JP2004177331A - Mirror for measuring position and mirror member - Google Patents

Mirror for measuring position and mirror member Download PDF

Info

Publication number
JP2004177331A
JP2004177331A JP2002345838A JP2002345838A JP2004177331A JP 2004177331 A JP2004177331 A JP 2004177331A JP 2002345838 A JP2002345838 A JP 2002345838A JP 2002345838 A JP2002345838 A JP 2002345838A JP 2004177331 A JP2004177331 A JP 2004177331A
Authority
JP
Japan
Prior art keywords
mirror
thermal expansion
low
low thermal
position measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002345838A
Other languages
Japanese (ja)
Other versions
JP2004177331A5 (en
JP3946132B2 (en
Inventor
Motohiro Umetsu
基宏 梅津
Masako Kataoka
昌子 片岡
Masahito Iguchi
真仁 井口
Hiroaki Nakamura
中村  浩章
Mamoru Ishii
守 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2002345838A priority Critical patent/JP3946132B2/en
Publication of JP2004177331A publication Critical patent/JP2004177331A/en
Publication of JP2004177331A5 publication Critical patent/JP2004177331A5/ja
Application granted granted Critical
Publication of JP3946132B2 publication Critical patent/JP3946132B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mirror for measuring a position at high measurement accuracy and a mirror member, which can reduce the weight, without causing difficulty or deterioration in characteristics. <P>SOLUTION: The mirrors 4 and 5 for measuring the position are provided to a sample stage for horizontally holding a sample, and reflect irradiation light to obtain the reflected light for measuring the position. A mirror main body 11 and a reflective film 12 provided on the surface thereof are provided. The mirror main body 11 is composed of low thermal expansion ceramics, by joining a first member 13 and a second member 15 or 15', at least one of which has a groove part 14 or 14', with a joining member 16 consisting of the low thermal expansion ceramics having a melting point lower than that of the low thermal expansion ceramics constituting them, so that the groove part 14 or 14' becomes a hollow part. The surface roughness Ra of the surface on which the reflective film 12 is formed is equal to or less than 10 nm. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、露光装置のステージ等の試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得て精密位置合わせを行う位置測定用ミラーおよびミラー用部材に関する。
【0002】
【従来技術】
近年、半導体回路は益々精細化、高集積化する傾向にあり、それにともなって、露光装置に対してはより高い精度が要求され、露光の際の位置合わせ誤差が製品の品質向上や歩留まり向上を左右しており、露光の際にいかに高精度で位置合わせを行うかが課題となっている。
【0003】
この露光の際の位置合わせのための位置測定は、レーザー光をミラーで反射させて位置測定用の反射光を得ることによって行っているため、その際の測定精度は、このような位置測定用のミラーに負うところが大きく、このミラーの材料として金属よりも熱膨張係数が小さいアルミナや窒化珪素などが用いられてきた。
【0004】
しかしながら、近時における半導体回路の飛躍的な微細化にともない、ミラー用材料としてアルミナや窒化珪素では、熱膨張係数が十分とはいえず所要の精度を得難くなってきつつある。
【0005】
これに対して、特許文献1には、ステージ位置測定ミラーとして適用可能な材料としてコージェライトを主体とする低熱膨張セラミックスが開示されている。コージェライトを主体とする低熱膨張セラミックスは熱膨張係数を安定して1×10−6/℃以下とすることができ、ガラスよりも高い剛性を示すので、より優れたミラー特性を得ることができる。
【0006】
【特許文献1】
特開平11−209171号公報
【0007】
【発明が解決しようとする課題】
しかしながら、半導体ウエハ、マスク材の大型化による露光装置の大型化にともない、装置部品の重量増加が問題となっており、特に、位置測定用ミラーは長尺状であって長さが500〜1200mmにもなり、その重量によりステージが移動・停止したときの位置決め精度が低下するため、さらなる軽量化が求められている。
【0008】
位置測定ミラーの軽量化の方法としては、その内部を中空構造にすることが考えられるが、セラミックスを機械加工で中空構造にすることは、非常に困難である。また、溝を設けた部材に蓋部材をガラスにより接合する方法も考えられるが、長尺形状の場合、母材と接合層との熱膨張差による残留応力により反射面の平面度に経時変化が生じてしまい、測定精度が経時的に低下してしまう。また、ガラスは剛性が低いため、接合後の部材全体の剛性が低下し、高速移動時の歪みが生産性低下をもたらす。
【0009】
また、ミラーの反射部を軽量な基台に接着または機械固定することにより軽量化する方法も考えられるが、軽量基台とミラー反射部との熱膨張差により高い測定精度が得られない。
【0010】
本発明はかかる事情に鑑みてなされたものであって、困難性や特性の劣化をもたらすことなく軽量化を図ることができ、測定精度の高い位置測定用ミラーおよびミラー用部材を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意研究を重ねた結果、▲1▼低熱膨張セラミックスで溝部を有する部材およびその溝部を塞ぐ部材を構成し、これら部材をこれらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してミラー本体またはミラー部材として用いることにより、また、▲2▼低熱膨張セラミックスで多孔質の部材および反射膜が形成される面を有する緻密質の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合することにより、機械加工の困難性や、熱膨張率差および低剛性の問題が生じることなく軽量化を図ることができることを見出した。
【0012】
本発明はこのような知見に基づいて完成されたものであり、以下の(1)〜(12)を提供する。
(1)試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーであって、ミラー本体と、その表面に設けられた反射膜とを有し、前記ミラー本体は、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、前記反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とする位置測定用ミラー。
(2)試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーであって、ミラー本体と、その表面に設けられた反射膜とを有し、前記ミラー本体は、低熱膨張セラミックスからなる、多孔質の第1の部材および前記反射膜が形成される面を有する緻密質の第2の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、前記反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とする位置測定用ミラー。
(3)上記(1)、(2)において、前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とする位置測定用ミラー。
(4)上記(1)〜(3)において、前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とする位置測定用ミラー。
(5)上記(1)〜(4)において、母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする位置測定用ミラー。
(6)試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーに用いる部材であって、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とするミラー用部材。
(7)試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーに用いる部材であって、低熱膨張セラミックスからなる、多孔質の第1の部材および反射膜が形成される面を有する緻密質の第2の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とするミラー用部材。
