electric power is supplied to a power consumption system including auxiliary equipment such as a compressor in addition to the traveling motor.
[0003]
By the way, in this fuel cell vehicle, the traveling motor performs regenerative braking at the time of deceleration or downhill, so that the driver can obtain a traveling feeling similar to that of a normal vehicle. In addition, the regenerative electric power obtained by this regenerative braking is stored in a power storage means such as a capacitor or a secondary battery prepared for coping with a start-up or a transient state of the fuel cell, and is used for the next start or acceleration. Improves fuel economy.
At this time, in order to increase the amount of regenerative electric power as much as possible and improve the regenerative braking force even when the electric storage means is almost fully charged, the reactive power that does not generate torque is increased, that is, the fuel cell such as a compressor, a cooling water circulation pump, etc. The control for reducing the efficiency of the auxiliary equipment and consuming the regenerative power has been performed (Patent Document 1).
[0004]
[Patent Document 1]
JP-A-2002-204505 (Paragraph Nos. 13 and 18 etc.)
[0005]
[Problems to be solved by the invention]
However, if the regenerative electric power is consumed by reducing the efficiency of the fuel cell auxiliary equipment, the regenerative braking is effective and the feeling of idling disappears, but heat is generated by wasted work to reduce the efficiency, and the heat is There is a drawback that the load on the cooling system after regeneration is increased due to heat dissipation.
[0006]
The present invention has been made in view of the above circumstances, and provides a control device for a fuel cell vehicle and a control method for a fuel cell vehicle, which can secure a regenerative electric energy even when the power storage means is almost fully charged. The purpose is to:
[0007]
[Means for Solving the Problems]
According to an aspect of the present invention, there is provided a fuel cell system comprising: a fuel cell; a power storage unit configured to store power generated by the fuel cell; and a fuel cell provided by at least one of the fuel cell and the power storage unit. In a control device for a fuel cell vehicle including a traveling motor for driving the cell vehicle and an auxiliary device necessary for driving the fuel cell vehicle, the amount of regenerative electric power generated at the time of deceleration of the fuel cell vehicle is determined by the electric storage means. And an operation control means for preferentially consuming the regenerative power to a cooling system accessory in the fuel cell vehicle among the accessories when the charging upper limit value is exceeded.
[0008]
According to the first aspect of the present invention, when the amount of regenerative electric power generated when the fuel cell vehicle decelerates exceeds the upper limit of charging of the power storage means, the operation control means supplies the regenerative electric power to the fuel cell vehicle among the auxiliary machines. The regenerative power can be secured by giving priority to the cooling system's auxiliary equipment, so that preemptive cooling that predicts an increase in the amount of heat generated during re-acceleration during deceleration is possible without giving a feeling of idle running during deceleration. Therefore, quick re-acceleration can be realized.
[0009]
According to a second aspect of the present invention, in the control device for a fuel cell vehicle according to the first aspect, the operation control means obtains a target accelerator regenerative electric energy based on a vehicle speed, and calculates the target accelerator regenerative electric energy. The level of the surplus regenerative electric energy is determined based on the charge amount of the power storage means, and the surplus regenerative electric power is given a priority in advance according to the level. It is characterized in that it is consumed according to.
[0010]
According to the invention described in claim 2, the operation control means determines the level of the surplus regenerative power based on the target accelerator regenerative power and the charge amount of the power storage means, and determines the surplus regenerative power according to the level. The target regenerative electric energy can be secured by causing the auxiliary equipment of the cooling system of the fuel cell vehicle to which the priority is assigned in advance according to the priority to be given, so that the feeling of idling at the time of deceleration is not given. In addition, since the cooling system can be cooled in advance by assuming acceleration after deceleration, rapid re-acceleration becomes possible.
[0011]
According to another aspect of the present invention, there is provided a fuel cell comprising: a fuel cell; a power storage unit for storing power generated by the fuel cell; and a fuel cell using power supplied by at least one of the fuel cell and the power storage unit. A regenerative electric power generated at the time of deceleration of the fuel cell vehicle including a traveling motor for driving the vehicle and an auxiliary device necessary for driving the fuel cell vehicle, a cooling system in the fuel cell vehicle among the auxiliary devices A method for controlling a fuel cell vehicle that allows the generation of regenerative power that cannot be fully charged in the power storage means by causing the auxiliary equipment to consume the auxiliary power.
[0012]
According to this method, even when the amount of power that can be charged to the power storage means is small, power is consumed by the auxiliary equipment of the cooling system, so that generation of regenerative power (excess regenerative power amount) that cannot be charged to the power storage means is allowed. . As a result, the amount of regenerative electric power can be secured, so that regenerative braking can be made effective to reduce or eliminate the feeling of idle running. In addition, by consuming the cooling system auxiliary equipment, it is possible to perform cooling in anticipation of an increase in the amount of heat generated at the time of re-acceleration after deceleration.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram cited for explaining a schematic structure of a fuel cell vehicle to which a control device and a control method of the present invention are adopted, and FIG. 2 shows a schematic configuration of a fuel cell system used in the fuel cell vehicle. It is a schematic diagram.
[0014]
The fuel cell vehicle is a kind of electric vehicle, and in the present embodiment, the traveling motor 38 receives power from a fuel cell system FCS mounted under the floor. The fuel cell system FCS is a power generation system having a fuel cell 1 (see FIG. 3) as a core. The fuel cell 1 receives supply of air as an oxidant gas from an air supply system 2 provided in the fuel cell system FCS. Similarly, hydrogen as a fuel gas is supplied from a hydrogen supply system 3 (hydrogen tank H2) provided in the fuel cell system FCS, and electrochemically generates power from oxygen and hydrogen in the air. Then, the generated electric power is converted into an electric power consumption system including auxiliary devices such as a traveling motor 38 (M), a supercharger 39 (S / C), cooling water pumps 40 and 41 (W / P), and radiator fans 42 and 43. Supply. Here, the supercharger 39 is an electric air compressor that supplies air as an oxidant to the fuel cell 1.
[0015]
The cooling water pumps 40 and 41, the radiator fans 42 and 43, and the radiators 44 and 45 are provided in the DT cooling system 4 for cooling the traveling motor 38 and the FC cooling system 5 for cooling the fuel cell 1, respectively. Here, the cooling water pump, the radiator, and the radiator fan provided in the FC cooling system 5 are referred to as an FC cooling water pump 40, an FC radiator 44, and an FC radiator fan 42, respectively, and the cooling water pump, the radiator And the radiator fan are referred to as a DT cooling water pump, a DT radiator 45, and a DT radiator fan 43, respectively. Note that when collectively referred to, FC / DT is omitted, for example, as in the radiators 44 and 45 and the cooling water pumps 40 and 41.
Incidentally, the radiators 44 and 45 are both disposed on the front of the fuel cell vehicle, and operate as heat radiating means for releasing heat of cooling water, which is a heat medium circulated by the cooling water pumps 40 and 41, out of the system.
[0016]
FIG. 3 is a diagram cited for describing a power consumption system in the operation control device of the fuel cell vehicle according to the present embodiment.
In FIG. 3, the fuel cell 1 supplies power to a power consuming system together with a capacitor (electric double layer capacitor) 32 as a power storage means. The capacitor 32 stores the electric power generated by the fuel cell 1 and the regenerative electric power of the traveling motor 38 to cope with the start-up and the transient state of the fuel cell system, and also relates to the relationship between the voltage of the capacitor 32 and the generated voltage of the fuel cell 1 and the like. The charge and discharge of the fuel cell 1 are repeated to make the load fluctuation of the fuel cell 1 smooth.
[0017]
Specifically, during acceleration (when the driver depresses the accelerator pedal), the capacitor 32 increases the rotation speed of the supercharger 39 in response to the air increase command, and the air flow rate increases. The power is supplied to the traveling motor 38 until the increase in the power generated by the fuel cell 1 follows, and the shortage of the power generated by the fuel cell 1 is compensated. On the other hand, at the time of deceleration (when the driver releases the accelerator pedal), the rotation speed of the supercharger 39 decreases in response to the air decrease command, and the air flow rate decreases. As a result, the fuel cell 1 The fuel cell 1 is charged with the generated power until the generated power decreases. In addition, at the time of deceleration, the vehicle is charged by the regenerative current generated by the traveling motor 38. In a steady state in which the voltage of the fuel cell 1 and the voltage of the capacitor 32 are the same, charging and discharging of the capacitor 32 are not performed, and the power consumed by the traveling motor 38 and the like is supplied from the fuel cell 1.
[0018]
The charge amount of the capacitor 32 is represented by SOC (Status Of Charge), and the larger the value, the more the capacitor 32 is charged. On the other hand, a smaller value of the SOC indicates that the capacitor 32 is less charged. Incidentally, the SOC has a value proportional to the square of the terminal voltage of the capacitor 32.
[0019]
Next, the electric power generated by the fuel cell 1 is supplied to the traveling motor 38 via a VCU (Voltage Control Unit) 33, and also a supercharger 39, an FC cooling water pump 40, and a DT cooling water pump 12V load. 41, FC radiator fan 42, DT radiator fan 43, and other auxiliary equipment. The stored electric power of the capacitor 32 is also supplied to the above-mentioned auxiliary machines 39 in addition to the above-mentioned traveling motor 38. The traveling motor 38 is connected via a PDU (Power Drive Unit) 34, the supercharger 39 is connected via a supercharger (SC) inverter 35, and the FC cooling water pump 40 is connected via a cooling water pump inverter 36 with a 12V load ( The DT cooling water pump 41, the FC radiator fan 42, and the DT radiator fan 43) are supplied with electric power from the fuel cell 1 and the capacitor 32 via the 12V converter 37, respectively.
[0020]
The VCU 33 is a power regulator having a limiter function, and limits a current taken out from the fuel cell 1 under the control of an ECU (Electric Control Unit) 50, which will be described later, to control the PDU 34, the SC inverter 35, and the cooling water pump inverter 36. , 12V converter 37.
[0021]
The PDU 34 controls driving of the traveling motor 38 according to a traveling motor control signal generated by the ECU 50. The SC inverter 35 supplies electric power to the supercharger 39, and the cooling water pump inverter 36 supplies electric power to the FC cooling water pump 40. The SC inverter 35 and the cooling water pump inverter 36 both obtain a rotational speed command value from the ECU 50 and control the driving of the supercharger 39 and the FC cooling water pump 40. The 12V converter 37 converts the voltage supplied to a 12V battery (not shown) to 12V and supplies the voltage to each of the 12V loads (DT cooling water pump 41, FC radiator fan 42, DT radiator fan 43).
[0022]
The ECU 50 serves as a control center of the control device of the fuel cell vehicle in the present embodiment, and uses the built-in microcomputer to control the air supply system 2, the hydrogen supply system 3, the DT cooling system 4, the FC cooling system 5, the auxiliary devices 39 to And 45 controls all power consumption systems.
In a part particularly related to the present invention, an accelerator signal AP is obtained from an accelerator pedal via a sensor (not shown), and a traveling motor control signal for controlling driving of the traveling motor 38 by obtaining a vehicle speed signal VSP from a vehicle speed sensor (not shown). It also generates and sets a target power generation current command value (IFCCMD) described later for the fuel cell 1 and controls the power generation current of the fuel cell 1.
[0023]
Further, the ECU 50 obtains the vehicle speed signal VSP and the rotation speed of the traveling motor 38, and sets a target accelerator regenerative electric energy. Further, the ECU 50 obtains the SOC of the capacitor 32 and, based on this SOC and the set target accelerator regenerative electric energy, the amount of regenerative electric power generated at the time of deceleration of the fuel cell vehicle (the target accelerator regenerative electric energy) is the charging upper limit value of the capacitor 32. Is exceeded, the surplus regenerative electric power of the surplus part (a shortage of its own capacity in the case of the capacitor 32) is supplied to the auxiliary equipment of the cooling systems 4 and 5 in the fuel cell vehicle (FC cooling water pump 40, DT). The cooling water pump 41, the FC radiator fan 42, and the DT radiator fan 43) also have a function as operation control means (regeneration power consumption control means 400 described below) for preferential consumption.
[0024]
FIG. 4 is a functional block cited for describing functions and operations in the control device of the fuel cell vehicle according to the present embodiment. This functional block diagram shows that when the charge upper limit value of the capacitor 32 is exceeded, the regenerative power amount (excess regenerative power amount) of the excess portion is given priority to the auxiliary devices 40 to 43 of the cooling systems 4 and 5. It is a regenerative power consumption control means (operation control means) 400 to be consumed.
[0025]
The regenerative power consumption control means 400 obtains a target accelerator regenerative electric energy when the accelerator is fully closed on the basis of the vehicle speed, and calculates the surplus regenerative electric power based on the target accelerator regenerative electric energy and the charge amount of the capacitor (power storage means) 32. The level of the amount is determined, and according to the level value of the level determination, the surplus regenerative power is consumed by the auxiliary devices 40, 41,... Of the cooling systems 4, 5, to which priorities have been assigned in advance, according to the priorities. Has functions. Further, the regenerative power consumption control means 400 obtains the target accelerator regenerative electric energy when the accelerator is fully closed from the vehicle speed, and determines the amount of output increase determined by the difference between the target accelerator regenerative electric energy and the charge amount of the capacitor 32 as a fuel. It has a function of adding to the target generated current command reference value of the battery 1.
[0026]
In order to realize this function, the regenerative power consumption control unit 400 includes an accelerator regenerative electric energy map search unit 401, an accelerator regenerative electric power surplus level determining unit 402, a deviation calculating unit 403, an FC radiator fan power increase / decrease determining unit 404, It includes a DT radiator fan power consumption increase / decrease determination unit 405, an FC cooling water pump power consumption increase / decrease determination unit 406, a DT cooling water pump power consumption increase / decrease determination unit 407, a PID control unit 408, and an addition unit 409.
[0027]
Among them, the accelerator regenerative electric energy map search unit 401 has a function of inputting the vehicle speed (vehicle speed signal VSP) and the motor rotation speed and setting the target accelerator regenerative electric energy when the accelerator pedal is released. Accelerator regenerative power surplus level determination section 402 obtains a surplus of the target accelerator regenerative power by inputting the target accelerator regenerative power and the SOC that is the charge amount of capacitor 32, and sets the surplus level of the target accelerator regenerative power to 0. It has a function of setting as six stages of flags (level values) from to (see FIG. 5). The deviation calculator 403 has a function of calculating a deviation between the target accelerator regenerative electric energy and the SOC. Each of the determination units 404 to 407, such as the FC radiator fan power consumption increase / decrease determination unit 404, instructs to increase or decrease the power consumption of the auxiliary devices 40 to 43 of the cooling systems 4 and 5 according to the level value, as described in detail later. (Instruction to increase power consumption, instruction to cancel the increased power consumption).
[0028]
Further, the PID control unit 408 of the regenerative power consumption control unit 400 receives the deviation between the target accelerator regenerative electric energy calculated by the deviation calculator 403 and the SOC (the target accelerator regenerative electric energy that cannot fully charge the capacitor 32). P (proportional), I (integral), and D (differential) are performed, and the output increase amount, which is a value to be added to the IFCCMD base value (target generated current command reference value), is set so that the deviation becomes zero. It has a function to set. Further, the adding unit 409 has a function of adding the output increase amount (current value) set by the PID control unit 408 and the input IFCCMD base value (current value). Incidentally, the larger the sum of the output increase amount and the IFCCMD base value, the higher the rotation speed of the supercharger 39 (the higher the power consumption amount).
[0029]
Next, the operation of the present embodiment shown in FIGS. 1 to 3 will be described in detail with reference to the functional block diagram shown in FIG. A supplementary explanation of each function will be given.
[0030]
In FIG. 4 (when the accelerator pedal is depressed and released), the ECU 50 (the accelerator regenerative electric energy map search unit 401 of the regenerative electric power consumption control unit 400) first determines the rotational speed and the vehicle speed of the traveling motor 38 via a sensor (not shown). A vehicle speed signal VSP) is obtained as an input, and a target accelerator regenerative electric energy at the time of depressing and releasing the accelerator pedal is set by searching a prepared map. In the map for setting the target accelerator regenerative electric energy prepared here (target accelerator regenerative electric energy setting map), a larger target accelerator regenerative electric energy is set as the vehicle speed is higher and the rotational speed of the traveling motor 38 is higher. It has become.
[0031]
Next, the level of the surplus regenerative power is determined by comparing the target accelerator regenerative power obtained as a result of the map search with the SOC of the capacitor 32. Then, according to the level value, the auxiliary devices (DT radiator fan 43, DT cooling water pump 41, FC radiator fan 42, FC cooling water pump 40) of the cooling systems 4 and 5 of the fuel cell 1 are operated, and the accelerator is fully closed. (When the accelerator pedal is depressed and released), the amount of regenerative electric power generated is ensured.
At this time, the power consumption increase / decrease determination units 404 to 407 perform the power consumption increase / decrease determination, and based on the determination, perform the DT cooling control, the FT cooling control, or the control of the fuel cell 1. This power consumption increase / decrease determination is performed as follows.
[0032]
First, as shown in FIG. 5, when the accelerator pedal is depressed and released, depending on the level of the surplus regenerative power and the maximum power consumption of the accessories 39, 40, 41,. It is stipulated whether the power consumption is increased. In FIG. 5, when the amount of surplus regenerative power is small, the power consumption of the FC radiator fan 42, which is an auxiliary machine with a small maximum power consumption, is increased.
[0033]
Incidentally, the table of FIG. 5 shows that the surplus regenerative power is supplied to the auxiliary devices 40, 41,... Of the cooling systems 4, 5 to which priorities are given in advance in accordance with the level of the surplus regenerative power. It is for consumption. As shown in FIG. 5, the level value is set to six levels from 0 to 5 (six levels of flags), and the surplus regenerative power increases as the level value increases. Further, it is assumed that the maximum power consumption of the auxiliary devices 40 and 41 of the cooling systems 4 and 5 increases toward the right side. Here, when the amount of power that can be charged to the capacitor 32 is larger than the target accelerator regenerative power (level value 0), nothing is performed because the minimum regenerative power is secured (the power consumption is reduced). No increase).
[0034]
In this way, the FC radiator fan power consumption determining unit 404 uses the six-stage flag from the level value 0 to the level value 5 so that the excess regenerative power can be appropriately consumed as the number of the flag increases. When the flag of the level value 1 to the level value 5 is input, the FC cooling system 5 is controlled so that the rotation speed of the FC radiator fan 42 is increased. The power consumption increases as the rotation speed increases (the same applies hereinafter). On the other hand, when the flag of the level value 0 is input, the FC cooling system 5 is controlled so as to stop the increase in the rotation speed of the FC radiator fan 42 described above.
[0035]
In addition, the DT radiator fan power consumption increase / decrease determination unit 405 controls the DT cooling system 4 so as to increase the rotation speed of the DT radiator fan 43 when the flag of the level value 2 to the level value 5 is input. On the other hand, when the flag of the level value 0 or the level value 1 is input, the DT cooling system 4 is controlled so as to stop the increase in the rotation speed of the DT radiator fan 43 described above.
[0036]
When the flag of the level value 3 to the level value 5 is input, the FC cooling water pump power consumption increase / decrease determination unit 406 controls the FC cooling system 5 to increase the rotation speed of the FC cooling water pump 40. Do. On the other hand, when the flag of the level value 0 to the level value 2 is input, the FC cooling system 5 is controlled so as to stop the increase in the rotation speed of the FC cooling water pump 40 described above.
[0037]
In the DT cooling water pump power consumption increase / decrease determination 407, when the flag of the level value 4 or the level value 5 is input, the DT cooling system 4 is controlled so as to increase the rotation speed of the DT cooling water pump 41. . On the other hand, when the flag of the level value 0 to the level value 3 is input, the DT cooling system 4 is controlled so as to stop the increase in the rotation speed of the DT cooling water pump 41 described above.
[0038]
In addition, when the flag of the level value 5 is input, the PID control unit 408 performs control to set an output increase amount to be added to the IFCCMD base value based on the deviation input from the deviation calculation unit 403. On the other hand, when the flag of the level value 0 to the level value 4 is input, the output increase amount is set to 0. Incidentally, as the output increase amount increases, the rotation speed of the supercharger 39 increases. That is, the amount of air supplied to the fuel cell 1 increases.
[0039]
As a result, the power consumption is gradually increased in accordance with the level of the surplus regenerative power, starting from the auxiliary machine (here, the FC radiator fan 42) with the lowest power consumption. It is assumed that the increased power consumption is set for each of the auxiliary devices 40, 41 (for example, the duty to be increased is determined for each of the auxiliary devices 40, 41,...). In this embodiment, when the surplus regenerative power is the largest (level value 5), the power consumption of the supercharger 39 having the largest maximum power consumption is increased in accordance with the deviation (the surplus regenerative power amount). As a result, even if large surplus regenerative power is generated (the target accelerator regenerative power amount-SOC increases), the surplus regenerative power can be consumed.
[0040]
Therefore, even if surplus regenerative power that cannot be fully charged in the capacitor 32 is generated (even if generation of surplus regenerative power is allowed), regenerative braking can be effectively performed, and a feeling of idling can be reduced or eliminated. . In addition, cooling can be performed, and for example, it is possible to prevent shortage of cooling capacity at the time of acceleration following braking (deceleration). In other words, smooth re-acceleration can be realized by proactively cooling the increase in the amount of heat generated for re-acceleration assumed after deceleration.
[0041]
Note that when the amount of increase in output is added to the reference value of the generated electric power command value, the amount of generated electric power (the amount of generated electric power) of the fuel cell 1 increases. However, since the increase in the amount of generated electric power occurs after a predetermined time lag, the consumption of the auxiliary devices 40. While increasing the power, the amount of power generated by the fuel cell 1 does not increase at the same time.
[0042]
The target accelerator regenerative electric energy setting map described above is set based on the fact that the surplus regenerative electric energy can be consumed by the auxiliary devices 40 (and the supercharger 39).
[0043]
The present invention is not limited to the above-described embodiment, but can be widely modified and implemented. For example, the order of the devices whose power consumption is increased by the level value may be changed. The accelerator signal AP is a signal indicating ON / OFF whether the accelerator pedal is depressed or not depressed. The accelerator signal AP is used as an accelerator opening signal to determine the target accelerator regeneration amount and the accelerator opening (return of the accelerator). Amount). In this case, the target accelerator regenerative electric energy setting map is a map in which the target accelerator regenerative electric energy is set to be larger as the time differential value of the accelerator return amount is larger. Further, the increase in the power consumption of each of the auxiliary devices 40 may be set with reference to the operation status of the auxiliary devices 40. When the amount of regenerative electric power from the traveling motor 38 exceeds the upper limit of the charging of the capacitor 32, the level determination (determination of which auxiliary machine is to be operated) may be performed, for example, after the capacitor 32 is charged. May be determined when the error occurs.
[0044]
【The invention's effect】
As described above, according to the present invention (claim 1), the regenerative power can be consumed even when the regenerative power exceeds the upper limit of charging of the power storage means, so that the regenerative power during deceleration can be secured. For this reason, the feeling of idle running can be reduced or eliminated during deceleration. Further, by causing the cooling system of the fuel cell to preferentially consume the regenerative electric power, the cooling system can be pre-cooled, for example, assuming acceleration after deceleration, so that, for example, rapid re-acceleration becomes possible. According to the second aspect of the present invention, by determining the level of the surplus regenerative power, the regenerative power can be more accurately secured even when the amount of power that can be charged from the power storage means is small. . Further, according to the present invention (claim 3), generation of regenerative power that cannot be charged in the power storage means can be allowed, so that a feeling of idle running can be reduced or eliminated by regenerative braking. Also, at this time, since the regenerative power that cannot be fully charged in the power storage means is used for the operation of the cooling system, the cooling system can be pre-cooled, for example, assuming acceleration after deceleration. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a diagram cited for explaining a schematic structure of a fuel cell vehicle to which the present invention is applied.
FIG. 2 is a schematic diagram showing a schematic configuration of a fuel cell system used in the present invention.
FIG. 3 is a diagram cited for explaining a power consumption system in the operation control device of the fuel cell vehicle according to the present invention.
FIG. 4 is a functional block diagram cited for describing a flow of operation in the control device of the fuel cell vehicle according to the present invention.
FIG. 5 is a diagram cited for explaining a relationship between an accelerator surplus regenerative electric energy level used in the control device of the fuel cell vehicle of the present invention and an operating state of an auxiliary machine.
[Explanation of symbols]
31: fuel cell (FC), 32: capacitor (C: power storage means), 33: VCU, 34: PDU, 35: SC inverter, 36: cooling water inverter, 37: 12V converter, 38: traveling motor (M), 39: Supercharger (S / C), 40: FC cooling water pump, 41: DT cooling water pump, 42: FC radiator fan, 43: DT radiator fan, 400: Regeneration power consumption control means

Claims (3)

燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池または蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備えた燃料電池自動車の制御装置において、
前記燃料電池自動車の減速時に発生する前記走行モータからの回生電力量が前記蓄電手段の充電上限値を超えるときに、回生電力を、前記補機のうち前記燃料電池自動車における冷却系の補機に優先的に消費させる運転制御手段を備えたことを特徴とする燃料電池自動車の制御装置。
A fuel cell, a power storage means for storing power generated by the fuel cell, a traction motor for driving the fuel cell vehicle with power supplied by at least one of the fuel cell and the power storage means, and a power source for driving the fuel cell vehicle. In a control device for a fuel cell vehicle equipped with necessary auxiliary equipment,
When the amount of regenerative electric power from the traveling motor generated at the time of deceleration of the fuel cell vehicle exceeds a charging upper limit value of the power storage means, the regenerative electric power is supplied to a cooling system auxiliary device of the fuel cell vehicle among the auxiliary devices. A control device for a fuel cell vehicle, comprising: operation control means for preferentially consuming.
前記運転制御手段は、
車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された前記燃料電池自動車の冷却系の補機にその優先順位に応じて消費させることを特徴とする請求項1に記載の燃料電池自動車の制御装置。
The operation control means,
A target accelerator regenerative electric energy is obtained based on the vehicle speed, a level determination of the surplus regenerative electric energy is performed based on the target accelerator regenerative electric energy and the charge amount of the power storage means, and the excess regenerative electric power is prioritized in advance according to the level. 2. The control device for a fuel cell vehicle according to claim 1, wherein the assigned auxiliary equipment of the cooling system of the fuel cell vehicle is consumed according to the priority order. 3.
燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池または蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備えた燃料電池自動車の制御方法であって、
前記燃料電池自動車の減速時に発生させる前記走行モータからの回生電力量を、前記補機のうち前記燃料電池自動車における冷却系の補機に消費させることで、前記蓄電手段に充電しきれない回生電力の発生を許容することを特徴とする燃料電池自動車の制御方法。
A fuel cell, a power storage means for storing power generated by the fuel cell, a traction motor for driving the fuel cell vehicle with power supplied by at least one of the fuel cell and the power storage means, and a power source for driving the fuel cell vehicle. A control method for a fuel cell vehicle equipped with necessary auxiliary equipment,
The regenerative electric power generated during the deceleration of the fuel cell vehicle from the traveling motor is consumed by a cooling system auxiliary device of the fuel cell vehicle among the auxiliary devices, so that the regenerative electric power that cannot be completely charged in the power storage means A method for controlling a fuel cell vehicle, wherein generation of a fuel cell is permitted.
JP2002345981A 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle Expired - Fee Related JP3852841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345981A JP3852841B2 (en) 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345981A JP3852841B2 (en) 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2004180461A true JP2004180461A (en) 2004-06-24
JP3852841B2 JP3852841B2 (en) 2006-12-06

Family

ID=32707026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345981A Expired - Fee Related JP3852841B2 (en) 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP3852841B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438984B2 (en) 2005-03-31 2008-10-21 Honda Motor Co., Ltd. Electric system for fuel cell, fuel cell vehicle, and method of supplying electric power
US7527112B2 (en) 2005-03-31 2009-05-05 Honda Motor Co., Ltd. Electric system for fuel cell, fuel cell vehicle, and method of supplying electric power
JP2010238474A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Fuel cell system
JP2011116329A (en) * 2009-12-03 2011-06-16 Hyundai Motor Co Ltd Motor driving system of hybrid vehicle and failure control method therefor
JP2013017330A (en) * 2011-07-05 2013-01-24 Toyota Motor Corp Power conversion apparatus
JP2013110906A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Vehicle, method and program for diagnosing energy storage device
JP2013116703A (en) * 2011-12-05 2013-06-13 Denso Corp Vehicle power management system, vehicle power information managing apparatus and vehicle electrical load
US8471400B2 (en) 2011-09-01 2013-06-25 Hyundai Motor Company Vehicle generator control system and method for saving fuel
US8566003B2 (en) 2011-08-24 2013-10-22 Hyundai Motor Company Vehicle generator control system and method for saving fuel
JP2015123803A (en) * 2013-12-25 2015-07-06 日立建機株式会社 Hybrid work vehicle
JP2016010221A (en) * 2014-06-24 2016-01-18 トヨタ自動車株式会社 Vehicle and vehicle control method
JP2017157270A (en) * 2016-02-29 2017-09-07 トヨタ自動車株式会社 Fuel battery system
JP2018174031A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Fuel cell vehicle
GB2581483A (en) * 2019-02-15 2020-08-26 Avid Tech Limited Energy storage and release in an electric vehicle
JP2021019368A (en) * 2019-07-17 2021-02-15 トヨタ自動車株式会社 Hybrid vehicle
JP2021136814A (en) * 2020-02-28 2021-09-13 株式会社シマノ Man-power drive vehicle control device
JP2021184681A (en) * 2020-05-22 2021-12-02 トヨタ自動車株式会社 vehicle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7438984B2 (en) 2005-03-31 2008-10-21 Honda Motor Co., Ltd. Electric system for fuel cell, fuel cell vehicle, and method of supplying electric power
US7527112B2 (en) 2005-03-31 2009-05-05 Honda Motor Co., Ltd. Electric system for fuel cell, fuel cell vehicle, and method of supplying electric power
US8293414B2 (en) 2005-03-31 2012-10-23 Honda Motor Co., Ltd. Electric system for fuel cell, fuel cell vehicle, and method of supplying electric power
US8343676B2 (en) 2005-03-31 2013-01-01 Honda Motor Co., Ltd. Fuel cell vehicle, and method of supplying electric power
JP2010238474A (en) * 2009-03-31 2010-10-21 Honda Motor Co Ltd Fuel cell system
JP2011116329A (en) * 2009-12-03 2011-06-16 Hyundai Motor Co Ltd Motor driving system of hybrid vehicle and failure control method therefor
JP2013017330A (en) * 2011-07-05 2013-01-24 Toyota Motor Corp Power conversion apparatus
US8566003B2 (en) 2011-08-24 2013-10-22 Hyundai Motor Company Vehicle generator control system and method for saving fuel
US8471400B2 (en) 2011-09-01 2013-06-25 Hyundai Motor Company Vehicle generator control system and method for saving fuel
JP2013110906A (en) * 2011-11-24 2013-06-06 Toyota Motor Corp Vehicle, method and program for diagnosing energy storage device
JP2013116703A (en) * 2011-12-05 2013-06-13 Denso Corp Vehicle power management system, vehicle power information managing apparatus and vehicle electrical load
JP2015123803A (en) * 2013-12-25 2015-07-06 日立建機株式会社 Hybrid work vehicle
JP2016010221A (en) * 2014-06-24 2016-01-18 トヨタ自動車株式会社 Vehicle and vehicle control method
CN105313677A (en) * 2014-06-24 2016-02-10 丰田自动车株式会社 Vehicle and control method for vehicle
US9604533B2 (en) 2014-06-24 2017-03-28 Toyota Jidosha Kabushiki Kaisha Vehicle and control method for vehicle
JP2017157270A (en) * 2016-02-29 2017-09-07 トヨタ自動車株式会社 Fuel battery system
JP2018174031A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Fuel cell vehicle
GB2581483A (en) * 2019-02-15 2020-08-26 Avid Tech Limited Energy storage and release in an electric vehicle
JP2021019368A (en) * 2019-07-17 2021-02-15 トヨタ自動車株式会社 Hybrid vehicle
JP7156194B2 (en) 2019-07-17 2022-10-19 トヨタ自動車株式会社 hybrid vehicle
JP2021136814A (en) * 2020-02-28 2021-09-13 株式会社シマノ Man-power drive vehicle control device
JP7409905B2 (en) 2020-02-28 2024-01-09 株式会社シマノ Control device for human-powered vehicles
JP2021184681A (en) * 2020-05-22 2021-12-02 トヨタ自動車株式会社 vehicle
JP7347325B2 (en) 2020-05-22 2023-09-20 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
JP3852841B2 (en) 2006-12-06

Similar Documents

Publication Publication Date Title
JP4020646B2 (en) Control method of hybrid electric vehicle
JP3596468B2 (en) Control device for fuel cell vehicle
JP2004180461A (en) Apparatus and method for controlling fuel cell powered vehicle
US6920948B2 (en) DC power supply using fuel cell
JP4378735B1 (en) Fuel cell system
US7847513B2 (en) System for controlling the power output of a fuel cell stack and battery
JP5958868B2 (en) Power generation control device
JP2001275205A (en) Controller for combination system of secondary battery and generator
JP6227003B2 (en) Charge / discharge system
JP2002218606A (en) Electric power control device for moving body
JP4534122B2 (en) Hybrid system
JP2017011940A (en) Control method of fuel-cell automobile, and fuel-cell automobile
WO2014103823A1 (en) Fuel cell system
JP4857707B2 (en) Fuel cell cathode gas control method and fuel cell system
JP2004222376A (en) Power supply system
JP2002058111A (en) Generation controller for hybrid electric vehicle
JP2001292506A (en) Control apparatus for hybrid vehicle
JP6104635B2 (en) Electric power system and fuel cell vehicle
JP3700061B2 (en) Electric vehicle and performance setting method
JP2002203583A (en) Control equipment of fuel cell system
JP2005312243A (en) Regeneration power control device of moving body
JP3555438B2 (en) Compressor control device for vehicle fuel cell system
JP3824896B2 (en) Fuel cell vehicle
KR100482607B1 (en) Power limited control system of fuel cell hybrid electric vehicle and method thereof
JP2002141091A (en) Control device of fuel cell power supply

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140915

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees