JP3852841B2 - Control device and control method for fuel cell vehicle - Google Patents

Control device and control method for fuel cell vehicle Download PDF

Info

Publication number
JP3852841B2
JP3852841B2 JP2002345981A JP2002345981A JP3852841B2 JP 3852841 B2 JP3852841 B2 JP 3852841B2 JP 2002345981 A JP2002345981 A JP 2002345981A JP 2002345981 A JP2002345981 A JP 2002345981A JP 3852841 B2 JP3852841 B2 JP 3852841B2
Authority
JP
Japan
Prior art keywords
fuel cell
power
amount
regenerative power
cell vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002345981A
Other languages
Japanese (ja)
Other versions
JP2004180461A (en
Inventor
芳信 蓮香
響 佐伯
健一郎 上田
千大 和氣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002345981A priority Critical patent/JP3852841B2/en
Publication of JP2004180461A publication Critical patent/JP2004180461A/en
Application granted granted Critical
Publication of JP3852841B2 publication Critical patent/JP3852841B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池によって駆動される燃料電池自動車の制御装置、及び燃料電池自動車の制御方法に関する。
【0002】
【従来の技術】
燃料電池自動車は電気自動車の一種であり、燃料電池を搭載して発電し、この発電電力で走行モータを駆動する。燃料電池は、空気供給系から酸化剤ガスとしての空気の供給を受けると共に、水素供給系から燃料ガスとしての水素の供給を受け、空気中の酸素と燃料ガス中の水素とから電気化学的に発電し、発電した電力を走行モータの他、コンプレッサ等の補機からなる電力消費系に供給する。
【0003】
ところで、この燃料電池自動車では、減速時や降坂時に走行モータに回生制動を行わせ、通常の自動車と同様の走行フィーリングが運転者に得られるようにしている。また、この回生制動により得られる回生電力を燃料電池の起動あるいは過渡状態に対処するために用意されたコンデンサや2次電池等の蓄電手段に蓄え、次の発進時や加速時等に利用することで燃費の改善が行われる。
このとき、蓄電手段が満充電に近い状態であってもなるべく回生電力量を多くして回生制動力を向上するために、トルクを発生させない無効電力を増やし、つまりコンプレッサ、冷却水循環ポンプ等燃料電池の補機の効率を落とし、回生電力を消費させるための制御が行われていた(特許文献1)。
【0004】
【特許文献1】
特開2002−204505号公報(段落番号13、18等)
【0005】
【発明が解決しようとする課題】
しかしならが、燃料電池の補機の効率を落として回生電力を消費させると、回生制動が効いて空走感はなくなるものの、効率を落とすために無駄な仕事によって熱が発生し、その熱を放熱するために、回生後の冷却系の負荷が高まるといった欠点があった。
【0006】
本発明は、前記事情に鑑みてなされたものであり、蓄電手段が満充電に近い場合でも回生電力量を確保することができる燃料電池自動車の制御装置、及び燃料電池自動車の制御方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
記課題を解決するための手段として、本発明は、燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池及び蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備え、前記補機は、前記燃料電池を冷却するために冷却水を循環させるポンプ及び当該循環する冷却水を冷却させるファンである複数の冷却系補機を備える、燃料電池自動車の制御装置であって、前記燃料電池自動車の減速時に発生する前記走行モータからの回生電力量が前記蓄電手段の充電上限値を超えるときに、回生電力を、前記冷系補機に優先的に消費させる運転制御手段を備えたことを特徴とする燃料電池自動車の制御装置である。
【0008】
このような燃料電池自動車の制御装置によれば、運転制御手段が、燃料電池自動車の減速時に発生する回生電力量が蓄電手段の充電上限値を超えるときに、回生電力を、補機のうち燃料電池自動車における冷却系の補機に優先的に消費させることで回生電力量を確保できるため減速時に空走感を与えることなく、減速時に再加速時の発熱量の増大を予測した先取り的な冷却が可能となるため、迅速な再加速を実現できる。
【0009】
また、前記運転制御手段は、車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて、前記複数の冷却系補機の全体電力消費量を増減させることを特徴とする燃料電池自動車の制御装置である。
【0010】
また、前記運転制御手段は、車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された前記冷却系補機にその優先順位に応じて消費させることを特徴とする燃料電池自動車の制御装置である。
このような燃料電池自動車の制御装置によれば、運転制御手段が、目標アクセル回生電力量と蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された燃料電池自動車の冷却系の補機にその優先順位に応じて消費させることにより目標回生電力量を確保することができ、従って、減速時に空走感を与えることがなく、また、減速後の加速を想定して冷却系を先行して冷やすことができるため、迅速な再加速が可能となる。
【0011】
また、前記課題を解決するための手段として、本発明は、燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池及び蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備え、前記補機は、前記燃料電池を冷却するために冷却水を循環させるポンプ及び当該循環する冷却水を冷却させるファンである複数の冷却系補機を備える、燃料電池自動車の制御方法であって、前記燃料電池自動車の減速時に発生させる前記走行モータからの回生電力量を、前記冷系補機に優先的に消費させることで、前記蓄電手段に充電しきれない回生電力の発生を許容することを特徴とする燃料電池自動車の制御方法である。
このような燃料電池自動車の制御方法によれば、蓄電手段に充電できる電力量が少ない場合でも、冷却系の補機で電力を消費するので、蓄電手段に充電しきれない回生電力(余剰回生電力量)の発生を許容する。これにより、回生電力量を確保することができるので、回生制動を効かせて空走感を低減ないしは無くすことができる。しかも、冷却系の補機で消費させることで、減速の後に来る再加速時の発熱量の増大を先取りした冷却が可能となる。
【0012】
また、車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて、前記複数の冷却系補機の全体消費電力量を増減させることを特徴とする燃料電池自動車の制御方法である。
さらに、車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された前記冷却系補機にその優先順位に応じて消費させることを特徴とする燃料電池自動車の制御方法である。
【0013】
【発明の実施の形態】
以下、本発明の実施形態を、図面を参照して詳細に説明する。図1は、本発明の制御装置及び制御方法が採用される燃料電池自動車の概略構造を説明するために引用した図、図2は、燃料電池自動車に使用される燃料電池システムの概略構成を示す模式図である。
【0014】
燃料電池自動車は電気自動車の一種であり、本実施形態では、走行モータ38は、床下に搭載された燃料電池システムFCSから電力供給を受ける仕組みになっている。燃料電池システムFCSは、燃料電池1(図3参照)を中核とした発電システムであり、燃料電池1は、燃料電池システムFCSが備える空気供給系2から酸化剤ガスとしての空気の供給を受けると共に、同じく燃料電池システムFCSが備える水素供給系3(水素タンクH2)から燃料ガスとしての水素の供給を受け、空気中の酸素と水素とから電気化学的に発電する。そして、発電した電力を走行モータ38(M)と、スーパチャージャ39(S/C)、冷却水ポンプ40、41(W/P)、ラジエタファン42,43等の補機からなる電力消費系に供給する。ここでスーパチャージャ39は、燃料電池1に酸化剤としての空気を供給する電動のエアコンプレッサである。
【0015】
なお、冷却水ポンプ40,41、ラジエタファン42,43およびラジエタ44,45は、走行モータ38を冷却するDT冷却系4、および燃料電池1を冷却するFC冷却系5、のそれぞれに設けられ、ここでは、FC冷却系5に設けられる冷却水ポンプ、ラジエタおよびラジエタファンを、それぞれFC冷却水ポンプ40、FCラジエタ44、FCラジエタファン42と称し、DT冷却系4に設けられる冷却水ポンプ、ラジエタおよびラジエタファンを、それぞれDT冷却水ポンプ、DTラジエタ45、DTラジエタファン43と称する。なお、総称するときには、例えばラジエタ44,45や冷却水ポンプ40,41のようにFC/DTを省略する。
ちなみに、ラジエタ44,45はいずれも燃料電池自動車の前面に配置され、冷却水ポンプ40、41によって循環される熱媒である冷却水の熱を系外に放出するための放熱手段となり動作する。
【0016】
図3は、本実施形態にかかる燃料電池自動車の運転制御装置における電力消費系を説明するために引用した図である。
図3において、燃料電池1は、蓄電手段としてのキャパシタ(電気二重層コンデンサ)32と共に電力消費系に電力を供給する。キャパシタ32は、燃料電池1が発電した電力および走行モータ38の回生電力を蓄えて燃料電池システムの始動時および過渡状態に対処する他、キャパシタ32の電圧と燃料電池1の発電電圧等との関係で充放電を繰り返し、燃料電池1の負荷変動を滑らかなものとする。