(8)上記(6)、(7)において、前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とするミラー用部材。
(9)上記(6)〜(8)において、前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とするミラー用部材。
(10)上記(6)〜(9)において、母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とするミラー用部材。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について具体的に説明する。
図1は、本発明の位置測定用ミラーが搭載された露光装置用ステージ機構を示す平面図である。この露光装置用ステージ機構は半導体ウエハ10を載置するステージ本体1と、ステージ本体1をX方向に移動させるX方向モータ2と、ステージ本体1をY方向に移動させるY方向モータ3と、ステージ本体1の端部に固定されY方向に延材する角柱状をなすX方向位置測定用のミラー4と、このX方向位置測定用のミラー4と直交するようにステージ本体1の端部に設けられた角柱状をなすY方向位置測定用のミラー5と、X方向位置測定用のミラー4にレーザー光を照射するX方向位置測定用レーザー干渉計6と、Y方向位置測定用のミラー5にレーザー光を照射してするY方向位置測定用レーザー干渉計7とを有している。
【0014】
X方向位置測定用およびY方向位置測定用のミラー4、5は、図2の側面図に示すように、ミラー本体11と、ミラー本体11のレーザー光が照射される表面に形成された反射膜12とを有している。
【0015】
第1の実施形態では、ミラー本体11は、図3の(a)の部分断面斜視図に示すように、低熱膨張セラミックスで構成された溝部14を有する第1の部材13と、同様の低熱膨張セラミックスで構成された溝部14を塞ぐ蓋として機能する第2の部材15とが、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材16で接合してなっており、外形が角柱状をなし内部に中空部を有している。また、図3の(b)の部分断面斜視図に示すように、蓋として機能する第2の部材15ではなく、第1の部材と同様に溝部14′を有する第2の部材15′を用いて、溝部14および14′が中空部を構成するようにしてもよい。なお、この例では、第1の部材13の表面に反射層12が形成されているが、第2の部材15,15′の表面に反射層を形成してもよい。
【0016】
このように接合材16として被接合材である第1の部材13および第2の部材15,15′よりも溶融温度の低い低熱膨張セラミックスを用いることにより、接合に際して接合材16の溶融温度よりも高く、第1の部材13および第2の部材15の溶融温度よりも低い温度で加熱することにより、接合材16のみが溶融して第1の部材13と第2の部材15,15′とを接合することができる。これにより、内部に中空部を有する接合体が形成され、中実材の場合よりも40%程度も軽量化することができる。
【0017】
この場合に、第1の部材13、または第1の部材13および第2の部材15′に先に溝部14または溝部14,14′を形成してから接合すればよいから、溝部の加工を容易に行うことができ、困難性をともなうことなく軽量化を図ることができる。また、接合材16が低熱膨張セラミックスであるから、第1および第2の部材13,15,15′と同程度の熱膨張係数とすることができ、熱膨張差による測定精度の経時変化が生じ難い。また、接合部に残留する応力が小さく、接合部の剛性が高いため部材全体の剛性が高く、かつ接合部自体の強度がガラスより大きいから接合強度が大きい。
【0018】
また、第2の実施形態では、ミラー本体11は、図4の部分断面斜視図に示すように、低熱膨張セラミックスで構成された多孔質の第1の部材23および同様の低熱膨張セラミックスで構成された反射膜12が形成される面を有する緻密質の第2の部材24とが、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材25で接合してなっており、外形が角柱状をなしている。
【0019】
このように接合材25として被接合材である第1の部材23および第2の部材24よりも溶融温度の低い低熱膨張セラミックスを用いることにより、接合に際して接合材25の溶融温度よりも高く、第1の部材23および第2の部材24の溶融温度よりも低い温度で加熱することにより、接合材25のみが溶融して第1の部材23と第2の部材24とを接合することができる。多孔質の第1の部材23の存在により、中実材の場合よりも30%程度も軽量化することができる。
【0020】
この場合に、多孔質は良好な表面粗さが得られないが、緻密質の第2の部材24を接合してその面を反射面とするので良好なミラー特性を得ることができる。また、溝部の加工が不要であるから困難性をともなうことなく軽量化を図ることができる。また、接合材25が低熱膨張セラミックスであるから、第1および第2の部材23,24と同程度の熱膨張係数とすることができ、熱膨張差による測定精度の経時変化が生じ難い。また、接合部に残留する応力が小さく、接合部の剛性が高いため部材全体の剛性が高く、かつ接合部自体の強度がガラスより大きいから接合強度が大きい。
【0021】
ここで、第1および第2の実施形態ともミラー本体11の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることが好ましい。熱膨張係数が1×10−6/℃よりも大きい、あるいは−1×10−6/℃よりも小さいと、僅かな雰囲気温度の変化で100nm以上の変形が生じる結果、位置測定精度が低下してしまう。また、第1および第2の実施形態とも、第1および第2の部材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることが好ましい。熱膨張係数の差がこの範囲を超えると、接合のための熱処理後、冷却過程で内部応力がたまり、強度低下を招くおそれがある。
【0022】
被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する低熱膨張セラミックスは、いずれも2種以上の材料からなる複合材料であることが好ましい。このように被接合材を構成する材料の配合割合を変化させれば、要求される種々の熱膨張に対応することが可能であるし、接合材は被接合材に適合した熱膨張になるように構成材料の配合を変化させることができるから、所望の低熱膨張を有するミラー本体11を容易に得ることができ、しかも自由度が高い適用が可能である。
【0023】
被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する複合材料としては、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とからなるものが好適である。これら構成材料のうち第1の材料は熱膨張が極めて小さく、第2の材料は熱膨張係数は第1の材料よりも大きいがヤング率が高く、これらを複合化することにより、所望の低熱膨張および高剛性を兼備した材料とすることができる。
【0024】
上記第1の材料としては、リチウムアルミノシリケートであるβ−ユークリプタイトやスポジューメンが好ましい。また、その中でもβ−ユークリプタイトはマイナスの熱膨張を示すので、プラスの熱膨張を示す第2の材料と組み合わせることにより、極めて低い熱膨張係数を得ることが可能であるし、また、配合を調節することにより熱膨張係数をマイナスからプラスの広い範囲で調節することが可能となる。なお、β−ユークリプタイトやスポジューメンに代表されるリチウムアルミノシリケートは、Ca、Mg、Fe、K、Ti、Zn等の他の成分と固溶体を形成するが、本発明ではこのような固溶体も適用可能である。
【0025】
一方、第2の材料は、接合材16,25の溶融温度が被接合材である第1の部材13,23および第2の部材15,15′,24の溶融温度よりも低くなるように上記材料の中から適宜選択される。
【0026】
接合材16,25を構成する複合材料としては、具体的には、βーユークリプタイトと窒化珪素とからなるものが好ましい。この複合材料は、低熱膨張であり、剛性も高く、溶融温度が1300〜1360℃と比較的低い。本発明において、接合材はその溶融温度よりも高い温度で焼結する低熱膨張セラミックスからなる母材を接合することが可能であるから、このような比較的低温で溶融する接合材は適用範囲が広い。また、上述したようにβ−ユークリプタイトは負の熱膨張係数を有しており、窒化珪素は正の熱膨張係数を有することから、これらの配合比を変えることで、マイナス膨張からプラス膨張まで、任意に熱膨張係数を変化させることが可能であり、したがって、被接合材の熱膨張係数に応じてこれらの配合比を適宜選択することにより、どのような材質の母材も接合部に応力を生じさせずに良好に接合することができる。
【0027】
なお、被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する複合材料において、実質的な化学的反応が生じなければ、第1の材料として複数の材料を組み合わせて用いることも可能である。また、第2の材料も同様に、実質的な化学的反応が生じなければ、複数の材料を組み合わせて用いることも可能である。
【0028】
このように被接合材である第1の部材13,23および第2の部材15,15′,24、ならびに接合材16,25を構成する低熱膨張セラミックスがいずれも複合材料である場合に、被接合材を構成する複合材料の構成材料のうち1種以上が、接合材を構成する複合材料の構成材料と共通であることが好ましい。これにより、共通の構成材料が拡散しやすく強固に接合することができるとともに、接合面がきれいである。
【0029】
被接合材である第1の部材13,23および第2の部材15,15′,24および接合材16,25がいずれも複合材料である場合の具体的材料の組み合わせは、接合材の溶融温度が被接合材の溶融温度よりも低い低熱膨張セラミックスであれば任意であり、種々の組み合わせを採用することができる。その中でも、被接合材としてβ−ユークリプタイトと炭化珪素との複合材料を用い、接合材として上述のβ−ユークリプタイトと窒化珪素との複合材料を用いたものが好適である。β−ユークリプタイトと炭化珪素との複合材料からなる被接合体は、溶融温度が1370〜1430℃と、接合材を構成するβ−ユークリプタイトと窒化珪素との複合材料の溶融温度である1300〜1360℃よりも高く、接合材を溶融させて接合する際に、被接合材母材を溶融させるおそれがない。しかも、母材と接合材にβ−ユークリプタイトが共通に含まれているから接合が強固であり、さらにこれらはいずれも低熱膨張であり組成を調整することによりほぼ同等の熱膨張係数とすることができ、かつ母材も接合材もともに剛性が高い。この場合に、母材の組成としてはβ−ユークリプタイト50〜95質量%と炭化珪素5〜50質量%であり、接合材の組成としてはβ−ユークリプタイト40〜85質量%と窒化珪素15〜60質量%であることが好ましい。
