JP2004177240A - Tire failure detection method - Google Patents

Tire failure detection method Download PDF

Info

Publication number
JP2004177240A
JP2004177240A JP2002343169A JP2002343169A JP2004177240A JP 2004177240 A JP2004177240 A JP 2004177240A JP 2002343169 A JP2002343169 A JP 2002343169A JP 2002343169 A JP2002343169 A JP 2002343169A JP 2004177240 A JP2004177240 A JP 2004177240A
Authority
JP
Japan
Prior art keywords
tire
detection method
failure
failure detection
surface position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002343169A
Other languages
Japanese (ja)
Other versions
JP4030414B2 (en
Inventor
Toshio Ochiai
敏男 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2002343169A priority Critical patent/JP4030414B2/en
Publication of JP2004177240A publication Critical patent/JP2004177240A/en
Application granted granted Critical
Publication of JP4030414B2 publication Critical patent/JP4030414B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tire failure detection method for detecting an internal failure of a tire with accuracy higher than before. <P>SOLUTION: According to this tire failure detection method, an internal failure is detected occurring in a pneumatic tire 2 rotating on a test drum 1. A process is repeated of measuring the surface position of the rotating tire 2 by a non-contact type displacement meter 3 along the tire circumferential direction over the entire circumference thereof. Front and rear surface position data measured before and after a prescribed time interval are compared with each other with respect to severally corresponding positions on the circumference of the tire to calculate the amount of change. When the amount of change is equal to or more than a prescribed threshold, an internal failure is determined to have occurred. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、タイヤ故障検知方法に関し、更に詳しくは、タイヤの内部故障を従来より高い精度で検知できるようにしたタイヤ故障検知方法に関する。
【0002】
【従来の技術】
一般に、タイヤ耐久試験では、タイヤの内部故障を検知するため、接触式の故障検知装置を使用し、その検知部を試験ドラム上を回転する空気入りタイヤの表面近傍に配置し、内部故障により膨出したタイヤ表面が検知部に接触することで、タイヤ故障の検知を行うようにしている(例えば、特許文献1参照)。
【0003】
【特許文献1】
特開昭57−93230号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上述した接触式の故障検知装置で検知する方法では、試験ドラム上で空気入りタイヤを長時間連続回転させると、タイヤの温度上昇によりタイヤ内圧が上昇し、空気入りタイヤが径方向外側に膨径するため、また回転速度を上げると、遠心力により空気入りタイヤが径方向外側に膨径するため、更にラジアルタイヤにあっては負荷荷重が増加すると、試験ドラムに接する空気入りタイヤの部分と反対側の部分が膨出するため、その影響を排除するには検知部をある程度離間させる必要があり、その結果、膨出量が小さい内は検知できず、あまり精度良く測定することができない。
【0005】
そのため、内部故障により膨出したタイヤ表面が局部的で膨出量が少ない微小な変位である場合には、その膨出したタイヤ表面が検知部に接触する前にタイヤ破壊を招くことがある。このように内部故障を検知する前にタイヤが破壊すると、故障発生箇所の特定並びに故障の成長過程の解析ができず、タイヤの改良を進める上での妨げになっていた。
【0006】
本発明の目的は、タイヤの内部故障を従来より高い精度で検知することが可能なタイヤ故障検知方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成する本発明のタイヤ故障検知方法は、試験ドラム上で回転する空気入りタイヤに内部故障が発生したのを検知するタイヤ故障検知方法であって、前記回転する空気入りタイヤの表面位置をタイヤ周方向に沿って全周にわたって非接触式変位計により測定する工程を繰り返し行い、所定の時間的間隔をおいて測定された前後の表面位置データをタイヤ周上の各対応する位置で比較してその変化量を算出し、いずれかの位置における該変化量が所定の閾値以上になった場合に内部故障が発生したと判定することを特徴とする。
【0008】
このように非接触式変位計を使用し、間隔をおいて測定された前後のタイヤ表面位置データの時間的変位を用いて内部故障の発生を判定するため、内部故障により膨出したタイヤ表面が局部的で膨出量が少ない微小な変位の場合であっても検知することができるので、内部故障により膨出したタイヤ表面を接触式故障検知装置を用いた従来より高い精度で検知することができる。
【0009】
また、本発明の他のタイヤ故障検知方法は、試験ドラム上で回転する空気入りタイヤに内部故障が発生したのを検知するタイヤ故障検知方法であって、前記回転する空気入りタイヤの表面位置をタイヤ周方向に沿って全周にわたって非接触式変位計により測定する工程を繰り返し行い、所定の時間的間隔をおいて測定された前後の表面位置データをタイヤ周上の各対応する位置で比較してその変化量を算出し、いずれかの位置における該変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定することを特徴とする。
【0010】
このように周上のいずれかの位置における変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定することで、タイヤの温度上昇による内圧増大やタイヤ回転速度の上昇による遠心力の増大により空気入りタイヤが径方向外側に膨径した場合や、またラジアルタイヤにあっては負荷荷重の増加により試験ドラムに接する空気入りタイヤの部分と反対側の部分が膨出しても、その影響を受けることなく内部故障により膨出したタイヤ表面を確実に検知することができる。
【0011】
【発明の実施の形態】
以下、本発明の構成について添付の図面を参照しながら詳細に説明する。
【0012】
図1は、タイヤ耐久試験において本発明のタイヤ故障検知方法を実施する一例を示し、1は試験ドラム、2は空気入りタイヤ、3は回転する試験ドラム1により試験ドラム1上で回転する空気入りタイヤ3の表面位置を測定する非接触式変位計、4は非接触式変位計3から入力されたデータを処理する処理部、5は光源である。
【0013】
試験ドラム1は回転可能に設置され、回転速度を任意の速度に変更できるようになっている。
【0014】
ホイール6に組み付けられ、所定の空気圧を充填した空気入りタイヤ2は、不図示のタイヤ支持軸に回転自在に支持され、回転する試験ドラム1の外周面に当接することで、試験ドラム1上を回転走行する。空気入りタイヤ2には、タイヤ支持軸を介して所定の負荷荷重を加えることができるようになっている。
【0015】
非接触式変位計3はカメラからなる透視型の変位計で構成され、光源5に照射された空気入りタイヤ2の表面の画像を取り込むようになっている。タイヤ耐久試験では、この非接触式変位計3は、故障が最も発生し易いショルダー部のベルト端部に対面するように設置するのがよい。
【0016】
処理部4は、取り込まれた画像データから表面位置データを算出する。また、所定の時間的間隔をおいて測定された前後の表面位置データをタイヤ周上の各対応する位置で1周にわたって比較してその変化量、即ちタイヤ表面の膨出量をそれぞれ算出し、その値が1つでも所定の閾値以上になった場合には内部故障が発生したと判定して、不図示の制御部を介して試験ドラム1の回転を停止させ、タイヤ耐久試験を終了するようにしてある。
【0017】
なお、タイヤ周上の各対応する位置を同定する手段には、タイヤ支持軸に取り付けた周知のロータリーエンコーダーが使用されるが、回転するタイヤのサイドウォール部や、リム部に取り付けた反射シートに光を照射し、その反射光を検知した位置を基準位置にしてタイヤ周上の各対応する位置を得るようにしてもよい。
【0018】
以下、図2のフローを参照しながらタイヤ耐久試験における本発明のタイヤ故障検知方法を説明する。
【0019】
先ず、光源5をオンにし、試験ドラム1を回転させ、空気入りタイヤ2を試験ドラム1上で回転走行させる。所定の耐久試験開始速度に達すると、カメラ3により光源5に照射された空気入りタイヤ3の表面の画像を連続的に取り込み、空気入りタイヤ2の表面位置をタイヤ周方向に沿って全周にわたって測定する工程を繰り返し行う(ステップa)。
【0020】
所定時間が経過する(ステップb)と、処理部4において、所定の時間的間隔をおいて測定された前後の表面位置データをタイヤ周上の各対応する位置で1周にわたって比較し、各対応する位置での変化量をそれぞれ算出する(ステップc)。
【0021】
続いて、得られた各変化量を予め設定した所定の閾値と比較し、各変化量のいずれか1つでも所定の閾値以上であると(ステップd)、内部故障が発生したと判定して、不図示の制御部を介して試験ドラム1の回転を停止させ(ステップe)、タイヤ耐久試験を終了する。ステップdにおいて、各変化量がいずれも所定の閾値より小さいと、空気入りタイヤ2の表面位置測定を続行するため、ステップaに戻り、それ以降の工程を繰り返す。
【0022】
このように本発明では、非接触式変位計3を使用し、間隔をおいて測定された前後のタイヤ表面位置データの時間的変位を用いて内部故障の発生を判定するようにしたので、内部故障により膨出したタイヤ表面が局部的で膨出量が少ない微小な変位な場合であっても検知することができる。従って、内部故障により膨出したタイヤ表面を従来より高い精度で検知することが可能になる。
【0023】
また、非接触式変位計3にカメラなどの透視型の変位計を用いて画像を取り込むことにより、タイヤ表面に設けられた溝やカーフの影響を受けることなく、内部故障により膨出したタイヤ表面を検知することができる。
【0024】
図3は、本発明のタイヤ故障検知方法の他の例を示し、上記処理部4を、更に算出した各変化量を比較し、変化量の差(最大変化量と最小変化量の差、あるいは隣り合う変化量の差)が1つでも予め設定した所定の閾値以上になった場合に内部故障が発生したと判定するようにしたものであり、上述した図2のステップcとステップdとの間に変化量の差を算出するステップc’を加えたものである。
【0025】
このように変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定することことにより、タイヤの温度上昇による内圧増大や、またタイヤ回転速度の上昇による遠心力の増大により空気入りタイヤ2のトレッド部2Aが径方向外側に膨径しても、その影響を受けることなく内部故障により膨出したタイヤ表面を確実に検知することができる。
【0026】
上述したカメラからなる透視型の変位計は、トロイダル状をした空気入りタイヤ2の左右のサイドウォール部2Bのタイヤ最大幅位置P間のタイヤ表面位置を測定するのに使用される。透視型の変位計で測定できないタイヤ最大幅位置Pよりビード部2C側のタイヤ表面位置を測定する場合には、図4に示す本発明の他のタイヤ故障検知方法を使用することができる。
【0027】
図4では、非接触式変位計3が上述したカメラに代えて、レーザー変位計からなる反射型の変位計から構成してある。レーザー変位計で回転する空気入りタイヤ2の表面位置を上記と同様に測定し、処理部4において、上述と同様にして、所定の時間的間隔をおいて測定された前後の表面位置データをタイヤ周上の各対応する位置で1周にわたって比較し、その周上のいずれかの位置の変化量が所定の閾値以上になった場合に内部故障が発生したと判定する、あるいはその周上の変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定し、試験ドラム1の回転を停止させてタイヤ耐久試験を終了するのである。
【0028】
このように透視型の変位計で測定できないタイヤ最大幅位置Pよりビード部2C側のタイヤ表面位置を反射型の変位計を用いて測定することにより、非接触式変位計3で内部故障による膨出したタイヤ表面をタイヤ全体で検知することができるようになる。
【0029】
上述した本発明のタイヤ故障検知方法は、タイヤ耐久試験において好ましく用いることができるが、それに限定されず、例えば、車両に装着してタイヤ故障を検知する装置などにも適用することができる。その際に、処理部4でタイヤの内部故障が発生したと判定した場合には運転手にそれを知らせる警報を発生する機構を具備するようにするのがよい。
【0030】
【発明の効果】
上述したように本発明は、非接触式変位計を使用し、所定の時間的間隔をおいて測定された前後の表面位置データの周上のいずれかの位置の変化量、あるいは周上の変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定するようにしたので、内部故障により膨出したタイヤ表面が局部的で膨出量が少ない微小な変位であっても検知でき、従来より高い精度でタイヤ故障を検知することができる。
【図面の簡単な説明】
【図1】タイヤ耐久試験において、本発明のタイヤ故障検知方法を実施する一例を示す説明図である。
【図2】本発明のタイヤ故障検知方法を示すフローチャート図である。
【図3】本発明のタイヤ故障検知方法の他の例を示すフローチャート図である。
【図4】タイヤ耐久試験において、本発明のタイヤ故障検知方法を実施する更に他の例を示す説明図である。
【符号の説明】
1 試験ドラム 2 空気入りタイヤ
3 非接触式変位計 4 処理部
5 光源 6 ホイール
P タイヤ最大幅位置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a tire failure detection method, and more particularly, to a tire failure detection method capable of detecting an internal failure of a tire with higher accuracy than before.
[0002]
[Prior art]
Generally, in a tire endurance test, a contact-type failure detection device is used to detect an internal failure of the tire, and its detection unit is arranged near the surface of a pneumatic tire rotating on a test drum, and inflated due to the internal failure. The detected tire surface comes into contact with the detection unit to detect a tire failure (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP-A-57-93230
[Problems to be solved by the invention]
However, in the method of detecting with the contact-type failure detection device described above, when the pneumatic tire is continuously rotated on the test drum for a long time, the tire internal pressure increases due to the temperature rise of the tire, and the pneumatic tire moves radially outward. When the rotational speed is increased, or when the rotational speed is increased, the pneumatic tire expands radially outward due to centrifugal force. Since the portion on the opposite side swells, it is necessary to separate the detection unit to some extent to eliminate the effect, and as a result, it is not possible to detect the inside where the amount of swelling is small and it is not possible to measure with high accuracy .
[0005]