【0017】
具体的には、キャパシタ32は、加速時(運転者がアクセルペダルを踏み込んだとき)に、空気の増加指令に対してスーパチャージャ39の回転速度が上昇して空気の流量が増加し、その結果として燃料電池1の発電電力の増加が追従するまで走行モータ38に対して電力を供給し、燃料電池1の発電電力の不足分を補う。一方、減速時(運転者がアクセルペダルの踏み込みを解放したとき)に、空気の減少指令に対してスーパチャージャ39の回転速度が低下して空気の流量が減少し、その結果として燃料電池1の発電電力の減少が追従するまで燃料電池1の発電電力によって充電される。加えて、減速時は、走行モータ38による回生電流によっても充電される。なお、燃料電池1の電圧とキャパシタ32の電圧が同じ定常状態ではキャパシタ32の充放電は行われず、走行モータ38等が消費する電力は燃料電池1から供給される。
【0018】
なお、キャパシタ32の充電量はSOC(Status Of Charge)で表されるが、この値が大きいほどキャパシタ32はたくさん充電されていることを示す。一方、SOCの値が小さいほどキャパシタ32は少ししか充電されていないことを示す。ちなみに、SOCは、キャパシタ32の端子電圧の自乗に比例した値になる。
【0019】
次に、燃料電池1が発電した電力は、VCU(Voltage Control Unit)33を介して走行モータ38へ供給される他に、スーパチャージャ39、FC冷却水ポンプ40、12V負荷であるDT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43等補機にも供給される。キャパシタ32の蓄電電力もまた、前記した走行モータ38の他、前記した補機39…に供給される。なお、走行モータ38はPDU(Power Drive Unit)34を介して、スーパチャージャ39はスーパチャージャ(SC)インバータ35を介して、FC冷却水ポンプ40は冷却水ポンプインバータ36を介して、12V負荷(DT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43)は、12Vコンバータ37を介して、それぞれ燃料電池1やキャパシタ32から電力を供給される。
【0020】
VCU33は、リミッタ機能を持つ電力調整器であり、燃料電池1から取り出された電流を後述するECU(Electric Control Unit)50の制御の下で制限してPDU34、SCインバータ35、冷却水ポンプインバータ36、12Vコンバータ37に供給する。
【0021】
PDU34は、ECU50によって生成される走行モータ制御信号により走行モータ38の駆動を制御する。SCインバータ35はスーパチャージャ39に、冷却水ポンプインバータ36はFC冷却水ポンプ40に電力を供給する。SCインバータ35および冷却水ポンプインバータ36は、共にECU50から回転速度指令値を得てスーパチャージャ39およびFC冷却水ポンプ40の駆動制御を行う。12Vコンバータ37は、図示しない12Vバッテリに供給される電圧を12Vに電圧変換して12V負荷(DT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43)のそれぞれに供給する。
【0022】
なお、ECU50は、本実施形態における燃料電池自動車の制御装置の制御中枢となり、内蔵マイコンにより、前記した空気供給系2、水素供給系3、DT冷却系4、FC冷却系5、補機39〜45を含む電力消費系の全てを制御する。
本発明と特に関係するところでは、アクセルペダルから図示しないセンサを介してアクセル信号APを得、また、図示しない車速センサから車速信号VSPを得て走行モータ38の駆動を制御する走行モータ制御信号を生成し、また、燃料電池1に対して後述する目標発電電流指令値(IFCCMD)を設定し、燃料電池1の発電電流の制御も行う。
【0023】
更に、ECU50は、車速信号VSPと走行モータ38の回転速度を得、目標アクセル回生電力量を設定する。また、ECU50は、キャパシタ32のSOCを得、このSOCと設定した目標アクセル回生電力量とから、燃料電池自動車の減速時に発生させる回生電力量(目標アクセル回生電力量)がキャパシタ32の充電上限値を超えるときに、超える部分の余剰回生電力(キャパシタ32からすれば自己の容量の不足分)を、補機のうち燃料電池自動車における冷却系4,5の補機(FC冷却水ポンプ40、DT冷却水ポンプ41、FCラジエタファン42、DTラジエタファン43)に優先的に消費させる運転制御手段(次に説明する回生時電力消費制御手段400)としての機能も合わせ持つ。
【0024】
図4は、本実施形態の燃料電池自動車の制御装置における機能および動作を説明するために引用した機能ブロックである。この機能ブロック図に示されるのは、キャパシタ32の充電上限値を超えるときに、超える部分の回生電力量(余剰回生電力量)を、冷却系4,5の補機40〜43に優先的に消費させる回生時電力消費制御手段(運転制御手段)400である。
【0025】
この回生時電力消費制御手段400は、車速に基づいてアクセル全閉時の目標アクセル回生電力量を得、当該目標アクセル回生電力量とキャパシタ(蓄電手段)32の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベル判定のレベル値に応じて、余剰回生電力量をあらかじめ優先順位が付与された冷却系4,5の補機40,41…にその優先順位に応じて消費させる機能を有する。更に、この回生時電力消費制御手段400は、車速からアクセル全閉時の目標アクセル回生電力量を得、当該目標アクセル回生電力量とキャパシタ32の充電量との差によって決まる出力増加量を、燃料電池1の目標発電電流指令基準値に加算する機能を有する。
【0026】
この機能を実現するため、回生時電力消費制御手段400は、アクセル回生電力量マップ検索部401、アクセル回生電力量余剰レベル判断部402、偏差演算部403、FCラジエタファン消費電力増減判定部404、DTラジエタファン消費電力増減判定部405、FC冷却水ポンプ消費電力増減判定部406、DT冷却水ポンプ消費電力増減判定部407、PID制御部408、加算部409を含んで構成される。
【0027】
このうち、アクセル回生電力量マップ検索部401は、アクセルペダルの踏み込み解放時、車速(車速信号VSP)とモータ回転速度を入力して目標アクセル回生電力量を設定する機能を有する。アクセル回生電力量余剰レベル判断部402は、目標アクセル回生電力量とキャパシタ32の充電量であるSOCを入力して目標アクセル回生電力量の余剰量を求め、目標アクセル回生電力量の余剰レベルを0〜5までの6段階のフラグ(レベル値)として設定する機能を有する(図5参照)。偏差演算部403は、目標アクセル回生電力量とSOCとの偏差を演算する機能を有する。FCラジエタファン消費電力増減判定部404等、各判定部404〜407は、後で詳しく説明するように、レベル値に応じて冷却系4,5の補機40〜43の電力消費量増減を指示する機能を有する(消費電力量を増加する指示、増加した消費電力量をキャンセルする指示)。
【0028】
また、回生時電力消費制御手段400のPID制御部408は、偏差演算部403で演算された目標アクセル回生電力量とSOCの偏差(キャパシタ32に充電しきれない目標アクセル回生電力量)を入力してP(比例)、I(積分)、D(微分)の各処理を行って偏差がゼロになるように、IFCCMDベース値(目標発電電流指令基準値)に加算する値である出力増加量を設定する機能を有する。また、加算部409は、PID制御部408が設定した出力増加量(電流値)と、入力したIFCCMDベース値(電流値)を加算する機能を有する。ちなみに、出力増加量とIFCCMDベース値の加算量が大きな値になるほど、スーパチャージャ39の回転速度は速くなる(消費電力量が増加する)。
【0029】
次に、図4に示す機能ブロック図を参照しながら、図1〜図3に示す本実施形態の動作について詳細に説明する。また、各機能についての補足説明を行う。
【0030】
図4において(アクセルペダルの踏み込み解放時)、ECU50(回生時電力消費制御手段400のアクセル回生電力量マップ検索部401)は、まず、図示しないセンサを介して走行モータ38の回転速度と車速(車速信号VSP)を入力として得、アクセルペダルの踏み込み解放時の目標アクセル回生電力量をあらかじめ用意されたマップを検索して設定する。ここで用意される目標アクセル回生電力量を設定するマップ(目標アクセル回生電力量設定マップ)は、車速が早いほど、走行モータ38の回転速度が早いほど、大きな目標アクセル回生電力量が設定されるようになっている。
【0031】
次に、マップ検索の結果得られる目標アクセル回生電力量とキャパシタ32のSOCとを比較して、余剰回生電力量のレベル判定を行う。そしてそのレベル値に応じて燃料電池1の冷却系4,5の補機(DTラジエタファン43、DT冷却水ポンプ41、FCラジエタファン42、FC冷却水ポンプ40)を動作させてアクセル全閉時(アクセルペダルの踏み込み解放時)に発生する回生電力量を確保する構成になっている。
このとき、各消費電力増減判定部404〜407において消費電力の増減判定が行われ、この判定に基づいてDT冷却制御、FT冷却制御、あるいは燃料電池1の制御が行われる。この消費電力の増減判定は以下のように行われる。
【0032】
まず、図5に示すように、アクセルペダルの踏み込み解放時は、余剰回生電力量のレベルおよび補機39,40,41…の最大電力消費量に応じて、どの補機39,40,41…の消費電力を増加させるかが規定されている。図5では、余剰回生電力量が少ない場合は、最大消費電力が小さい補機であるFCラジエタファン42の消費電力が増加されるようになっている。
【0033】
ちなみに、この図5の表は、余剰回生電力量のレベルに応じて、余剰回生電力をあらかじめ優先順位が付与された冷却系4,5の補機40,41…に、その優先順位に応じて消費させるためのものである。なお、図5に示すように、レベル値は0から5までの6段階(6段階のフラグ)とし、レベル値が大きくなるにつれ余剰回生電力が大きくなるものとする。また、冷却系4,5の補機40,41は、右側に行くほど最大消費電力量が大きくなるものとする。ここで、キャパシタ32に充電できる電力量が目標アクセル回生電力量よりも大きな場合(レベル値0)は、最低限の回生電力量は確保されているため何も行わないこととする(消費電力の増加は行わない)。
【0034】
このように、レベル値0〜レベル値5までの6段階のフラグを用い、フラグの数字が大きくなるにつれて余剰回生電力を適切に消費できるようにするため、FCラジエタファン消費電力判定部404では、レベル値1〜レベル値5のフラグが入力された場合は、FCラジエタファン42の回転速度を増加するようにFC冷却系5を制御する。なお、回転速度が増加すると消費電力も増加する(以下同じである)。一方、レベル値0のフラグが入力された場合は、FCラジエタファン42の前記した回転速度の増加を取り止めるようにFC冷却系5を制御する。