【0030】
なお、必ずしも被接合材である第1の部材13,23および第2の部材15,24、ならびに接合材16,25の両方が複合材料である必要はなく、接合材16,25のみが複合材料であってもよい。接合材16,25を構成する低熱膨張セラミックスとして複合材料を用いることにより、被接合材に適合した熱膨張になるように構成材料の配合を変化させることができ、適用の自由度を極めて高くすることができる。
【0031】
ミラー本体11の反射膜12が形成される表面の表面粗さはRaで10nm以下とする。これにより反射膜12形成した後に高い反射率が得られる。好ましくは6nm以下である。例えば、入射光が波長633nmのレーザーの場合の反射率は、表面粗さRaが10nmのとき反射率80%以上、さらに表面粗さ6nmのとき反射率85%以上の高反射率が得られる。
【0032】
このようなミラー本体11は、接合材粉末を適宜のバインダーとともに混練して粘糊性のあるペーストとし、このペーストを介して第1の部材13,23および第2の部材15,15′、24を接着させ、接合材16,25は溶融するけれども第1の部材13,23および第2の部材15,15′,24は溶融しない温度で熱処理する。これにより、接合材16,25が溶融し、一部は第1の部材13,23および/または第2の部材15,15′、24に拡散してこれら部材を接合する。
【0033】
この際の熱処理雰囲気は、材料が全て酸化物系のものであれば、大気雰囲気を用いることができるが、非酸化物系の材料が含まれている場合には、非酸化雰囲気を用いることが好ましい。
【0034】
また、第1の実施形態の緻密質の第1の部材13および第2の部材15、15′、および第2の実施形態の緻密質の第2の部材24は、原料粉末、例えば、低熱膨張セラミックス粉末と高ヤング率セラミックス粉末とを所定の割合で混合し、混合粉末をプレス成形等で成形体とし、所定の温度で焼成して焼結体とし、加工することにより製造することができる。焼成条件は、酸化物系材料またはそれに準ずる材料の場合には酸化性雰囲気で焼成すればよいが、非酸化物セラミックスが含まれている場合には、非酸化性雰囲気で焼成することが好ましい。焼結後、反射膜12が形成される反射面の表面粗さが上述のようにRaで10nm以下になるように鏡面加工され、ミラー面とされる。
【0035】
また、第2の実施形態における多孔質の第1の部材23は、どのような形態であってもよいが、主な形態としてフォーム状やフィルタ状が挙げられる。フォーム状の多孔質体を形成する場合には、ボールミルで粉砕・混合したスラリーにカルボキシメチルセルロースやヒドロキシエチルセルロース等のチクソトロピー性を付与可能で形状保持能のあるバインダーを添加し、そのスラリーを粉砕軟質ウレタンフォーム等のフォームに含浸させ、乾燥して焼成する。これにより、フォームが消失した部分が気孔となる多孔質体が形成される。フィルタ状の多孔質体を形成する場合には、セラミックスラリーに気孔の基となる粒子として加熱で分解する有機物、例えば樹脂ビーズ、カーボンビーズ等を混合し、押出、鋳込み、プレス等の適宜の方法で成形し、焼成する。これにより、粒子が消失した部分が気孔となる多孔質体が形成される。
【0036】
反射膜12は、ミラー本体11の表面粗さがRaで10nm以下に鏡面加工されたミラー面に厚さ0.1〜1nm程度に形成される。具体的には、Al、Ag、Pt等の金属膜を下地として蒸着した後、SiO、TiO等の誘電体薄膜と金属膜とを交互に蒸着し、多層構造の反射膜12を形成する。例えば、Al−SiO積層膜の場合には、ミラー本体11の表面粗さRaが10nm以下でレーザー周波数633nmにおいて80%以上の反射率が得られる。また、Al−Ti−TiO積層膜で構成される増反射膜を反射膜12として形成することにより、特定周波数範囲でAl−SiO積層膜等の通常の反射膜と比較して、約5%の反射率の向上が見込まれ、約85%以上の極めて高い反射率が得られる。
【0037】
また、上記複合材料からなるミラー本体11の上に形成された反射膜の面精度としては、平面度でλ/20を得ることが可能である。ここで、平面度は、一般的に可視光線の波長である360〜700nmの光による干渉縞から算出され、このような平面度評価に使用されるレーザー干渉計は、レーザー源にHe−Neレーザー(λ=633nm)が用いられ、この波長λ=633nmを基準として平面度が示される。通常、反射鏡として要求される平面度はλ/4〜λ/10程度であるから、λ/20は極めて高い平面度である。
【0038】
以上のように、ミラー本体11に反射膜12を蒸着等により成膜して位置測定用のミラーが完成されるが、焼成後に焼結体を加工して反射面を10nm以下に仕上げたものをミラー用部材として作成し、ユーザー側で反射膜を蒸着するようにしてもよい。
【0039】
【実施例】
以下、本発明の実施例について説明する。
(実施例1)
β−ユークリプタイト粉末と炭化珪素粉末とを表1のNo.1〜3に示す割合でポットミル混合して乾燥させ、原料混合粉末を作製した。この混合粉末を120MPaの圧力でCIP成形して(A)40mm×35mm×620mm、(B)40mm×11mm×620mmの2種類の成形体を作製し、(A)の成形体内部を各壁面から8mm残すようにくり抜いた。各成形体を500℃で脱脂した後、窒素雰囲気において1370℃で焼成し、β−ユークリプタイトと炭化珪素とが複合されたセラミックス焼結体を得た。得られた焼結体は、(A)32mm×27mm×500mm、(B)32mm×8mm×500mmに機械仕上げ加工を施した。
【0040】
次に、β−ユークリプタイトと窒化珪素を表1に示す割合でポットミル混合して乾燥させ、接合材用の混合粉末を作製した。この混合粉末を無機分が30vol%となるようにエチルセルロースの15%α−テルピネオール溶液と混合し、三本ロールを用いてペースト状にし、接合材ペーストを作製した。
【0041】
上記(A)の成形体の壁面端部および(B)の成形体の片面の対応する部分に、上記接合材ペーストをスクリーンマスクを用いて厚さ30μmに印刷して接合材とした。500℃で脱脂した後、印刷面同士を接着して1.5g/mmの荷重をかけた。引き続き、窒素雰囲気で1300〜1350℃の温度で熱処理し、接合材を溶融させて焼結体(A)、(B)の間に接合材が介在された接合体を得た。
【0042】
接合に先立って、焼結体(A)の一つの長面を鏡面加工して表面粗さRaを10nm以下としておいた。したがって、このようにして得られた接合体はミラー本体として機能する。
【0043】
このミラー本体の鏡面加工した面に、金属膜および誘電体薄膜を交互に蒸着して反射膜を形成した。反射膜としてはAl−SiO積層膜を用いた。
【0044】
これとは別に、上記焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX−1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、接合材については、同じ組成の焼結体を作製して同様にして熱膨張係数を測定した。これらの結果を表1に示す。
【0045】
また、上記鏡面加工した面の表面粗さを触針式表面粗さ測定機TALYSURF(Taylor−Hobson社製)により測定した。さらに、反射膜を形成後の反射率は、波長633nmのHe−Neレーザー光をミラー面に対して垂直に照射し、反射光強度および面精度を測定し、面精度の経時変化を測定した。さらにまた、ミラーの重量も計測した。これらの結果を表2に示す。
【0046】
(実施例2)
β−ユークリプタイト粉末:56質量部(D50=5μm)、炭化珪素粉末:18質量部(D50=0.7μm)を水媒体でボールミルにて粉砕混合した後、樹脂(球状アクリルビーズ):24質量部、バインダ(ポリビニルアルコール):2質量部を添加し混合してスラリーとした後、スプレー乾燥で顆粒化した。この顆粒を120MPaの圧力でCIP成形し、加工してて40mm×35mm×620mmの成形体を作製し、成形体を500℃で脱脂した後、窒素雰囲気において1350℃で焼成し、β−ユークリプタイトと炭化珪素とが複合された気孔率40%の多孔質セラミックス焼結体を得た。得られた焼結体は、32mm×27mm×500mm機械仕上げ加工を施した。
【0047】
一方、実施例1と同様にして、32mm×8mm×500mmの緻密質のβ−ユークリプタイトと炭化珪素とが複合された焼結体を得、実施例1と同様の接合材および同様の接合方法を用いて上記多孔質焼結体とこの緻密質焼結体を接合し、接合体を得た。
【0048】
接合に先立って、緻密質焼結体の一つの長面を鏡面加工して表面粗さRaを10nm以下としておいた。したがって、このようにして得られた接合体はミラー本体として機能する。
【0049】
このミラー本体の鏡面加工した面に、金属膜および誘電体薄膜を交互に蒸着して反射膜を形成した。反射膜としてはAl−SiO積層膜を用いた。
【0050】
これとは別に、上記焼結体から4mm×4mm×12mmの試験片を切り出し、レーザー干渉式熱膨張測定装置(アルバック理工社製 LIX−1)を用いて20〜30℃において試験片の変位量を測定し、熱膨張係数を求めた。また、接合材については、同じ組成の焼結体を作製して同様にして熱膨張係数を測定した。これらの結果を表1に示す。
【0051】
また、上記鏡面加工した面の表面粗さを触針式表面粗さ測定機TALYSURF(Taylor−Hobson社製)により測定した。さらに、反射膜を形成後の反射率は、波長633nmのHe−Neレーザー光をミラー面に対して垂直に照射し、反射光強度および面精度を測定し、面精度の経時変化を測定した。さらにまた、ミラーの重量も計測した。これらの結果を表2に示す。
【0052】
(比較例)
表1に示すように、実施例1の焼結体と同様の組成および同様の条件で焼結させた中実の複合材料(No.5)、実施例1と同様の接合体ではあるが接合材としてガラスを用いたもの(No.6)、実施例2と同様の接合体ではあるが接合材としてガラスを用いたもの(No.7)、実施例1と同様の接合体ではあるが、反射面の表面粗さが大きいもの(No.8)でミラー本体を製造したものについて同様に評価した。その結果も表1および表2に示す。
【0053】
表1および表2に示すように、実施例1、2は、同じ材料の中実材である比較例のNo.5よりも、それぞれ40%および30%程度軽量化することができ、また、いずれも熱膨張係数が1.0×10−6/℃以下と小さく、表面粗さRaが10nm以下であるから反射膜の反射率が80%以上と十分な値を示し、面精度λ/20が実現された。また、面精度の経時変化もほとんど生じなかった。
【0054】
これに対して、同じ複合材料ではあるが中実のNo.5は、上述したように重量が大きく、またガラスを用いて接合したNo.6,7では、面精度が悪く、また面精度の経時変化も生じた。また、反射面の表面粗さが大きいNo.8では、反射率が70%と低い結果となった。
【0055】
【表1】

Figure 2004177331
【0056】
【表2】
Figure 2004177331
【0057】
【発明の効果】
以上説明したように、本発明によれば、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してミラー本体を形成し、または、低熱膨張セラミックスからなる、多孔質の第1の部材および前記反射膜が形成される面を有する緻密質の第2の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してミラー本体を形成し、かつ前記反射膜が形成される面の表面粗さがRaで10nm以下としたので、十分なミラー特性を確保しつつ、困難性や特性の劣化をもたらすことなく軽量化を図ることができ、測定精度の高い位置測定用ミラーを得ることができる。
【図面の簡単な説明】
【図1】本発明の位置測定用ミラーが搭載された露光装置用ステージ機構を示す平面図。
【図2】本発明の位置測定用ミラーを示す側面図。
【図3】本発明の第1の実施形態に係る位置測定用ミラーを示す部分断面斜視図。
【図4】本発明の第2の実施形態に係る位置測定用ミラーを示す部分断面斜視図。
【符号の説明】
1;ステージ
2;X方向モータ
3;Y方向モータ
4,5;ミラー
6;X方向位置測定用レーザー干渉計
7;Y方向位置測定用レーザー干渉計
10;半導体ウエハ
11;ミラー本体
12;反射膜
13,23;第1の部材
15,15′,24;第2の部材
16,25;接合材[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a position measurement mirror and a mirror member provided on a sample stage such as a stage of an exposure apparatus that horizontally holds a sample, and reflects irradiation light to obtain reflected light for position measurement to perform precise alignment. About.
[0002]
[Prior art]
In recent years, semiconductor circuits have become increasingly finer and more highly integrated. With this trend, higher precision is required for exposure apparatuses, and alignment errors during exposure may lead to improved product quality and improved yield. The problem is how to perform alignment with high accuracy during exposure.
[0003]
Since the position measurement for alignment at the time of this exposure is performed by reflecting the laser light with a mirror to obtain reflected light for position measurement, the measurement accuracy at that time is such a position measurement accuracy. Alumina, silicon nitride, and the like, which have a smaller coefficient of thermal expansion than metal, have been used as the material of the mirror.
[0004]
However, with recent rapid miniaturization of semiconductor circuits, alumina or silicon nitride as a mirror material has a thermal expansion coefficient that is not sufficient and it is becoming difficult to obtain required accuracy.
[0005]
On the other hand, Patent Document 1 discloses a low thermal expansion ceramic mainly composed of cordierite as a material applicable as a stage position measuring mirror. Low thermal expansion ceramics mainly composed of cordierite have stable thermal expansion coefficient of 1 × 10 -6 / ° C or less, and exhibits higher rigidity than glass, so that more excellent mirror characteristics can be obtained.
[0006]
[Patent Document 1]
JP-A-11-209171
[0007]
[Problems to be solved by the invention]
However, with the increase in the size of the exposure apparatus due to the increase in the size of the semiconductor wafer and the mask material, an increase in the weight of the apparatus components poses a problem. In particular, the position measuring mirror is long and has a length of 500 to 1200 mm. Therefore, the positioning accuracy when the stage is moved / stopped is reduced due to the weight thereof, so that further weight reduction is required.
[0008]
As a method for reducing the weight of the position measurement mirror, it is conceivable to make the inside of the mirror into a hollow structure. However, it is very difficult to make ceramics into a hollow structure by machining. In addition, although a method of bonding the lid member to the member provided with the groove by glass is also conceivable, in the case of a long shape, the flatness of the reflecting surface changes with time due to residual stress due to a difference in thermal expansion between the base material and the bonding layer. This causes measurement accuracy to decrease over time. In addition, since the rigidity of glass is low, the rigidity of the entire member after joining is reduced, and distortion during high-speed movement causes a decrease in productivity.
[0009]
Further, a method of reducing the weight by bonding or mechanically fixing the reflecting portion of the mirror to a lightweight base can be considered, but high measurement accuracy cannot be obtained due to a difference in thermal expansion between the lightweight base and the mirror reflecting portion.
[0010]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a position measurement mirror and a mirror member that can be reduced in weight without causing difficulty or deterioration of characteristics and have high measurement accuracy. Aim.
[0011]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems. As a result, (1) a member having a groove with low thermal expansion ceramics and a member for closing the groove are formed, and these members are formed of low thermal expansion ceramics constituting these members. By using as a mirror body or a mirror member by joining with a joining material made of a low thermal expansion ceramic having a lower melting temperature, and (2) having a surface on which a porous member and a reflective film are formed of the low thermal expansion ceramic By joining dense members with a joining material made of low-thermal-expansion ceramics whose melting temperature is lower than that of the low-thermal-expansion ceramics that compose them, difficulties in machining, a difference in coefficient of thermal expansion and low rigidity arise It has been found that the weight can be reduced without the need.
[0012]
The present invention has been completed based on such knowledge, and provides the following (1) to (12).
(1) A position measuring mirror that is provided on a sample stage that holds a sample horizontally and obtains reflected light for position measurement by reflecting irradiation light, comprising: a mirror main body; and a reflecting film provided on the surface thereof. The mirror body is made of a low thermal expansion ceramic, which is made of a low thermal expansion ceramic and has a groove in at least one of the first member and the second member so that the groove becomes a hollow portion. A mirror for position measurement, wherein the mirror is bonded with a bonding material made of a low thermal expansion ceramic having a low melting temperature, and the surface on which the reflective film is formed has a surface roughness Ra of 10 nm or less.
(2) A position measuring mirror provided on a sample stage for holding a sample horizontally, which reflects reflected light to obtain reflected light for position measurement, comprising: a mirror main body; and a reflecting film provided on the surface thereof. The mirror body is made of a low-thermal-expansion ceramic made of a low-thermal-expansion ceramic, and a porous first member and a dense second member having a surface on which the reflective film is formed. A mirror for position measurement, wherein the mirror is bonded with a bonding material made of a low thermal expansion ceramic having a low melting temperature, and the surface on which the reflective film is formed has a surface roughness Ra of 10 nm or less.
(3) In the above (1) and (2), the average thermal expansion coefficient of the mirror body at 20 to 30 ° C. is −1 × 10. -6 ~ 1 × 10 -6 / ° C.
(4) In the above (1) to (3), the low thermal expansion ceramics constituting the first and second members and the low thermal expansion ceramics constituting the bonding material are all lithium aluminosilicate, potassium zirconium phosphate. , One or more first materials selected from cordierite, silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, calcium silicate, B 4 C. A position measuring mirror comprising a composite material obtained by combining at least one second material selected from C.
(5) In the above (1) to (4), the difference between the base material and the joining material in the average thermal expansion coefficient at 20 to 30 ° C. is ± 0.1 × 10. -6 A mirror for position measurement, which is within / ° C.
(6) A member that is provided on a sample stage that holds the sample horizontally and is used as a position measuring mirror that reflects reflected light and obtains reflected light for position measurement. The member is made of low-thermal-expansion ceramic and has at least one groove. The first member and the second member having the following structure are joined by a joining material made of a low thermal expansion ceramic having a lower melting temperature than the low thermal expansion ceramic constituting the first member and the second member so that the groove becomes a hollow portion. A mirror member, wherein the surface on which the film is formed has a surface roughness Ra of 10 nm or less.
(7) A member that is provided on a sample stage that holds the sample horizontally and is used as a position measuring mirror that reflects reflected light and obtains reflected light for position measurement, and is a porous second member made of low thermal expansion ceramics. The first member and the dense second member having a surface on which the reflective film is formed are joined with a joining material made of a low thermal expansion ceramic having a lower melting temperature than the low thermal expansion ceramic constituting the first member and the reflective film. A mirror member having a surface roughness Ra of 10 nm or less.
(8) In the above (6) and (7), the average thermal expansion coefficient of the mirror body at 20 to 30 ° C. is −1 × 10. -6 ~ 1 × 10 -6 / ° C.
(9) In the above (6) to (8), the low thermal expansion ceramics constituting the first and second members and the low thermal expansion ceramics constituting the bonding material are all lithium aluminosilicate and potassium zirconium phosphate. , One or more first materials selected from cordierite, silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, calcium silicate, B 4 C. A mirror member comprising a composite material obtained by compounding one or more second materials selected from C.
(10) In the above (6) to (9), the difference in average thermal expansion coefficient at 20 to 30 ° C. between the base material and the bonding material is ± 0.1 × 10 -6 / ° C or lower.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
FIG. 1 is a plan view showing a stage mechanism for an exposure apparatus on which a position measuring mirror of the present invention is mounted. The stage mechanism for an exposure apparatus includes a stage body 1 on which a semiconductor wafer 10 is placed, an X-direction motor 2 for moving the stage body 1 in the X direction, a Y-direction motor 3 for moving the stage body 1 in the Y direction, and a stage. A mirror 4 for X-direction position measurement which is fixed to an end of the main body 1 and extends in the Y-direction and has a prismatic shape, and is provided at an end of the stage main body 1 so as to be orthogonal to the X-direction position measurement mirror 4. The mirror 5 for measuring the Y-direction position, which has a prism shape, the laser interferometer 6 for measuring the X-direction position, which irradiates the mirror 4 for measuring the X-direction position, and the mirror 5 for measuring the Y-direction position. And a laser interferometer 7 for measuring a position in the Y direction which emits a laser beam.
[0014]
As shown in the side view of FIG. 2, the mirrors 4 and 5 for measuring the position in the X direction and the position in the Y direction are a mirror main body 11 and a reflection film formed on the surface of the mirror main body 11 to which the laser beam is irradiated. 12 are provided.
[0015]
In the first embodiment, the mirror main body 11 has the same low thermal expansion as the first member 13 having the groove 14 made of low thermal expansion ceramic, as shown in a partial cross-sectional perspective view of FIG. The second member 15 functioning as a lid for closing the groove 14 made of ceramics is joined with a joining material 16 made of low thermal expansion ceramics having a lower melting temperature than the low thermal expansion ceramics constituting them, The outer shape is prismatic and has a hollow portion inside. Further, as shown in a partial cross-sectional perspective view of FIG. 3B, a second member 15 'having a groove 14' is used instead of the second member 15 functioning as a lid, similarly to the first member. Thus, the grooves 14 and 14 'may constitute a hollow portion. In this example, the reflection layer 12 is formed on the surface of the first member 13, but the reflection layer may be formed on the surfaces of the second members 15, 15 '.
[0016]
By using a low thermal expansion ceramic having a lower melting temperature than the first member 13 and the second members 15 and 15 ′, which are the materials to be joined, as the joining material 16, the joining material 16 has a melting temperature lower than the melting temperature of the joining material 16 at the time of joining. By heating at a high temperature and lower than the melting temperature of the first member 13 and the second member 15, only the bonding material 16 is melted and the first member 13 and the second members 15, 15 'are separated. Can be joined. Thereby, a joined body having a hollow portion inside is formed, and the weight can be reduced by about 40% as compared with the case of a solid material.
[0017]
In this case, the groove 14 or the grooves 14, 14 'may be formed first and then joined to the first member 13, or the first member 13 and the second member 15', so that the processing of the groove is easy. The weight can be reduced without any difficulty. In addition, since the joining material 16 is a low thermal expansion ceramic, the thermal expansion coefficient can be substantially the same as that of the first and second members 13, 15, 15 ', and the measurement accuracy changes with time due to the thermal expansion difference. hard. In addition, the stress remaining in the joint is small, and the rigidity of the joint is high, so that the rigidity of the entire member is high. In addition, the strength of the joint itself is higher than that of glass, so that the joint strength is high.
[0018]
Further, in the second embodiment, the mirror main body 11 is made of a porous first member 23 made of low thermal expansion ceramics and a similar low thermal expansion ceramic as shown in a partial sectional perspective view of FIG. And a dense second member 24 having a surface on which the reflective film 12 is formed is joined with a joining material 25 made of low thermal expansion ceramics having a lower melting temperature than the low thermal expansion ceramics constituting them. , The outer shape is a prismatic shape.
[0019]
By using the low thermal expansion ceramic having a lower melting temperature than the first member 23 and the second member 24, which are the materials to be joined, as the joining material 25, the joining material 25 is higher than the melting temperature of the joining material 25 at the time of joining. By heating at a temperature lower than the melting temperature of the first member 23 and the second member 24, only the bonding material 25 is melted and the first member 23 and the second member 24 can be bonded. By the presence of the porous first member 23, the weight can be reduced by about 30% as compared with the case of a solid material.
[0020]
In this case, although good surface roughness cannot be obtained with the porous material, good mirror characteristics can be obtained because the dense second member 24 is joined to make the surface a reflective surface. Further, since the processing of the groove is unnecessary, the weight can be reduced without any difficulty. In addition, since the joining material 25 is a low thermal expansion ceramic, the thermal expansion coefficient can be substantially the same as that of the first and second members 23 and 24, and the measurement accuracy due to the difference in thermal expansion hardly changes with time. In addition, the stress remaining in the joint is small, and the rigidity of the joint is high, so that the rigidity of the entire member is high. In addition, the strength of the joint itself is higher than that of glass, so that the joint strength is high.
[0021]
Here, in both the first and second embodiments, the average thermal expansion coefficient of the mirror body 11 at 20 to 30 ° C. is −1 × 10 -6 ~ 1 × 10 -6 / ° C. Thermal expansion coefficient is 1 × 10 -6 / ° C or -1 × 10 -6 If the temperature is lower than / ° C, a slight change in the ambient temperature causes deformation of 100 nm or more, resulting in a decrease in position measurement accuracy. In both the first and second embodiments, the difference in the average thermal expansion coefficient between the first and second members and the bonding material at 20 to 30 ° C. is ± 0.1 × 10 -6 / ° C is preferred. If the difference in the coefficient of thermal expansion exceeds this range, the internal stress accumulates during the cooling process after the heat treatment for joining, and the strength may be reduced.
[0022]
The first members 13, 23 and the second members 15, 15 ', 24, which are the materials to be joined, and the low thermal expansion ceramics constituting the joining materials 16, 25 are all composite materials made of two or more materials. Preferably, there is. By changing the mixing ratio of the materials constituting the material to be joined, it is possible to cope with various required thermal expansions, and the joining material has a thermal expansion suitable for the material to be joined. Therefore, it is possible to easily obtain the mirror main body 11 having a desired low thermal expansion, and it is possible to apply the mirror body 11 with a high degree of freedom.
[0023]
The composite materials forming the first and second members 13 and 23 and the second members 15, 15 ′ and 24 to be joined and the joining materials 16 and 25 include lithium aluminosilicate, potassium zirconium phosphate, cordierite At least one first material selected from the group consisting of silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, calcium silicate, and B 4 Those composed of at least one second material selected from C are preferable. Of these constituent materials, the first material has a very low thermal expansion, and the second material has a higher thermal expansion coefficient than the first material but a higher Young's modulus. And a material having both high rigidity.
[0024]
As the first material, β-eucryptite or spodumene, which is lithium aluminosilicate, is preferable. Among them, β-eucryptite exhibits a negative thermal expansion. Therefore, by combining it with a second material exhibiting a positive thermal expansion, it is possible to obtain an extremely low thermal expansion coefficient. It is possible to adjust the thermal expansion coefficient in a wide range from minus to plus by adjusting. In addition, lithium aluminosilicate represented by β-eucryptite and spojumen forms a solid solution with other components such as Ca, Mg, Fe, K, Ti, and Zn. In the present invention, such a solid solution is also applied. It is possible.
[0025]
On the other hand, the second material is set so that the melting temperature of the joining materials 16 and 25 is lower than the melting temperature of the first members 13 and 23 and the second members 15, 15 ′ and 24 that are the materials to be joined. It is appropriately selected from materials.
[0026]
Specifically, the composite material constituting the bonding materials 16 and 25 is preferably a material composed of β-eucryptite and silicon nitride. This composite material has low thermal expansion, high rigidity, and a relatively low melting temperature of 1300 to 1360 ° C. In the present invention, since the joining material can join a base material made of a low thermal expansion ceramic that sinters at a temperature higher than its melting temperature, the joining material that melts at a relatively low temperature has an applicable range. wide. Further, as described above, β-eucryptite has a negative coefficient of thermal expansion, and silicon nitride has a positive coefficient of thermal expansion. Until the thermal expansion coefficient can be changed arbitrarily, therefore, by appropriately selecting these compounding ratios according to the thermal expansion coefficient of the material to be joined, the base material of any material Good joining can be achieved without generating stress.
[0027]
It should be noted that if a substantial chemical reaction does not occur in the composite materials constituting the first members 13 and 23 and the second members 15, 15 ′ and 24 as the materials to be joined and the joining materials 16 and 25, It is also possible to use a plurality of materials in combination as the first material. Similarly, the second material can be used in combination of a plurality of materials as long as no substantial chemical reaction occurs.
[0028]
As described above, when the first members 13 and 23 and the second members 15, 15 ′ and 24, which are the materials to be joined, and the low thermal expansion ceramics constituting the joining materials 16 and 25 are all composite materials, It is preferable that at least one of the constituent materials of the composite material forming the bonding material is the same as the constituent material of the composite material forming the bonding material. Thereby, the common constituent material can be easily diffused and firmly joined, and the joining surface is clean.
[0029]
When the first members 13, 23 and the second members 15, 15 ', 24 and the joining materials 16, 25, which are to be joined, are all composite materials, the specific material combination is the melting temperature of the joining material. Is arbitrary as long as it is a low thermal expansion ceramic lower than the melting temperature of the material to be joined, and various combinations can be adopted. Among them, it is preferable to use a composite material of β-eucryptite and silicon carbide as the material to be joined and use the composite material of β-eucryptite and silicon nitride as the joining material. The body to be joined made of a composite material of β-eucryptite and silicon carbide has a melting temperature of 1370 to 1430 ° C., which is the melting temperature of the composite material of β-eucryptite and silicon nitride constituting the joining material. The temperature is higher than 1300 to 1360 ° C, and there is no possibility that the base material of the material to be joined is melted when the joining material is melted and joined. Moreover, since β-eucryptite is commonly contained in the base material and the joining material, the joining is strong, and all of them have a low thermal expansion, and have approximately the same coefficient of thermal expansion by adjusting the composition. And both the base material and the joining material have high rigidity. In this case, the composition of the base material is 50 to 95% by mass of β-eucryptite and 5 to 50% by mass of silicon carbide, and the composition of the bonding material is 40 to 85% by mass of β-eucryptite and silicon nitride. It is preferably 15 to 60% by mass.
[0030]
It is not always necessary that both the first members 13 and 23 and the second members 15 and 24, which are the materials to be joined, and the joining materials 16 and 25 are composite materials, and only the joining materials 16 and 25 are composite materials. It may be. By using a composite material as the low-thermal-expansion ceramic constituting the joining materials 16 and 25, the composition of the constituting materials can be changed so as to have a thermal expansion suitable for the material to be joined, and the degree of freedom of application is extremely increased. be able to.
[0031]
The surface roughness of the surface of the mirror body 11 on which the reflection film 12 is formed is set to 10 nm or less in Ra. Thereby, a high reflectance is obtained after the formation of the reflective film 12. Preferably it is 6 nm or less. For example, when the incident light is a laser having a wavelength of 633 nm, a high reflectance of 80% or more is obtained when the surface roughness Ra is 10 nm, and a high reflectance of 85% or more is obtained when the surface roughness Ra is 6 nm.
[0032]
Such a mirror main body 11 is obtained by kneading a bonding material powder with an appropriate binder to form a paste having a viscous property, and through this paste, the first members 13, 23 and the second members 15, 15 ', 24 The first members 13, 23 and the second members 15, 15 ', 24 are heat-treated at a temperature at which the bonding materials 16, 25 are melted but the first members 13, 23 and the second members 15, 15', 24 are not melted. As a result, the joining materials 16 and 25 are melted, and a part thereof is diffused into the first members 13 and 23 and / or the second members 15, 15 ′ and 24 to join these members.
[0033]
As the heat treatment atmosphere at this time, an air atmosphere can be used as long as all the materials are oxide-based, but a non-oxidation atmosphere can be used when non-oxide-based materials are included. preferable.
[0034]
The dense first member 13 and the second member 15, 15 ′ of the first embodiment and the dense second member 24 of the second embodiment are made of raw material powder, for example, low thermal expansion. The ceramic powder and the high Young's modulus ceramic powder are mixed at a predetermined ratio, and the mixed powder is formed into a compact by press molding or the like, fired at a predetermined temperature to form a sintered body, and processed. As for the firing conditions, in the case of an oxide-based material or a material similar thereto, firing may be performed in an oxidizing atmosphere, but when non-oxide ceramics are contained, firing is preferably performed in a non-oxidizing atmosphere. After sintering, the mirror surface is mirror-finished so that the surface roughness of the reflection surface on which the reflection film 12 is formed is 10 nm or less in Ra as described above, and the mirror surface is obtained.
[0035]
In addition, the porous first member 23 in the second embodiment may be in any form, but a main form is a foam or filter. When forming a foam-like porous body, a binder capable of imparting thixotropic properties such as carboxymethylcellulose or hydroxyethylcellulose and having a shape-retaining ability is added to a slurry pulverized and mixed by a ball mill, and the slurry is pulverized soft urethane. It is impregnated into a foam such as a foam, dried and fired. As a result, a porous body is formed in which the portion where the foam has disappeared becomes a pore. In the case of forming a filter-like porous body, a ceramic slurry is mixed with an organic substance that decomposes by heating as particles serving as pore bases, for example, resin beads, carbon beads, and the like, and an appropriate method such as extrusion, casting, and pressing is performed. And fired. As a result, a porous body is formed in which the portions where the particles have disappeared become pores.
[0036]
The reflection film 12 is formed to a thickness of about 0.1 to 1 nm on a mirror surface which has been mirror-finished so that the surface roughness of the mirror main body 11 is 10 nm or less in Ra. Specifically, after vapor deposition using a metal film of Al, Ag, Pt or the like as a base, SiO 2 , TiO 2 A dielectric film and a metal film are alternately deposited to form a reflective film 12 having a multilayer structure. For example, Al-SiO 2 In the case of a laminated film, the reflectance of 80% or more is obtained at a laser frequency of 633 nm when the surface roughness Ra of the mirror body 11 is 10 nm or less. Also, Al-Ti-TiO 2 By forming the reflection-enhancing film composed of the laminated film as the reflection film 12, Al-SiO in a specific frequency range is obtained. 2 Compared with a normal reflective film such as a laminated film, an improvement in reflectance of about 5% is expected, and an extremely high reflectance of about 85% or more can be obtained.
[0037]
The surface accuracy of the reflection film formed on the mirror main body 11 made of the composite material can be λ / 20 in flatness. Here, the flatness is generally calculated from interference fringes caused by light having a wavelength of visible light of 360 to 700 nm, and a laser interferometer used for such flatness evaluation uses a He-Ne laser as a laser source. (Λ = 633 nm), and the flatness is indicated based on the wavelength λ = 633 nm. Usually, the flatness required as a reflecting mirror is about λ / 4 to λ / 10, and λ / 20 is extremely high.
[0038]
As described above, the mirror for position measurement is completed by forming the reflection film 12 on the mirror main body 11 by vapor deposition or the like. However, after sintering, the sintered body is processed to finish the reflection surface to 10 nm or less. It may be formed as a mirror member, and a reflective film may be deposited on the user side.
[0039]
【Example】
Examples of the present invention will be described below.
(Example 1)
The β-eucryptite powder and the silicon carbide powder were mixed with No. Pot mills were mixed in the ratios shown in 1 to 3 and dried to prepare a raw material mixed powder. This mixed powder was subjected to CIP molding under a pressure of 120 MPa to produce two types of molded products (A) 40 mm × 35 mm × 620 mm and (B) 40 mm × 11 mm × 620 mm. It was hollowed out to leave 8mm. After degreasing each compact at 500 ° C., the compact was fired at 1370 ° C. in a nitrogen atmosphere to obtain a ceramic sintered body in which β-eucryptite and silicon carbide were combined. The obtained sintered body was machine-finished to (A) 32 mm × 27 mm × 500 mm and (B) 32 mm × 8 mm × 500 mm.
[0040]
Next, β-eucryptite and silicon nitride were mixed in a pot mill at the ratio shown in Table 1 and dried to prepare a mixed powder for a bonding material. This mixed powder was mixed with a 15% α-terpineol solution of ethyl cellulose so as to have an inorganic content of 30 vol%, and made into a paste using a three-roll, to prepare a bonding material paste.
[0041]
The bonding material paste was printed to a thickness of 30 μm using a screen mask on the end of the wall surface of the molded product of (A) and the corresponding portion of one surface of the molded product of (B) to obtain a bonding material. After degreased at 500 ° C, the printed surfaces are adhered to each other to 1.5 g / mm 2 Was applied. Subsequently, a heat treatment was performed at a temperature of 1300 to 1350 ° C. in a nitrogen atmosphere to melt the joining material to obtain a joined body in which the joining material was interposed between the sintered bodies (A) and (B).
[0042]
Prior to joining, one long surface of the sintered body (A) was mirror-finished to have a surface roughness Ra of 10 nm or less. Therefore, the joined body thus obtained functions as a mirror body.
[0043]
A metal film and a dielectric thin film were alternately deposited on the mirror-finished surface of the mirror body to form a reflection film. Al-SiO as reflective film 2 A laminated film was used.
[0044]
Separately from this, a test piece of 4 mm × 4 mm × 12 mm was cut out from the sintered body, and the displacement of the test piece was measured at 20 to 30 ° C. using a laser interference thermal expansion measuring device (LIX-1 manufactured by ULVAC-RIKO). Was measured to determine the coefficient of thermal expansion. As for the joining material, sintered bodies having the same composition were prepared, and the thermal expansion coefficients were measured in the same manner. These results are shown in Table 1.
[0045]
Further, the surface roughness of the mirror-finished surface was measured by a stylus type surface roughness measuring machine TALYSURF (manufactured by Taylor-Hobson). Further, the reflectance after the formation of the reflective film was obtained by irradiating He-Ne laser light having a wavelength of 633 nm perpendicularly to the mirror surface, measuring the intensity of reflected light and the surface accuracy, and measuring the change over time in the surface accuracy. Furthermore, the weight of the mirror was measured. These results are shown in Table 2.
[0046]
(Example 2)
β-eucryptite powder: 56 parts by mass (D50 = 5 μm), silicon carbide powder: 18 parts by mass (D50 = 0.7 μm) were pulverized and mixed with a water medium in a ball mill, and then resin (spherical acrylic beads): 24 2 parts by mass of a binder and 2 parts by mass of a binder (polyvinyl alcohol) were added and mixed to form a slurry, which was then granulated by spray drying. The granules are subjected to CIP molding at a pressure of 120 MPa, processed to produce a molded body of 40 mm × 35 mm × 620 mm, degreased at 500 ° C., baked at 1350 ° C. in a nitrogen atmosphere, and β-eucrypt A porous ceramic sintered body having a porosity of 40% in which tight and silicon carbide were combined was obtained. The obtained sintered body was subjected to a mechanical finishing process of 32 mm × 27 mm × 500 mm.
[0047]
On the other hand, in the same manner as in Example 1, a dense sintered body of 32 mm × 8 mm × 500 mm composed of β-eucryptite and silicon carbide was obtained, and the same bonding material and the same bonding as in Example 1 were obtained. The porous sintered body and the dense sintered body were joined by a method to obtain a joined body.
[0048]
Prior to joining, one long surface of the dense sintered body was mirror-finished to have a surface roughness Ra of 10 nm or less. Therefore, the joined body thus obtained functions as a mirror body.
[0049]
A metal film and a dielectric thin film were alternately deposited on the mirror-finished surface of the mirror body to form a reflection film. Al-SiO as reflective film 2 A laminated film was used.
[0050]
Separately from this, a test piece of 4 mm × 4 mm × 12 mm was cut out from the sintered body, and the displacement of the test piece was measured at 20 to 30 ° C. using a laser interference thermal expansion measuring device (LIX-1 manufactured by ULVAC-RIKO). Was measured to determine the coefficient of thermal expansion. As for the joining material, sintered bodies having the same composition were prepared, and the thermal expansion coefficients were measured in the same manner. These results are shown in Table 1.
[0051]
Further, the surface roughness of the mirror-finished surface was measured by a stylus type surface roughness measuring machine TALYSURF (manufactured by Taylor-Hobson). Further, the reflectance after the formation of the reflective film was obtained by irradiating He-Ne laser light having a wavelength of 633 nm perpendicularly to the mirror surface, measuring the intensity of reflected light and the surface accuracy, and measuring the change over time in the surface accuracy. Furthermore, the weight of the mirror was measured. These results are shown in Table 2.
[0052]
(Comparative example)
As shown in Table 1, a solid composite material (No. 5) sintered under the same composition and under the same conditions as in the sintered body of Example 1 was a bonded body similar to that of Example 1, but was bonded. A material using glass as a material (No. 6), a bonded body similar to that of Example 2, but using glass as a bonding material (No. 7), a bonded body similar to Example 1, A mirror body having a large reflective surface roughness (No. 8) and a mirror body manufactured was evaluated in the same manner. The results are also shown in Tables 1 and 2.
[0053]
As shown in Tables 1 and 2, Examples 1 and 2 were Nos. 1 and 2 of Comparative Examples, which were solid materials of the same material. 5 can be reduced by about 40% and 30%, respectively, and each has a thermal expansion coefficient of 1.0 × 10 -6 / ° C. or less, and the surface roughness Ra is 10 nm or less, and the reflectivity of the reflective film shows a sufficient value of 80% or more, and the surface accuracy λ / 20 was realized. Also, there was almost no change in surface accuracy with time.
[0054]
In contrast, the same composite material but a solid No. No. 5 has a large weight as described above, and No. 5 bonded using glass. In Nos. 6 and 7, the surface accuracy was poor, and the surface accuracy also changed over time. In addition, No. 1 in which the surface roughness of the reflection surface is large. In No. 8, the result was a low reflectance of 70%.
[0055]
[Table 1]
Figure 2004177331
[0056]
[Table 2]
Figure 2004177331
[0057]
【The invention's effect】
As described above, according to the present invention, the first member and the second member which are made of low thermal expansion ceramics and have a groove at least on one side are formed so that the grooves are hollow so that the first member and the second member are hollow. The mirror body is formed by joining with a joining material made of low thermal expansion ceramics having a lower melting temperature than that of expanded ceramics, or the surface on which the porous first member made of low thermal expansion ceramics and the reflection film are formed is formed. The second member having a dense structure is joined with a joining material made of low-thermal-expansion ceramic having a lower melting temperature than the low-thermal-expansion ceramic constituting them to form a mirror main body, and a surface on which the reflection film is formed is formed. Since the surface roughness is set to 10 nm or less in Ra, it is possible to reduce the weight while ensuring sufficient mirror characteristics without causing difficulty or deterioration of characteristics. Can be can be, obtain a high measurement accuracy position measurement mirror.
[Brief description of the drawings]
FIG. 1 is a plan view showing a stage mechanism for an exposure apparatus on which a position measuring mirror of the present invention is mounted.
FIG. 2 is a side view showing the position measuring mirror of the present invention.
FIG. 3 is a partial sectional perspective view showing a position measuring mirror according to the first embodiment of the present invention.
FIG. 4 is a partial sectional perspective view showing a position measuring mirror according to a second embodiment of the present invention.
[Explanation of symbols]
1: Stage
2: X direction motor
3: Y-direction motor
4,5; mirror
6; Laser interferometer for X-direction position measurement
7; Laser interferometer for Y-direction position measurement
10; semiconductor wafer
11; mirror body
12; reflective film
13, 23; first member
15, 15 ', 24; second member
16, 25; bonding material

Claims (10)

試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーであって、
ミラー本体と、その表面に設けられた反射膜とを有し、
前記ミラー本体は、低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、前記反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とする位置測定用ミラー。
A position measurement mirror that is provided on a sample stage that holds the sample horizontally and obtains reflected light for position measurement by reflecting irradiation light,
Having a mirror body and a reflective film provided on the surface thereof,
The mirror body is made of low thermal expansion ceramic and has a first member and a second member having a groove in at least one of the first member and the second member so that the groove has a hollow portion, and has a melting temperature lower than that of the low thermal expansion ceramic constituting these members. A position measuring mirror which is bonded with a bonding material made of low-low-thermal-expansion ceramic and has a surface roughness Ra of 10 nm or less on a surface on which the reflection film is formed.
試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーであって、
ミラー本体と、その表面に設けられた反射膜とを有し、
前記ミラー本体は、低熱膨張セラミックスからなる、多孔質の第1の部材および前記反射膜が形成される面を有する緻密質の第2の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、前記反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とする位置測定用ミラー。
A position measurement mirror that is provided on a sample stage that holds the sample horizontally and obtains reflected light for position measurement by reflecting irradiation light,
Having a mirror body and a reflective film provided on the surface thereof,
The mirror main body is made of a low-thermal-expansion ceramic, and has a porous first member and a dense second member having a surface on which the reflective film is formed. A position measuring mirror which is bonded with a bonding material made of low-low-thermal-expansion ceramic and has a surface roughness Ra of 10 nm or less on a surface on which the reflection film is formed.
前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とする請求項1または請求項2に記載の位置測定用ミラー。The position measuring mirror according to claim 1, wherein an average coefficient of thermal expansion of the mirror body at 20 to 30 ° C. is −1 × 10 −6 to 1 × 10 −6 / ° C. 4. . 前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とする請求項1から請求項3のいずれか1項に記載の位置測定用ミラー。The low thermal expansion ceramics forming the first and second members and the low thermal expansion ceramics forming the bonding material are each at least one of a first aluminosilicate, a potassium zirconium phosphate, and a cordierite. And a second material selected from the group consisting of silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, calcium silicate, and B 4 C. The position measuring mirror according to any one of claims 1 to 3, wherein the mirror is configured. 母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする請求項1から請求項4のいずれか1項に記載の位置測定用ミラー。The method according to any one of claims 1 to 4, wherein a difference in an average thermal expansion coefficient between 20 ° C and 30 ° C between the base material and the joining material is within ± 0.1 × 10 −6 / ° C. 2. The position measuring mirror according to claim 1. 試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーに用いる部材であって、
低熱膨張セラミックスからなるとともに少なくとも一方に溝部を有する第1の部材および第2の部材を、当該溝部が中空部となるように、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とするミラー用部材。
A member used for a position measurement mirror that is provided on a sample stage that holds the sample horizontally and reflects the irradiation light to obtain reflected light for position measurement,
The first member and the second member which are made of low thermal expansion ceramic and have a groove at least on one side are made of a low thermal expansion ceramic having a lower melting temperature than the low thermal expansion ceramic constituting these so that the groove becomes a hollow portion. A mirror member formed by bonding with a bonding material having a surface roughness Ra of 10 nm or less on a surface on which a reflective film is formed.
試料を水平に保持する試料ステージに設けられ、照射光を反射させて位置測定用の反射光を得る位置測定用ミラーに用いる部材であって、
低熱膨張セラミックスからなる、多孔質の第1の部材および反射膜が形成される面を有する緻密質の第2の部材を、これらを構成する低熱膨張セラミックスよりも溶融温度の低い低熱膨張セラミックスからなる接合材で接合してなり、反射膜が形成される面の表面粗さがRaで10nm以下であることを特徴とするミラー用部材。
A member used for a position measurement mirror that is provided on a sample stage that holds the sample horizontally and reflects the irradiation light to obtain reflected light for position measurement,
The porous first member made of low thermal expansion ceramics and the dense second member having a surface on which the reflection film is formed are made of low thermal expansion ceramics having a lower melting temperature than the low thermal expansion ceramics forming these members. A mirror member which is bonded with a bonding material and has a surface roughness Ra of 10 nm or less on a surface on which a reflective film is formed.
前記ミラー本体の20〜30℃における平均の熱膨張係数が−1×10−6〜1×10−6/℃であることを特徴とする請求項6または請求項7に記載のミラー用部材。The mirror member according to claim 6, wherein an average coefficient of thermal expansion of the mirror body at 20 to 30 ° C. is −1 × 10 −6 to 1 × 10 −6 / ° C. 9. 前記第1および第2の部材を構成する低熱膨張セラミックスならびに前記接合材を構成する低熱膨張セラミックスが、いずれも、リチウムアルミノシリケート、リン酸ジルコニウムカリウム、コーディエライトから選ばれる1種以上の第1の材料と、炭化珪素、窒化珪素、サイアロン、アルミナ、ジルコニア、ムライト、ジルコン、窒化アルミニウム、ケイ酸カルシウム、BCから選ばれる1種以上の第2の材料とが複合してなる複合材料で構成されていることを特徴とする請求項6から請求項8のいずれか1項に記載のミラー用部材。The low-thermal-expansion ceramics constituting the first and second members and the low-thermal-expansion ceramic constituting the bonding material are each at least one of a first aluminosilicate, a potassium zirconium phosphate, and a cordierite. And a second material selected from the group consisting of silicon carbide, silicon nitride, sialon, alumina, zirconia, mullite, zircon, aluminum nitride, calcium silicate, and B 4 C. The mirror member according to any one of claims 6 to 8, wherein the mirror member is configured. 母材と接合材との間の、20〜30℃における平均の熱膨張係数の差が±0.1×10−6/℃以内であることを特徴とする請求項6から請求項9のいずれか1項に記載のミラー用部材。The difference between the average thermal expansion coefficient at 20 to 30 ° C between the base material and the joining material is within ± 0.1 × 10 −6 / ° C. 2. The mirror member according to claim 1.
JP2002345838A 2002-11-28 2002-11-28 Mirror for position measurement and mirror member Expired - Lifetime JP3946132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345838A JP3946132B2 (en) 2002-11-28 2002-11-28 Mirror for position measurement and mirror member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345838A JP3946132B2 (en) 2002-11-28 2002-11-28 Mirror for position measurement and mirror member

Publications (3)

Publication Number Publication Date
JP2004177331A true JP2004177331A (en) 2004-06-24
JP2004177331A5 JP2004177331A5 (en) 2005-09-02
JP3946132B2 JP3946132B2 (en) 2007-07-18

Family

ID=32706924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345838A Expired - Lifetime JP3946132B2 (en) 2002-11-28 2002-11-28 Mirror for position measurement and mirror member

Country Status (1)

Country Link
JP (1) JP3946132B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8242039B2 (en) 2010-10-21 2012-08-14 Krosakiharima Corporation Cordierite-based sintered body
JP5339056B2 (en) * 2006-07-14 2013-11-13 株式会社ニコン Exposure apparatus and device manufacturing method
JPWO2020262674A1 (en) * 2019-06-28 2020-12-30
KR102219163B1 (en) * 2019-08-20 2021-02-22 김순훈 Stage structure of semiconductor, display panel manufacturing device and mirror film for stage of semiconductor and display panel manufacturing device and connecting apparatus for semiconductor, display panel manufacturing device
WO2021215518A1 (en) * 2020-04-24 2021-10-28 京セラ株式会社 Mirror mounting member, position measurement mirror using same, exposure device, and charged particle beam device
WO2022145470A1 (en) * 2020-12-28 2022-07-07 京セラ株式会社 Structure, and exposure device and mirror for position measurement using same

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5339056B2 (en) * 2006-07-14 2013-11-13 株式会社ニコン Exposure apparatus and device manufacturing method
US8242039B2 (en) 2010-10-21 2012-08-14 Krosakiharima Corporation Cordierite-based sintered body
JP7261298B2 (en) 2019-06-28 2023-04-19 京セラ株式会社 Mirror mounting member, position measurement mirror using same, and exposure apparatus
WO2020262674A1 (en) * 2019-06-28 2020-12-30 京セラ株式会社 Mirror-mounting member, position-measuring mirror using same, and exposure device
CN113994267A (en) * 2019-06-28 2022-01-28 京瓷株式会社 Mirror mounting member, and position measuring mirror and exposure device using same
JPWO2020262674A1 (en) * 2019-06-28 2020-12-30
EP3992716A4 (en) * 2019-06-28 2023-08-09 Kyocera Corporation Mirror-mounting member, position-measuring mirror using same, and exposure device
CN113994267B (en) * 2019-06-28 2024-01-19 京瓷株式会社 Mirror mounting member, and position measuring mirror and exposure apparatus using the same
KR102219163B1 (en) * 2019-08-20 2021-02-22 김순훈 Stage structure of semiconductor, display panel manufacturing device and mirror film for stage of semiconductor and display panel manufacturing device and connecting apparatus for semiconductor, display panel manufacturing device
WO2021215518A1 (en) * 2020-04-24 2021-10-28 京セラ株式会社 Mirror mounting member, position measurement mirror using same, exposure device, and charged particle beam device
JPWO2021215518A1 (en) * 2020-04-24 2021-10-28
JP7321366B2 (en) 2020-04-24 2023-08-04 京セラ株式会社 Mirror mounting member, position measurement mirror using the same, exposure device, and charged particle beam device
WO2022145470A1 (en) * 2020-12-28 2022-07-07 京セラ株式会社 Structure, and exposure device and mirror for position measurement using same

Also Published As

Publication number Publication date
JP3946132B2 (en) 2007-07-18

Similar Documents

Publication Publication Date Title
JP3133302B2 (en) Black low thermal expansion ceramics sintered body and method for producing the same
JP5700631B2 (en) Cordierite sintered body
JP3946132B2 (en) Mirror for position measurement and mirror member
JP4890968B2 (en) Low thermal expansion ceramic joined body and manufacturing method thereof
JP4460325B2 (en) Astronomical telescope mirror
JPH11343168A (en) Low thermal expansion black ceramics, its production and member for semiconductor producing apparatus
JP4103385B2 (en) Vacuum chuck
JPH11209171A (en) Dense low thermal expansion ceramics, its production and member for semiconductor producing device
JP4870455B2 (en) Low thermal expansion ceramic joined body having hollow structure
JP2006232667A (en) Low thermal expansion ceramic and member for device for manufacturing semiconductor using it
JP3805119B2 (en) Method for producing low thermal expansion ceramics
JP2004059402A (en) Low thermal expansion ceramic junction body
JP2004177794A (en) Mirror for position measurement and member for mirror
JP2004179353A (en) Stage member
WO2007111199A1 (en) Sintered body, light emitting tube and process for manufacturing the same
JP2005234338A (en) Mirror for position measurement
JP4761948B2 (en) Sintered silicon carbide and parts for semiconductor manufacturing equipment using the same
JP2004177587A (en) Low thermal expansion mirror and its manufacturing method
JP5530275B2 (en) Vacuum adsorption apparatus and method for manufacturing the same
EP0559917B1 (en) Method of manufacturing a ceramic mirror
CN113994267A (en) Mirror mounting member, and position measuring mirror and exposure device using same
JP2001302338A (en) Composite ceramic and manufacturing method thereof
JP2004186400A (en) Vacuum chuck for semiconductor manufacturing apparatus
JP2005099638A (en) Galvano mirror and image projector using the same
JP4417189B2 (en) Honeycomb structure

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070410

R150 Certificate of patent or registration of utility model

Ref document number: 3946132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130420

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140420

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250