Therefore, when the tire surface bulged due to an internal failure is a small displacement with a small local bulge amount, the bulged tire surface may cause tire breakage before coming into contact with the detection unit. If the tire is broken before the internal failure is detected as described above, it is not possible to identify the location of the failure and to analyze the growth process of the failure, which hinders progress in improving the tire.
[0006]
An object of the present invention is to provide a tire failure detection method capable of detecting an internal failure of a tire with higher accuracy than before.
[0007]
[Means for Solving the Problems]
The tire failure detection method of the present invention that achieves the above object is a tire failure detection method for detecting that an internal failure has occurred in a pneumatic tire that rotates on a test drum, wherein the surface position of the rotating pneumatic tire is Is repeated over the entire circumference along the tire circumferential direction using a non-contact displacement meter, and the front and rear surface position data measured at predetermined time intervals are compared at each corresponding position on the tire circumference. Then, the amount of change is calculated, and when the amount of change at any position is equal to or greater than a predetermined threshold, it is determined that an internal failure has occurred.
[0008]
As described above, the non-contact displacement meter is used to determine the occurrence of an internal failure by using the temporal displacement of the front and rear tire surface position data measured at intervals. Even small displacements with small local bulges can be detected, so it is possible to detect the tire surface bulged due to internal failure with higher accuracy than before using a contact failure detection device. it can.
[0009]
Another tire failure detection method of the present invention is a tire failure detection method for detecting that an internal failure has occurred in a pneumatic tire rotating on a test drum, wherein the surface position of the rotating pneumatic tire is determined. Repeat the process of measuring with a non-contact type displacement meter over the entire circumference along the tire circumferential direction, and compare the front and rear surface position data measured at predetermined time intervals at each corresponding position on the tire circumference. Then, the amount of change is calculated, and when a difference between the amounts of change at any position is equal to or larger than a predetermined threshold value, it is determined that an internal failure has occurred.
[0010]
By determining that an internal failure has occurred when the difference in the amount of change at any position on the circumference is equal to or greater than a predetermined threshold value, an increase in the internal pressure due to a rise in the temperature of the tire or an increase in the rotational speed of the tire When the pneumatic tire expands radially outward due to an increase in centrifugal force, or in the case of a radial tire, even if the part on the opposite side to the part of the pneumatic tire in contact with the test drum expands due to the increase in applied load Thus, the tire surface swelled due to an internal failure can be reliably detected without being affected by the internal failure.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings.
[0012]
FIG. 1 shows an example of implementing the tire failure detection method of the present invention in a tire durability test, wherein 1 is a test drum, 2 is a pneumatic tire, and 3 is a pneumatic wheel rotating on the test drum 1 by a rotating test drum 1. A non-contact type displacement meter that measures the surface position of the tire 3 is a processing unit that processes data input from the non-contact type displacement meter 3, and 5 is a light source.
[0013]
The test drum 1 is rotatably installed so that the rotation speed can be changed to an arbitrary speed.
[0014]
The pneumatic tire 2 assembled to the wheel 6 and filled with a predetermined air pressure is rotatably supported by a tire support shaft (not shown), and abuts on the outer peripheral surface of the rotating test drum 1 so that the pneumatic tire 2 is moved on the test drum 1. It runs in rotation. A predetermined load can be applied to the pneumatic tire 2 via a tire support shaft.
[0015]
The non-contact displacement meter 3 is configured by a perspective displacement meter including a camera, and captures an image of the surface of the pneumatic tire 2 irradiated to the light source 5. In the tire durability test, it is preferable that the non-contact displacement meter 3 be installed so as to face the belt end of the shoulder portion where the failure is most likely to occur.
[0016]
The processing unit 4 calculates surface position data from the captured image data. Further, the front and rear surface position data measured at predetermined time intervals are compared over one round at each corresponding position on the tire circumference, and the change amount, that is, the swelling amount of the tire surface is calculated, If at least one of the values exceeds a predetermined threshold, it is determined that an internal failure has occurred, the rotation of the test drum 1 is stopped via a control unit (not shown), and the tire durability test is terminated. It is.
[0017]
A well-known rotary encoder attached to a tire support shaft is used as a means for identifying each corresponding position on the tire circumference. However, a reflective sheet attached to a sidewall portion or a rim portion of a rotating tire is used. Each corresponding position on the tire circumference may be obtained by irradiating light and using the position where the reflected light is detected as a reference position.
[0018]
Hereinafter, the tire failure detection method of the present invention in a tire durability test will be described with reference to the flow of FIG.
[0019]
First, the light source 5 is turned on, the test drum 1 is rotated, and the pneumatic tire 2 is rotated on the test drum 1. When a predetermined endurance test start speed is reached, images of the surface of the pneumatic tire 3 illuminated by the camera 3 onto the light source 5 are continuously captured, and the surface position of the pneumatic tire 2 is set along the tire circumferential direction over the entire circumference. The step of measuring is repeated (step a).
[0020]
When a predetermined time elapses (step b), the processing unit 4 compares the front and rear surface position data measured at predetermined time intervals at each corresponding position on the tire circumference over one round, and determines each correspondence. The amount of change at each of the positions to be changed is calculated (step c).
[0021]
Subsequently, each obtained change amount is compared with a predetermined threshold value set in advance, and if any one of the change amounts is equal to or more than the predetermined threshold value (step d), it is determined that an internal failure has occurred. Then, the rotation of the test drum 1 is stopped via a control unit (not shown) (step e), and the tire durability test ends. In step d, if each of the change amounts is smaller than the predetermined threshold, the process returns to step a and repeats the subsequent steps in order to continue measuring the surface position of the pneumatic tire 2.
[0022]
As described above, in the present invention, the occurrence of an internal failure is determined by using the non-contact displacement meter 3 and using the temporal displacement of the tire surface position data before and after measured at intervals. Even if the tire surface bulged due to the failure is local and the amount of bulge is small and small, it can be detected. Therefore, it is possible to detect the tire surface bulging due to an internal failure with higher accuracy than before.
[0023]
In addition, by capturing images with a non-contact displacement meter 3 using a perspective displacement meter such as a camera, the tire surface bulged due to an internal failure without being affected by grooves or kerfs provided on the tire surface. Can be detected.
[0024]
FIG. 3 shows another example of the tire failure detection method according to the present invention, in which the processing unit 4 further compares the calculated change amounts, and compares the change amounts (the difference between the maximum change amount and the minimum change amount, or When at least one difference between adjacent change amounts is equal to or greater than a predetermined threshold value, it is determined that an internal failure has occurred. The difference between step c and step d in FIG. A step c ′ for calculating a difference in the amount of change is added.
[0025]
By determining that an internal failure has occurred when the difference between the change amounts is equal to or greater than a predetermined threshold value, an increase in the internal pressure due to a rise in the temperature of the tire, or an increase in the centrifugal force due to an increase in the tire rotation speed, Even if the tread portion 2A of the pneumatic tire 2 expands radially outward, the tire surface that has expanded due to an internal failure can be reliably detected without being affected by the expansion.
[0026]
The see-through type displacement meter including the above-described camera is used to measure the tire surface position between the tire maximum width positions P of the left and right sidewall portions 2B of the toroidal pneumatic tire 2. When measuring the tire surface position on the bead portion 2C side from the tire maximum width position P which cannot be measured by the see-through displacement meter, another tire failure detection method of the present invention shown in FIG. 4 can be used.
[0027]
In FIG. 4, the non-contact type displacement meter 3 is constituted by a reflection type displacement meter including a laser displacement meter instead of the above-described camera. The surface position of the rotating pneumatic tire 2 is measured by a laser displacement meter in the same manner as described above, and the processing unit 4 compares the front and rear surface position data measured at predetermined time intervals in the same manner as described above. A comparison is made over one lap at each corresponding position on the lap, and it is determined that an internal failure has occurred if the amount of change at any position on the lap is equal to or greater than a predetermined threshold, or a change on the lap. When the difference between the amounts becomes equal to or larger than the predetermined threshold value, it is determined that an internal failure has occurred, the rotation of the test drum 1 is stopped, and the tire durability test is terminated.
[0028]
Thus, by measuring the tire surface position on the bead portion 2C side from the tire maximum width position P, which cannot be measured by the see-through type displacement meter, using the reflection type displacement meter, the non-contact type displacement meter 3 expands due to an internal failure. The released tire surface can be detected by the entire tire.
[0029]
The above-described tire failure detection method of the present invention can be preferably used in a tire durability test, but is not limited thereto, and can be applied to, for example, a device that is mounted on a vehicle and detects a tire failure. At this time, when the processing unit 4 determines that an internal failure of the tire has occurred, it is preferable to include a mechanism for generating an alarm to notify the driver of the failure.
[0030]
【The invention's effect】
As described above, the present invention uses a non-contact type displacement meter, and the amount of change in any position on the circumference of the front and rear surface position data measured at predetermined time intervals, or the change on the circumference. Since it is determined that an internal failure has occurred when the difference in the amount is equal to or greater than a predetermined threshold, even if the tire surface bulged due to the internal failure is a small displacement with a small local bulge amount, The tire failure can be detected with higher accuracy than before.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of implementing a tire failure detection method of the present invention in a tire durability test.
FIG. 2 is a flowchart illustrating a tire failure detection method according to the present invention.
FIG. 3 is a flowchart showing another example of the tire failure detection method of the present invention.
FIG. 4 is an explanatory view showing still another example of implementing the tire failure detection method of the present invention in a tire durability test.
[Explanation of symbols]
Reference Signs List 1 Test drum 2 Pneumatic tire 3 Non-contact type displacement meter 4 Processing unit 5 Light source 6 Wheel P Tire maximum width position

Claims (4)

試験ドラム上で回転する空気入りタイヤに内部故障が発生したのを検知するタイヤ故障検知方法であって、前記回転する空気入りタイヤの表面位置をタイヤ周方向に沿って全周にわたって非接触式変位計により測定する工程を繰り返し行い、所定の時間的間隔をおいて測定された前後の表面位置データをタイヤ周上の各対応する位置で比較してその変化量を算出し、いずれかの位置における該変化量が所定の閾値以上になった場合に内部故障が発生したと判定するタイヤ故障検知方法。A tire failure detection method for detecting that an internal failure has occurred in a pneumatic tire rotating on a test drum, wherein the non-contact type displacement of the surface position of the rotating pneumatic tire over the entire circumference along the tire circumferential direction. It repeats the process of measuring with a meter, calculates the amount of change by comparing the front and rear surface position data measured at predetermined time intervals at each corresponding position on the tire circumference, and at any position A tire failure detection method for determining that an internal failure has occurred when the amount of change is equal to or greater than a predetermined threshold. 試験ドラム上で回転する空気入りタイヤに内部故障が発生したのを検知するタイヤ故障検知方法であって、前記回転する空気入りタイヤの表面位置をタイヤ周方向に沿って全周にわたって非接触式変位計により測定する工程を繰り返し行い、所定の時間的間隔をおいて測定された前後の表面位置データをタイヤ周上の各対応する位置で比較してその変化量を算出し、いずれかの位置における該変化量の差が所定の閾値以上になった場合に内部故障が発生したと判定するタイヤ故障検知方法。A tire failure detection method for detecting that an internal failure has occurred in a pneumatic tire rotating on a test drum, wherein the non-contact type displacement of the surface position of the rotating pneumatic tire over the entire circumference along the tire circumferential direction. It repeats the process of measuring with a meter, calculates the amount of change by comparing the front and rear surface position data measured at predetermined time intervals at each corresponding position on the tire circumference, and at any position A tire failure detection method for determining that an internal failure has occurred when the difference between the amounts of change is equal to or greater than a predetermined threshold. 前記非接触式変位計が透視型の変位計であり、該変位計により前記空気入りタイヤの左右のサイドウォール部のタイヤ最大幅位置間のタイヤ表面位置を測定する請求項1または2に記載のタイヤ故障検知方法。3. The non-contact type displacement meter according to claim 1, wherein the displacement meter measures a tire surface position between tire maximum width positions of left and right sidewalls of the pneumatic tire. 3. Tire failure detection method. 前記非接触式変位計が反射型の変位計であり、該変位計により前記空気入りタイヤの左右のサイドウォール部のタイヤ最大幅位置よりビード部側のタイヤ表面位置を測定する請求項1または2に記載のタイヤ故障検知方法。3. The non-contact type displacement meter is a reflection type displacement meter, and the displacement meter measures a tire surface position on a bead portion side from a tire maximum width position on left and right sidewall portions of the pneumatic tire. The tire failure detection method described in the above.
JP2002343169A 2002-11-27 2002-11-27 Tire failure detection method Expired - Lifetime JP4030414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343169A JP4030414B2 (en) 2002-11-27 2002-11-27 Tire failure detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343169A JP4030414B2 (en) 2002-11-27 2002-11-27 Tire failure detection method

Publications (2)

Publication Number Publication Date
JP2004177240A true JP2004177240A (en) 2004-06-24
JP4030414B2 JP4030414B2 (en) 2008-01-09

Family

ID=32705009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343169A Expired - Lifetime JP4030414B2 (en) 2002-11-27 2002-11-27 Tire failure detection method

Country Status (1)

Country Link
JP (1) JP4030414B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232036A (en) * 2005-02-23 2006-09-07 Yokohama Rubber Co Ltd:The Tire failure detection method, tire failure detection program, and tire failure detection device
JP2009047648A (en) * 2007-08-22 2009-03-05 Yokohama Rubber Co Ltd:The Method and device for testing tire
CN106289097A (en) * 2015-06-24 2017-01-04 住友橡胶工业株式会社 Tire tread process for measuring shape and tire tread shape measuring apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232036A (en) * 2005-02-23 2006-09-07 Yokohama Rubber Co Ltd:The Tire failure detection method, tire failure detection program, and tire failure detection device
JP4655669B2 (en) * 2005-02-23 2011-03-23 横浜ゴム株式会社 Tire failure detection method, tire failure detection program, and tire failure detection device
JP2009047648A (en) * 2007-08-22 2009-03-05 Yokohama Rubber Co Ltd:The Method and device for testing tire
CN106289097A (en) * 2015-06-24 2017-01-04 住友橡胶工业株式会社 Tire tread process for measuring shape and tire tread shape measuring apparatus
CN106289097B (en) * 2015-06-24 2020-04-21 住友橡胶工业株式会社 Method and apparatus for measuring tire surface shape

Also Published As

Publication number Publication date
JP4030414B2 (en) 2008-01-09

Similar Documents

Publication Publication Date Title
JP5746578B2 (en) Method and apparatus for inspecting winding state of sheet-like member
EP2876423B1 (en) Method and apparatus for measuring tire ground contact properties
US5060173A (en) Method and apparatus for detecting defects in pneumatic tire
CN102139608A (en) Apparatus and method of determining geometrical dimensions of a tyre with optical sensors
CN109677214B (en) Method for determining duration of contact footprint event of rolling tyre and TPMS component
JP2007030423A (en) Inspection method and device of pneumatic tire in manufacturing process
JP2602863B2 (en) Non-destructive inspection method for pneumatic tires
EP1680289B1 (en) Thermal monitoring system for a tire
JP5114997B2 (en) Tire testing apparatus and tire testing method
JP4030414B2 (en) Tire failure detection method
JP2004354258A (en) Method for inspecting sheet member junction section for manufacturing pneumatic tire
JP4187098B2 (en) Tire failure detection method and apparatus
JP2005300227A (en) Tire geometry detecting method and its system
JP2005178697A (en) Tire failure sensing device
JP2002162222A (en) Outer shape measuring method of unvulcanized tire and its device
JP4235146B2 (en) Tire performance evaluation method and apparatus
JP2007003379A (en) Detecting technique of tire internal failure and detecting device of tire internal failure
JP2004354259A (en) Method for inspecting contour shape of rubber material on tire molding drum
JP4335740B2 (en) Tire running test method and tire running test apparatus
JP4169680B2 (en) Tire failure detection method
JP4600132B2 (en) Tire failure detection method
WO2023199681A1 (en) Surface shape measuring device, surface shape measuring method, and belt management method
JP5429860B2 (en) Roll paper measuring device
JPWO2005065924A1 (en) Belt characteristic detection method and belt characteristic detection apparatus
JP4655669B2 (en) Tire failure detection method, tire failure detection program, and tire failure detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Ref document number: 4030414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term