【0035】
また、DTラジエタファン消費電力増減判定部405では、レベル値2〜レベル値5のフラグが入力された場合は、DTラジエタファン43の回転速度を増加するようにDT冷却系4の制御を行う。一方、レベル値0又はレベル値1のフラグが入力された場合は、DTラジエタファン43の前記した回転速度の増加を取り止めるようにDT冷却系4を制御する。
【0036】
また、FC冷却水ポンプ消費電力増減判定部406では、レベル値3〜レベル値5のフラグが入力された場合は、FC冷却水ポンプ40の回転速度を増加するようにFC冷却系5の制御を行う。一方、レベル値0〜レベル値2のフラグが入力された場合は、FC冷却水ポンプ40の前記した回転速度の増加を取り止めるようにFC冷却系5を制御する。
【0037】
また、DT冷却水ポンプ消費電力増減判定407では、レベル値4又はレベル値5のフラグが入力された場合は、DT冷却水ポンプ41の回転速度を増加するようにDT冷却系4の制御を行う。一方、レベル値0〜レベル値3のフラグが入力された場合は、DT冷却水ポンプ41の前記した回転速度の増加を取り止めるようにDT冷却系4を制御する。
【0038】
また、PID制御部408は、レベル値5のフラグが入力された場合は、偏差演算部403から入力した偏差に基づいて、IFCCMDベース値に加算する出力増加量を設定する制御を行う。一方、レベル値0〜レベル値4のフラグが入力された場合は、出力増加量を0にする。ちなみに、出力増加量が増えると、スーパチャージャ39の回転速度が増加するようになる。すなわち、燃料電池1に供給される空気量が増加する。
【0039】
これにより、余剰回生電力のレベルに応じて、消費電力の小さい補機(ここではFCラジエタファン42)から順に消費電力量が増加されていく。なお、増加する消費電力は、それぞれの補機40,41…ごとに設定されているものとする(例えば各補機40,41…ごとに増加するデューティを決めているものとする)。また、この実施形態では、余剰回生電力が最も大きいとき(レベル値5)は、最大消費電力が最も大きなスーパチャージャ39の消費電力が、偏差(余剰回生電力量)に応じて増加される。これにより、大きな余剰回生電力が生じても(目標アクセル回生電力量−SOCが大きくなって)、余剰回生電力を消費できる。
【0040】
このため、キャパシタ32に充電しきれない余剰回生電力が生じても(余剰回生電力の発生を許容しても)、回生制動をよく効かすことができ、空走感を低減ないしは無くすことができる。しかも、冷却を行うことができ、例えば、制動(減速)の次に来る加速の際に冷却能力が不足することを防止することができる。つまり、減速後に想定される再加速のための発熱量の増大を先取り的に冷却することで、スムーズな再加速を実現することができる。
【0041】
なお、発電電力指令値基準値に出力増加量を加算すると燃料電池1の発電量(発電電力量)が増加するが、発電量の増加は所定のタイムラグの後に生じるので、補機40…の消費電力を増加する一方で、全く同時に燃料電池1の発電量を増加することはない。
【0042】
ちなみに、前記説明した目標アクセル回生電力量設定マップは、余剰回生電力量を補機40…(及びスーパチャージャ39)で消費できることを踏まえて設定されている。
【0043】
なお、本発明は前記した実施形態に限定されることなく、幅広く変形実施することができる。例えば、レベル値により消費電力量を増加する機器の順序を変更してもよい。また、アクセル信号APはアクセルペダルが踏み込まれているか踏み込まれていないかのON/OFFを示す信号であったが、これをアクセル開度信号として、目標アクセル回生量をアクセル開度(アクセルの戻し量)に応じたものにしてもよい。この場合、前記した目標アクセル回生電力量設定マップは、アクセル戻し量の時間微分値が大きいほど目標アクセル回生電力量を大きく設定するマップになる。また、各補機40…の消費電力の増加は、補機40…の稼動状況を参照して、設定するようにしてもよい。また、走行モータ38からの回生電力量がキャパシタ32の充電上限値を超える場合のレベル判定(どの補機を動かすかの判定)は、例えばキャパシタ32に充電した後に判定しても、例えば回生電力が発生したときに判定してもよい。
【0044】
【発明の効果】
以上説明のように本発明によれば、回生電力量が蓄電手段の充電上限値を超える場合でも、回生電力を消費できるので、減速時の回生電力量を確保できる。このため、減速時に空走感を低減ないし無くすことができる。また、燃料電池の冷却系に優先的に回生電力を消費させることにより、例えば減速後の加速を想定して冷却系を先行冷却できるため、例えば迅速な再加速が可能となる。
また、余剰回生電力量のレベル判定を行うことで、蓄電手段から見て充電できる電力量がわずかな場合でも、より的確に回生電力量を確保することができる。
さらに、蓄電手段に充電できない回生電力の発生を許容できるので、回生制動により空走感を低減ないしは無くすことができる。また、この際、蓄電手段に充電しきれない回生電力を冷却系の作動に使用するので、例えば減速後の加速を想定して冷却系を先行冷却することができるため、例えば迅速な再加速が可能となる。
【図面の簡単な説明】
【図1】 本発明が採用される燃料電池自動車の概略構造を説明するために引用した図である。
【図2】 本発明において用いられる燃料電池システムの概略構成を示す模式図である。
【図3】 本発明の燃料電池自動車の運転制御装置における電力消費系を説明するために引用した図である。
【図4】 本発明の燃料電池自動車の制御装置における動作の流れを説明するために引用した機能ブロック図である。
【図5】 本発明の燃料電池自動車の制御装置において用いられるアクセル余剰回生電力量レベルと補機の作動状態との関係を説明するために引用した図である。
【符号の説明】
31…燃料電池(FC)、32…キャパシタ(C:蓄電手段)、33…VCU、34…PDU、35…SCインバータ、36…冷却水インバータ、37…12Vコンバータ、38…走行モータ(M)、39…スーパチャージャ(S/C)、40…FC冷却水ポンプ、41…DT冷却水ポンプ、42…FCラジエタファン、43…DTラジエタファン,400…回生時電力消費制御手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a fuel cell vehicle driven by a fuel cell and a control method for the fuel cell vehicle.
[0002]
[Prior art]
A fuel cell vehicle is a type of electric vehicle that generates electricity by mounting a fuel cell, and drives a traveling motor with the generated power. The fuel cell receives the supply of air as an oxidant gas from an air supply system, and also receives the supply of hydrogen as a fuel gas from a hydrogen supply system, and electrochemically uses oxygen in the air and hydrogen in the fuel gas. Power is generated, and the generated power is supplied to a power consumption system including auxiliary equipment such as a compressor in addition to the traveling motor.
[0003]
By the way, in this fuel cell vehicle, when the vehicle is decelerated or downhill, the driving motor performs regenerative braking so that the driver can obtain the same driving feeling as a normal vehicle. In addition, the regenerative power obtained by this regenerative braking should be stored in a storage means such as a capacitor or secondary battery prepared for dealing with the start-up or transient state of the fuel cell, and used for the next start or acceleration. Will improve fuel economy.
At this time, in order to increase the amount of regenerative power and improve the regenerative braking force as much as possible even when the power storage means is almost fully charged, the reactive power that does not generate torque is increased, that is, a fuel cell such as a compressor or a cooling water circulation pump Control for reducing the efficiency of the auxiliary machine and consuming regenerative power has been performed (Patent Document 1).
[0004]
[Patent Document 1]
JP 2002-204505 A (paragraph numbers 13 and 18 etc.)
[0005]
[Problems to be solved by the invention]
However, if the efficiency of the fuel cell auxiliaries is reduced and regenerative power is consumed, regenerative braking works and the feeling of free running disappears, but heat is generated by useless work to reduce efficiency, and that heat is lost. In order to dissipate heat, there was a drawback that the load on the cooling system after regeneration increased.
[0006]
The present invention has been made in view of the above circumstances, and provides a control device for a fuel cell vehicle and a control method for a fuel cell vehicle that can ensure the amount of regenerative power even when the storage means is nearly fully charged. For the purpose.
[0007]
[Means for Solving the Problems]
  in frontLessonTo solve the problemAs a means ofThe invention includes a fuel cell, power storage means for storing electric power generated by the fuel cell, and the fuel cell.as well asA travel motor that drives the fuel cell vehicle with electric power supplied by at least one of the storage means; and an auxiliary machine required to drive the fuel cell vehicleThe auxiliary machine includes a plurality of cooling system auxiliary machines that are a pump that circulates cooling water to cool the fuel cell and a fan that cools the circulating cooling water.Control device for fuel cell vehicleBecauseWhen the amount of regenerative power generated from the traveling motor generated when the fuel cell vehicle decelerates exceeds the charging upper limit value of the power storage means,ColdRejectionSystem assistantA control apparatus for a fuel cell vehicle, comprising operation control means for preferentially consuming the machine.
[0008]
  Control device for such a fuel cell vehicleAccording to the present invention, when the regenerative electric energy generated when the fuel cell vehicle decelerates exceeds the charging upper limit value of the power storage device, the operation control unit supplies the regenerative power to the auxiliary device of the cooling system in the fuel cell vehicle. By preferentially consuming it, the regenerative electric energy can be secured, so it is possible to perform preemptive cooling that predicts an increase in the amount of heat generated during re-acceleration during deceleration without giving a feeling of idling during deceleration. Acceleration can be realized.
[0009]
  Further, the operation control means obtains a target accelerator regenerative power amount based on the vehicle speed, and based on the target accelerator regenerative power amount and the charge amount of the power storage means, the total power consumption of the plurality of cooling system auxiliary machines Is a control apparatus for a fuel cell vehicle.
[0010]
  Further, the operation control means obtains a target accelerator regenerative power amount based on the vehicle speed, performs a level determination of the surplus regenerative power amount based on the target accelerator regenerative power amount and a charge amount of the power storage means, and sets the level. Accordingly, the control device for the fuel cell vehicle is characterized in that the surplus regenerative power is consumed in accordance with the priority order by the cooling system auxiliary equipment to which the priority order is given in advance.
  According to such a control device for a fuel cell vehicle,The operation control means determines the level of the surplus regenerative power based on the target accelerator regenerative power and the charge of the power storage means, and the surplus regenerative power according to the level of the fuel cell vehicle to which priority is given in advance. The target regenerative electric energy can be secured by consuming the cooling system auxiliary equipment according to the priority order, and therefore it will not give a feeling of idling when decelerating. Since the cooling system can be cooled in advance, rapid reacceleration is possible.
[0011]
  Also solve the above problemBook as a means toThe invention includes a fuel cell, power storage means for storing electric power generated by the fuel cell, and the fuel cell.as well asA travel motor that drives the fuel cell vehicle with electric power supplied by at least one of the storage means; and an auxiliary machine required to drive the fuel cell vehicleThe auxiliary machine includes a plurality of cooling system auxiliary machines that are a pump that circulates cooling water to cool the fuel cell and a fan that cools the circulating cooling water.A method for controlling a fuel cell vehicle, comprising: generating a regenerative electric energy from the travel motor generated when the fuel cell vehicle is decelerated.The coldRejectionSystem assistantIn machinePreferentiallyAllowing the generation of regenerative power that cannot be fully charged to the power storage meansIt is characterized byA control method for a fuel cell vehicle.
  According to such a control method for a fuel cell vehicle, even when the amount of power that can be charged in the power storage means is small, power is consumed by the auxiliary equipment in the cooling system, so that the regenerative power that cannot be charged in the power storage means (surplus regenerative power) Generation). Thereby, since regenerative electric energy can be ensured, regenerative braking can be applied and the feeling of idling can be reduced or eliminated. In addition, when consumed by the auxiliary equipment of the cooling system, it is possible to perform cooling in anticipation of an increase in the amount of heat generated at the time of reacceleration after deceleration.
[0012]
  Further, the target accelerator regenerative power amount is obtained based on the vehicle speed, and the total power consumption amount of the plurality of cooling system auxiliary devices is increased or decreased based on the target accelerator regenerative power amount and the charge amount of the power storage means. A control method for a fuel cell vehicle.
  Further, a target accelerator regenerative power amount is obtained based on the vehicle speed, a level determination of the surplus regenerative power amount is performed based on the target accelerator regenerative power amount and the charge amount of the power storage means, and the surplus regenerative power is determined according to the level. A control method for a fuel cell vehicle, characterized in that the cooling system auxiliary equipment to which priorities are assigned in advance is consumed according to the priorities.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a diagram cited for explaining a schematic structure of a fuel cell vehicle in which the control device and the control method of the present invention are employed, and FIG. 2 shows a schematic configuration of a fuel cell system used in the fuel cell vehicle. It is a schematic diagram.
[0014]
The fuel cell vehicle is a kind of electric vehicle, and in the present embodiment, the travel motor 38 is configured to receive power supply from the fuel cell system FCS mounted under the floor. The fuel cell system FCS is a power generation system having the fuel cell 1 (see FIG. 3) as a core. The fuel cell 1 receives supply of air as an oxidant gas from an air supply system 2 included in the fuel cell system FCS. Similarly, the fuel cell system FCS is supplied with hydrogen as a fuel gas from a hydrogen supply system 3 (hydrogen tank H2), and generates electric power electrochemically from oxygen and hydrogen in the air. Then, the generated electric power is converted into an electric power consumption system including auxiliary equipment such as the traveling motor 38 (M), the supercharger 39 (S / C), the cooling water pumps 40 and 41 (W / P), and the radiator fans 42 and 43. Supply. Here, the supercharger 39 is an electric air compressor that supplies air as an oxidant to the fuel cell 1.
[0015]
The cooling water pumps 40 and 41, the radiator fans 42 and 43, and the radiators 44 and 45 are provided in the DT cooling system 4 that cools the traveling motor 38 and the FC cooling system 5 that cools the fuel cell 1, respectively. Here, the cooling water pump, the radiator, and the radiator fan provided in the FC cooling system 5 are referred to as the FC cooling water pump 40, the FC radiator 44, and the FC radiator fan 42, respectively, and the cooling water pump and the radiator provided in the DT cooling system 4 The radiator fan is referred to as a DT cooling water pump, a DT radiator 45, and a DT radiator fan 43, respectively. In addition, when naming generically, FC / DT is abbreviate | omitted like the radiators 44 and 45 and the cooling water pumps 40 and 41, for example.
Incidentally, the radiators 44 and 45 are both disposed in front of the fuel cell vehicle and operate as a heat dissipating means for releasing the heat of the cooling water, which is a heat medium circulated by the cooling water pumps 40 and 41, out of the system.
[0016]
FIG. 3 is a diagram cited for explaining the power consumption system in the operation control apparatus for the fuel cell vehicle according to the present embodiment.
In FIG. 3, the fuel cell 1 supplies power to a power consumption system together with a capacitor (electric double layer capacitor) 32 as a power storage means. The capacitor 32 stores the electric power generated by the fuel cell 1 and the regenerative electric power of the traveling motor 38 to cope with the start-up and transient state of the fuel cell system, and the relationship between the voltage of the capacitor 32 and the generated voltage of the fuel cell 1 and the like. The charging / discharging is repeated to make the load fluctuation of the fuel cell 1 smooth.
[0017]
Specifically, during acceleration (when the driver depresses the accelerator pedal), the capacitor 32 increases the rotational speed of the supercharger 39 in response to an air increase command, and the air flow rate increases. As described above, power is supplied to the traveling motor 38 until the increase in the generated power of the fuel cell 1 follows, and the shortage of the generated power of the fuel cell 1 is compensated. On the other hand, when decelerating (when the driver releases the accelerator pedal), the rotational speed of the supercharger 39 is reduced in response to the air reduction command, and the flow rate of the air is reduced. The battery is charged with the generated power of the fuel cell 1 until the decrease in the generated power follows. In addition, at the time of deceleration, charging is also performed by a regenerative current from the traveling motor 38. Note that, in a steady state where the voltage of the fuel cell 1 and the voltage of the capacitor 32 are the same, the capacitor 32 is not charged / discharged, and the power consumed by the travel motor 38 and the like is supplied from the fuel cell 1.
[0018]
The charge amount of the capacitor 32 is represented by SOC (Status Of Charge). The larger this value, the more the capacitor 32 is charged. On the other hand, the smaller the SOC value, the less the capacitor 32 is charged. Incidentally, the SOC becomes a value proportional to the square of the terminal voltage of the capacitor 32.
[0019]
Next, the electric power generated by the fuel cell 1 is supplied to the traveling motor 38 via a VCU (Voltage Control Unit) 33, and is also supplied with a supercharger 39, an FC cooling water pump 40, and a 12V load DT cooling water pump. 41, FC radiator fan 42, DT radiator fan 43, and other auxiliary machines. The electric power stored in the capacitor 32 is also supplied to the auxiliary machines 39 in addition to the traveling motor 38 described above. The travel motor 38 is connected via a PDU (Power Drive Unit) 34, the supercharger 39 is connected via a supercharger (SC) inverter 35, and the FC cooling water pump 40 is connected via a cooling water pump inverter 36 to a 12V load ( The DT cooling water pump 41, the FC radiator fan 42, and the DT radiator fan 43) are supplied with electric power from the fuel cell 1 and the capacitor 32 via the 12V converter 37, respectively.
[0020]
The VCU 33 is a power regulator having a limiter function, and restricts a current taken out from the fuel cell 1 under the control of an ECU (Electric Control Unit) 50 described later, and a PDU 34, an SC inverter 35, and a cooling water pump inverter 36. , Supplied to the 12V converter 37.
[0021]
The PDU 34 controls driving of the travel motor 38 by a travel motor control signal generated by the ECU 50. The SC inverter 35 supplies power to the supercharger 39, and the cooling water pump inverter 36 supplies power to the FC cooling water pump 40. Both the SC inverter 35 and the cooling water pump inverter 36 obtain the rotational speed command value from the ECU 50 and control the driving of the supercharger 39 and the FC cooling water pump 40. The 12V converter 37 converts the voltage supplied to a 12V battery (not shown) into 12V and supplies the converted voltage to each 12V load (DT cooling water pump 41, FC radiator fan 42, DT radiator fan 43).
[0022]
The ECU 50 serves as a control center of the control device for the fuel cell vehicle according to the present embodiment. The built-in microcomputer controls the air supply system 2, the hydrogen supply system 3, the DT cooling system 4, the FC cooling system 5, and the auxiliary machines 39 to 39. All power consumption systems including 45 are controlled.
Particularly relevant to the present invention, an accelerator signal AP is obtained from an accelerator pedal through a sensor (not shown), and a travel motor control signal for controlling the drive of the travel motor 38 by obtaining a vehicle speed signal VSP from a vehicle speed sensor (not shown). In addition, a target generated current command value (IFCCMD), which will be described later, is set for the fuel cell 1 to control the generated current of the fuel cell 1.
[0023]
Further, the ECU 50 obtains the vehicle speed signal VSP and the rotational speed of the traveling motor 38, and sets the target accelerator regenerative electric energy. Further, the ECU 50 obtains the SOC of the capacitor 32, and from this SOC and the set target accelerator regenerative power amount, the regenerative power amount (target accelerator regenerative power amount) generated when the fuel cell vehicle decelerates is the upper limit value for charging the capacitor 32. The excess regenerative power of the excess part (if the capacity of the capacitor 32 is insufficient) is subtracted from the auxiliary equipment of the cooling systems 4 and 5 in the fuel cell vehicle (FC cooling water pump 40, DT). The cooling water pump 41, the FC radiator fan 42, and the DT radiator fan 43) also have functions as operation control means (regeneration power consumption control means 400 described below) that is preferentially consumed.
[0024]
FIG. 4 is a functional block quoted for explaining functions and operations in the control apparatus for a fuel cell vehicle according to the present embodiment. In this functional block diagram, when the charge upper limit value of the capacitor 32 is exceeded, the excess regenerative power amount (surplus regenerative power amount) is given priority to the auxiliary devices 40 to 43 of the cooling systems 4 and 5. The power consumption control means (operation control means) 400 during regeneration is consumed.
[0025]
The regenerative power consumption control means 400 obtains a target accelerator regenerative power amount when the accelerator is fully closed based on the vehicle speed, and surplus regenerative power based on the target accelerator regenerative power amount and the charge amount of the capacitor (power storage means) 32. The level of the amount is determined, and according to the level value of the level determination, the surplus regenerative electric energy is consumed according to the priority by the auxiliary devices 40, 41. It has a function. Further, the regenerative power consumption control means 400 obtains the target accelerator regenerative power amount when the accelerator is fully closed from the vehicle speed, and outputs the output increase amount determined by the difference between the target accelerator regenerative power amount and the charge amount of the capacitor 32 as the fuel. It has a function of adding to the target generated current command reference value of the battery 1.
[0026]
In order to realize this function, the regeneration power consumption control means 400 includes an accelerator regeneration power amount map search unit 401, an accelerator regeneration power amount surplus level determination unit 402, a deviation calculation unit 403, an FC radiator fan power consumption increase / decrease determination unit 404, A DT radiator fan power consumption increase / decrease determination unit 405, an FC cooling water pump power consumption increase / decrease determination unit 406, a DT cooling water pump power consumption increase / decrease determination unit 407, a PID control unit 408, and an addition unit 409 are configured.
[0027]
Among these, the accelerator regenerative electric energy map search unit 401 has a function of setting the target accelerator regenerative electric energy by inputting the vehicle speed (vehicle speed signal VSP) and the motor rotation speed when the accelerator pedal is depressed. The accelerator regenerative power amount surplus level determination unit 402 inputs the target accelerator regenerative power amount and the SOC that is the charge amount of the capacitor 32 to obtain the surplus amount of the target accelerator regenerative power amount, and sets the surplus level of the target accelerator regenerative power amount to 0. It has a function of setting as 6-stage flags (level values) from 5 to 5 (see FIG. 5). The deviation calculation unit 403 has a function of calculating a deviation between the target accelerator regenerative electric energy and the SOC. The determination units 404 to 407, such as the FC radiator fan power consumption increase / decrease determination unit 404, instruct the power consumption increase / decrease of the auxiliary devices 40 to 43 of the cooling systems 4 and 5 according to the level value, as will be described in detail later. (Instruction to increase power consumption, instruction to cancel increased power consumption).
[0028]
In addition, the PID control unit 408 of the regeneration power consumption control unit 400 inputs the target accelerator regenerative power amount calculated by the deviation calculation unit 403 and the SOC deviation (target accelerator regenerative power amount that the capacitor 32 cannot fully charge). The output increase amount which is a value to be added to the IFCCMD base value (target generated current command reference value) so that the deviation becomes zero by performing each process of P (proportional), I (integral), and D (derivative). Has the function to set. The adding unit 409 has a function of adding the output increase amount (current value) set by the PID control unit 408 and the input IFCCMD base value (current value). Incidentally, the rotation speed of the supercharger 39 increases (the power consumption increases) as the added amount of the output increase amount and the IFCCMD base value increases.
[0029]
Next, the operation of the present embodiment shown in FIGS. 1 to 3 will be described in detail with reference to the functional block diagram shown in FIG. In addition, supplementary explanation of each function will be given.
[0030]
In FIG. 4 (when the accelerator pedal is depressed), the ECU 50 (accelerator regenerative electric energy map search unit 401 of the regenerative power consumption control means 400) first determines the rotational speed and vehicle speed (not shown) of the travel motor 38 via the sensor (not shown). The vehicle speed signal VSP) is obtained as an input, and a target accelerator regenerative electric energy when the accelerator pedal is released is searched and set in advance. In the map (target accelerator regenerative power amount setting map) for setting the target accelerator regenerative power amount prepared here, a larger target accelerator regenerative power amount is set as the vehicle speed is faster and the rotation speed of the travel motor 38 is faster. It is like that.
[0031]
Next, the target accelerator regenerative electric energy obtained as a result of the map search is compared with the SOC of the capacitor 32 to determine the level of the surplus regenerative electric energy. Then, according to the level value, the auxiliary devices (DT radiator fan 43, DT cooling water pump 41, FC radiator fan 42, FC cooling water pump 40) of the cooling systems 4 and 5 of the fuel cell 1 are operated and the accelerator is fully closed. The regenerative electric energy generated when the accelerator pedal is released is secured.
At this time, the power consumption increase / decrease determination units 404 to 407 perform power consumption increase / decrease determination, and based on this determination, DT cooling control, FT cooling control, or control of the fuel cell 1 is performed. This power consumption increase / decrease determination is performed as follows.
[0032]
First, as shown in FIG. 5, when releasing the accelerator pedal, depending on the level of surplus regenerative electric energy and the maximum power consumption of the auxiliary devices 39, 40, 41. It is specified whether to increase the power consumption. In FIG. 5, when the amount of surplus regenerative power is small, the power consumption of the FC radiator fan 42, which is an auxiliary machine with a small maximum power consumption, is increased.
[0033]
Incidentally, in the table of FIG. 5, according to the level of surplus regenerative power, the surplus regenerative power is given to the auxiliary machines 40, 41. It is for consumption. As shown in FIG. 5, the level value is assumed to be 6 levels (6 levels flag) from 0 to 5, and the surplus regenerative power increases as the level value increases. In addition, it is assumed that the auxiliary machines 40 and 41 of the cooling systems 4 and 5 have a maximum power consumption that increases toward the right side. Here, when the amount of power that can be charged in the capacitor 32 is larger than the target accelerator regenerative power amount (level value 0), nothing is performed because the minimum regenerative power amount is secured (the power consumption is reduced). No increase).
[0034]
In this way, the FC radiator fan power consumption determination unit 404 uses six-stage flags from level value 0 to level value 5 so that excessive regenerative power can be appropriately consumed as the number of the flag increases. When a flag of level value 1 to level value 5 is input, the FC cooling system 5 is controlled to increase the rotational speed of the FC radiator fan 42. Note that the power consumption increases as the rotational speed increases (the same applies hereinafter). On the other hand, when the flag of the level value 0 is input, the FC cooling system 5 is controlled so as to stop the increase in the rotational speed of the FC radiator fan 42 described above.
[0035]
The DT radiator fan power consumption increase / decrease determination unit 405 controls the DT cooling system 4 so as to increase the rotation speed of the DT radiator fan 43 when a flag of level value 2 to level value 5 is input. On the other hand, when the flag of level value 0 or level value 1 is input, the DT cooling system 4 is controlled so as to stop the increase in the rotational speed of the DT radiator fan 43.
[0036]
The FC cooling water pump power consumption increase / decrease determination unit 406 controls the FC cooling system 5 so as to increase the rotational speed of the FC cooling water pump 40 when a flag of level value 3 to level value 5 is input. Do. On the other hand, when the flag of level value 0 to level value 2 is input, the FC cooling system 5 is controlled so as to stop the increase in the rotational speed of the FC cooling water pump 40 described above.
[0037]
In the DT cooling water pump power consumption increase / decrease determination 407, when the level value 4 or level value 5 flag is input, the DT cooling system 4 is controlled so as to increase the rotational speed of the DT cooling water pump 41. . On the other hand, when the flag of level value 0 to level value 3 is input, the DT cooling system 4 is controlled so as to stop the increase in the rotational speed of the DT cooling water pump 41.
[0038]
In addition, when a flag of level value 5 is input, the PID control unit 408 performs control to set an output increase amount to be added to the IFCCMD base value based on the deviation input from the deviation calculation unit 403. On the other hand, when the flag of level value 0 to level value 4 is input, the output increase amount is set to zero. Incidentally, when the output increase amount increases, the rotation speed of the supercharger 39 increases. That is, the amount of air supplied to the fuel cell 1 increases.
[0039]
As a result, the amount of power consumption is increased in order from the auxiliary device (here, the FC radiator fan 42) that consumes less power according to the level of surplus regenerative power. It is assumed that the increased power consumption is set for each of the auxiliary machines 40, 41... (For example, an increasing duty is determined for each of the auxiliary machines 40, 41...). In this embodiment, when the surplus regenerative power is the largest (level value 5), the power consumption of the supercharger 39 having the largest maximum power consumption is increased according to the deviation (the surplus regenerative power amount). Thereby, even if large surplus regenerative power is generated (target accelerator regenerative power amount-SOC becomes large), surplus regenerative power can be consumed.
[0040]
For this reason, even if surplus regenerative power that cannot be fully charged in the capacitor 32 is generated (even if generation of surplus regenerative power is allowed), regenerative braking can be effectively applied, and the idling feeling can be reduced or eliminated. . In addition, cooling can be performed, and for example, it is possible to prevent the cooling capacity from being insufficient at the time of acceleration following braking (deceleration). That is, smooth reacceleration can be realized by preliminarily cooling the increase in the amount of heat generated for reacceleration assumed after deceleration.
[0041]
Note that, when the output increase amount is added to the generated power command value reference value, the power generation amount (power generation amount) of the fuel cell 1 increases. However, since the increase in the power generation amount occurs after a predetermined time lag, the consumption of the auxiliary machines 40. While increasing the power, the power generation amount of the fuel cell 1 is not increased at the same time.
[0042]
Incidentally, the target accelerator regenerative electric energy setting map described above is set on the basis that the surplus regenerative electric energy can be consumed by the auxiliary devices 40 (and the supercharger 39).
[0043]
The present invention is not limited to the above-described embodiment, and can be widely modified. For example, the order of devices that increase the amount of power consumption may be changed according to the level value. The accelerator signal AP is a signal indicating ON / OFF of whether the accelerator pedal is depressed or not. The accelerator signal AP is used as an accelerator opening signal, and the target accelerator regeneration amount is determined as the accelerator opening (accelerator return). You may make it according to quantity. In this case, the target accelerator regenerative power amount setting map is a map in which the target accelerator regenerative power amount is set to be larger as the time differential value of the accelerator return amount is larger. Further, the increase in power consumption of each auxiliary device 40 may be set with reference to the operation status of the auxiliary devices 40. Further, the level determination (determination of which auxiliary machine is to be moved) when the amount of regenerative power from the traveling motor 38 exceeds the charging upper limit value of the capacitor 32 may be determined after charging the capacitor 32, for example. It may be determined when occurrence occurs.
[0044]
【The invention's effect】
  As described above,ClearlyAccording to this, even when the regenerative power amount exceeds the charge upper limit value of the power storage means, the regenerative power can be consumed, so that the regenerative power amount during deceleration can be ensured. For this reason, it is possible to reduce or eliminate the feeling of idling during deceleration. In addition, by preferentially consuming the regenerative power to the fuel cell cooling system, for example, the cooling system can be pre-cooled assuming acceleration after deceleration, so that, for example, rapid re-acceleration is possible.
  Also, extraBy performing the level determination of the amount of surplus regenerative power, the amount of regenerative power can be ensured more accurately even when the amount of power that can be charged as viewed from the power storage means is small.
  further,Since the generation of regenerative power that cannot be charged in the power storage means can be allowed, the idling feeling can be reduced or eliminated by regenerative braking. At this time, since the regenerative power that cannot fully charge the power storage means is used for the operation of the cooling system, for example, the cooling system can be pre-cooled assuming acceleration after deceleration. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a diagram cited for explaining a schematic structure of a fuel cell vehicle in which the present invention is adopted.
FIG. 2 is a schematic diagram showing a schematic configuration of a fuel cell system used in the present invention.
FIG. 3 is a diagram cited for explaining a power consumption system in the operation control apparatus for a fuel cell vehicle according to the present invention.
FIG. 4 is a functional block diagram cited for explaining the flow of operation in the control apparatus for a fuel cell vehicle according to the present invention.
FIG. 5 is a diagram quoted for explaining the relationship between the accelerator surplus regenerative electric energy level used in the control apparatus for a fuel cell vehicle according to the present invention and the operating state of the auxiliary machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 31 ... Fuel cell (FC), 32 ... Capacitor (C: Power storage means), 33 ... VCU, 34 ... PDU, 35 ... SC inverter, 36 ... Cooling water inverter, 37 ... 12V converter, 38 ... Travel motor (M), 39 ... Supercharger (S / C), 40 ... FC cooling water pump, 41 ... DT cooling water pump, 42 ... FC radiator fan, 43 ... DT radiator fan, 400 ... Power consumption control means during regeneration

Claims (4)

燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池及び蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備え、
前記補機は、前記燃料電池を冷却するために冷却水を循環させるポンプ及び当該循環する冷却水を冷却させるファンである複数の冷却系補機を備える、
燃料電池自動車の制御装置であって、
前記燃料電池自動車の減速時に発生する前記走行モータからの回生電力量が前記蓄電手段の充電上限値を超えるときに、回生電力を、前記冷却系補機に優先的に消費させる運転制御手段を備え
前記運転制御手段は、車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された前記冷却系補機にその優先順位に応じて消費させることを特徴とする燃料電池自動車の制御装置。
A fuel cell; power storage means for storing power generated by the fuel cell; a travel motor for driving the fuel cell vehicle with power supplied by at least one of the fuel cell and power storage means; and for driving the fuel cell vehicle. With the necessary auxiliary equipment,
The auxiliary machine includes a plurality of cooling system auxiliary machines that are a pump that circulates cooling water to cool the fuel cell and a fan that cools the circulating cooling water.
A control device for a fuel cell vehicle,
Operation control means for preferentially consuming the regenerative power to the cooling system auxiliary machine when the amount of regenerative power generated from the traveling motor generated when the fuel cell vehicle decelerates exceeds a charging upper limit value of the power storage means. ,
The operation control means obtains a target accelerator regenerative power amount based on the vehicle speed, performs a level determination of the surplus regenerative power amount based on the target accelerator regenerative power amount and the charge amount of the power storage means, and according to the level A control apparatus for a fuel cell vehicle, characterized in that surplus regenerative power is consumed by the cooling system auxiliary equipment to which a priority is given in advance according to the priority .
前記運転制御手段は、
車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて、前記複数の冷却系補機の全体電力消費量を増減させることを特徴とする請求項1に記載の燃料電池自動車の制御装置。
The operation control means includes
A target accelerator regenerative power amount is obtained based on a vehicle speed, and an overall power consumption amount of the plurality of cooling system auxiliary devices is increased or decreased based on the target accelerator regenerative power amount and a charge amount of the power storage means. The control apparatus for a fuel cell vehicle according to claim 1.
燃料電池と、前記燃料電池が発電した電力を蓄える蓄電手段と、前記燃料電池及び蓄電手段の少なくとも一方により供給される電力で燃料電池自動車を駆動する走行モータと、前記燃料電池自動車を走行させるために必要な補機とを備え、
前記補機は、前記燃料電池を冷却するために冷却水を循環させるポンプ及び当該循環する冷却水を冷却させるファンである複数の冷却系補機を備える、
燃料電池自動車の制御方法であって、
前記燃料電池自動車の減速時に発生させる前記走行モータからの回生電力量を、前記冷却系補機に優先的に消費させることで、前記蓄電手段に充電しきれない回生電力の発生を許容すると共に、
車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて余剰回生電力量のレベル判定を行い、当該レベルに応じて余剰回生電力をあらかじめ優先順位が付与された前記冷却系補機にその優先順位に応じて消費させることを特徴とする燃料電池自動車の制御方法。
A fuel cell; power storage means for storing power generated by the fuel cell; a travel motor for driving the fuel cell vehicle with power supplied by at least one of the fuel cell and power storage means; and for driving the fuel cell vehicle. With the necessary auxiliary equipment,
The auxiliary machine includes a plurality of cooling system auxiliary machines that are a pump that circulates cooling water to cool the fuel cell and a fan that cools the circulating cooling water.
A fuel cell vehicle control method comprising:
The regenerated electric energy from said traction motor to generate during deceleration of the fuel cell vehicle, the in the cooling system auxiliary machines be preferentially consumed and permits the generation of regenerative power that can not be charged in the storage means together,
A target accelerator regenerative power amount is obtained based on the vehicle speed, a level determination of the surplus regenerative power amount is performed based on the target accelerator regenerative power amount and the charge amount of the power storage means, and the surplus regenerative power is prioritized according to the level A control method for a fuel cell vehicle, characterized in that the cooling system auxiliary equipment to which the order is assigned is consumed according to the priority order .
車速に基づいて目標アクセル回生電力量を得、当該目標アクセル回生電力量と前記蓄電手段の充電量とに基づいて、前記複数の冷却系補機の全体消費電力量を増減させることを特徴とする請求項に記載の燃料電池自動車の制御方法。A target accelerator regenerative power amount is obtained based on a vehicle speed, and an overall power consumption amount of the plurality of cooling system auxiliary devices is increased or decreased based on the target accelerator regenerative power amount and a charge amount of the power storage means. The control method of the fuel cell vehicle according to claim 3 .
JP2002345981A 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle Expired - Fee Related JP3852841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345981A JP3852841B2 (en) 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345981A JP3852841B2 (en) 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle

Publications (2)

Publication Number Publication Date
JP2004180461A JP2004180461A (en) 2004-06-24
JP3852841B2 true JP3852841B2 (en) 2006-12-06

Family

ID=32707026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345981A Expired - Fee Related JP3852841B2 (en) 2002-11-28 2002-11-28 Control device and control method for fuel cell vehicle

Country Status (1)

Country Link
JP (1) JP3852841B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4783580B2 (en) 2005-03-31 2011-09-28 本田技研工業株式会社 Fuel cell electrical system, fuel cell vehicle and power supply method
JP4555136B2 (en) 2005-03-31 2010-09-29 本田技研工業株式会社 Fuel cell electrical system, fuel cell vehicle and power supply method
JP5336903B2 (en) * 2009-03-31 2013-11-06 本田技研工業株式会社 Fuel cell system
KR101124973B1 (en) * 2009-12-03 2012-03-27 현대자동차주식회사 Motor control system for hybrid vehicle and method for controlling the same
JP5772309B2 (en) * 2011-07-05 2015-09-02 トヨタ自動車株式会社 Power converter
KR101294421B1 (en) 2011-08-24 2013-08-07 현대자동차주식회사 Vehicle generating system for saving fuel, and control method of the same
KR101283254B1 (en) 2011-09-01 2013-07-11 기아자동차주식회사 Vehicle generating system for saving fuel, and control method of the same
JP5772541B2 (en) * 2011-11-24 2015-09-02 トヨタ自動車株式会社 Vehicle, power storage device diagnosis method, and diagnosis program
JP2013116703A (en) * 2011-12-05 2013-06-13 Denso Corp Vehicle power management system, vehicle power information managing apparatus and vehicle electrical load
JP6148617B2 (en) * 2013-12-25 2017-06-14 株式会社Kcm Hybrid work vehicle
JP6137067B2 (en) * 2014-06-24 2017-05-31 トヨタ自動車株式会社 Vehicle and control method thereof
JP2017157270A (en) * 2016-02-29 2017-09-07 トヨタ自動車株式会社 Fuel battery system
JP6788228B2 (en) * 2017-03-31 2020-11-25 トヨタ自動車株式会社 Fuel cell vehicle
GB2581483A (en) * 2019-02-15 2020-08-26 Avid Tech Limited Energy storage and release in an electric vehicle
JP7156194B2 (en) * 2019-07-17 2022-10-19 トヨタ自動車株式会社 hybrid vehicle
JP7409905B2 (en) 2020-02-28 2024-01-09 株式会社シマノ Control device for human-powered vehicles
JP7347325B2 (en) * 2020-05-22 2023-09-20 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
JP2004180461A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP3852841B2 (en) Control device and control method for fuel cell vehicle
JP3655277B2 (en) Electric motor power management system
US6580977B2 (en) High efficiency fuel cell and battery for a hybrid powertrain
US6336063B1 (en) Method and arrangement in a hybrid vehicle for improving battery state-of-charge control and minimizing driver perceptible disturbances
US6512967B2 (en) Method and arrangement in a hybrid vehicle for maximizing total torque output by minimizing differential torque capacities of the engine and generator
US6453222B1 (en) Method and arrangement in a hybrid vehicle for matching engine and generator torques at times of engagement and disengagement
US6397963B1 (en) Method and arrangement in a hybrid vehicle for maintaining a catalyst in an effective state
EP1211117B1 (en) A method and arrangement for starting in a hybrid vehicle
US6705418B2 (en) Arrangement for providing a compact battery with autonomous cooling
US20020065165A1 (en) Method and arrangement in a hybrid vehicle for maximizing efficiency by operating the engine at sub-optimum conditions
JP2004048987A (en) Method for controlling hybrid electric vehicle
JP2001275205A (en) Controller for combination system of secondary battery and generator
JP2008054408A (en) Driver of rail vehicle
JP2007154800A (en) Power control device
WO2014058045A1 (en) Power generation control device
JP2017011940A (en) Control method of fuel-cell automobile, and fuel-cell automobile
US10160443B2 (en) Control system for vehicle
JP2002058111A (en) Generation controller for hybrid electric vehicle
KR100579298B1 (en) Auxiliary battery charge control method for environment car
JP2004312964A (en) Electric vehicle and performance setting method
EP1316460A1 (en) Method and arrangement for controlling the power-split of a hybrid electric vehicle
JP3824896B2 (en) Fuel cell vehicle
JP7292793B2 (en) Cooling water system controller
JP2002141091A (en) Control device of fuel cell power supply
EP1316694A1 (en) A method and arrangement for maintaining an exhaust gas catalyst in an effective state

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140915

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees