JP2004176952A - Cooling shed - Google Patents

Cooling shed Download PDF

Info

Publication number
JP2004176952A
JP2004176952A JP2002341310A JP2002341310A JP2004176952A JP 2004176952 A JP2004176952 A JP 2004176952A JP 2002341310 A JP2002341310 A JP 2002341310A JP 2002341310 A JP2002341310 A JP 2002341310A JP 2004176952 A JP2004176952 A JP 2004176952A
Authority
JP
Japan
Prior art keywords
cooling
heat
inner container
heat sink
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002341310A
Other languages
Japanese (ja)
Inventor
Soji Suzuki
壮志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Twinbird Corp
Original Assignee
Twinbird Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Twinbird Corp filed Critical Twinbird Corp
Priority to JP2002341310A priority Critical patent/JP2004176952A/en
Publication of JP2004176952A publication Critical patent/JP2004176952A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling shed having improved frost removing efficiency and less susceptibility to temperature rise in the shed during frost removing operation. <P>SOLUTION: The cooling shed comprises a casing 1 having a well heat conductive container 4 of aluminum or others, a heat sink 7 provided inside the container 4, and a cooling mechanism 9 for cooling the interior of the container via the heat sink 7. A thermomodule 11 formed of a Peltier element is provided between the container 4 and the heat sink 7. The cooling shed also has a control circuit 13 for energizing the thermomodule 11 so that, the cooling mechanism 9 is driven when the interior of the container 4 is cooled and heat is transferred from the side of the container 4 to the side of the heat sink 7 during frost removing operation. Thus, frost deposited on the heat sink 7 is melted with almost no temperature rise in the container 4 by utilizing the thermomodule 11 at its cooling side to cool the container 4 when frost is removed from the heat sink 7 by the thermomodule 11. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は冷蔵庫や冷凍庫等の冷却庫に関するものであり、特にその除霜機構に関するものである。
【0002】
【発明が解決しようとする課題】
従来この種の冷却庫としては、例えば以下のものが存在する。
【0003】
自動販売機において、温度スイッチの検知温度が所定時間に亘って下限設定温度に達せず、蒸発器(冷却機構)が過着霜と推測される状態になったとき、蒸発器の冷却運転を所定時間に亘り強制的に停止すると共に、この蒸発機に庫内循環用送風機によって庫内の空気を当てることで除霜運転を行うもの(例えば特許文献1)。
【0004】
また、冷凍冷蔵庫において、冷却器の温度が一定になったときに、冷却器に付着した霜を霜取りヒ−タによって融かす霜取りを行うもの(例えば特許文献2)。
【0005】
【特許文献1】
特開平6−52421号
【特許文献2】
特開平5−93567号
【0006】
【発明が解決しようとする課題】
前者の自動販売機のような冷却庫では、着霜した蒸発機に庫内の空気を当てているだけなので除霜の効率が低いばかりでなく、庫内の空気の温度が氷点以下であった場合除霜できないという問題があった。
【0007】
また、後者の冷凍冷蔵庫のような冷却庫では、庫内に冷却器がある(直冷式)場合、霜取りの度に霜取りヒ−タが動作するため、庫内の温度が上昇してしまうという虞があった。
【0008】
本発明は以上の問題点を解決し、除霜効率が良く、更に除霜中も庫内の温度が上昇しにくい冷却庫を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1の冷却庫は、良伝熱性の内容器を有する筐体と、前記内容器の内側に設けられた吸熱部と、この吸熱部を介して前記内容器の内部を冷却する冷却機構とを有する冷却庫において、前記容器と前記吸熱部の間にペルチェ素子からなるサ−モモジュ−ルを設けると共に、前記内容器内を冷却する際には冷却機構を駆動し、除霜運転時には前記内容器側から前記吸熱部側に熱が移動するようにサ−モモジュ−ルに通電する制御回路を設けたものである。
【0010】
本発明は以上のように構成することにより、筐体の内容器内を冷却する場合、制御回路によって冷却機構を駆動し、この冷却機構によって発生した冷熱を吸熱部に伝導させ、この吸熱部によって内容器内の空気との間で熱交換を行うことで内容器内の空気を冷却する。そして、吸熱部の除霜を行う場合、制御回路によって内容器から吸熱部に向かって熱が移動する方向にサ−モモジュ−ルに通電することで、吸熱部が加熱されてこの吸熱部に付着した霜が融ける一方で、サ−モモジュ−ルによって内容器が冷却されることで、内容器内の空気が冷却される。
【0011】
また、本発明の請求項2の冷却庫は、請求項1において、前記サ−モモジュ−ルを前記冷却機構と並列に設けたものである。
【0012】
本発明は以上のように構成することにより、冷却機構から発生した冷熱が直接吸熱部に伝導するため、サ−モモジュ−ルが熱抵抗とならない。
【0013】
【発明の実施形態】
以下、本発明の実施形態を添付図を参照して説明する。図1〜図3は第1実施形態を示しており、同図において1は筐体であり、この筐体1は内部に被収容物Aを収容する筐体本体2と、この筐体本体2の上部の開口2Aを閉塞する蓋体3とを備えている。筐体本体2はアルミニウム等の良伝熱性材料からなり周壁部4Aと底部4Bを有する内容器4の外部に、断熱層5を介して外容器6が設けられている。そして、内容器4の内部に吸熱部たるヒ−トシンク7が設けられている。このヒ−トシンク7は、板状のベース7Aと、このベース7Aに対して内容器4の内側に突設して一体に設けられた複数の熱交換用のフィン7Bとで構成されている。尚、前記ベース7Aは、内容器4の縦壁部4Aの内側に間隔Wをおいて平行に配置されている。また、前記フィン7Bは、それぞれが縦方向に形成されていると共に、これらのフィン7Bが前記ベース7Aに対して横方向に複数平行に並設されている。さらに内容器4の内部を冷却する冷却機構9が設けられる。この冷却機構9としては、例えば特開2000−337725号公報等に開示され、いずれも図示しないシリンダ内を往復動可能なピストンと、このピストンを軸方向に往復駆動する駆動装置と、前記ピストンの往復運動に従動して軸方向に往復運動するディスプレイサ−等を備えたスタ−リングサイクル冷凍機の他に、冷媒を使用し、いずれも図示しない圧縮機、凝縮器、膨張弁及び蒸発器等を備えた冷凍サイクル装置等が用いられる。そして、冷却機構9の冷却部位10をヒ−トシンク7の一方、実施形態では底部4B側に熱的に接続する。前記特開2000−337725号公報のスタ−リングサイクル冷凍機においては前記シリンダの先端側をベ−ス7Aの底部4B側に接続すればよく、また冷凍サイクル装置においては蒸発器側をベ−ス7Aの底部4B側に接続すればよい。
【0014】
さらに、内容器4とヒ−トシンク7のベ−ス7Aとの間に、ペルチェ素子からなるサ−モモジュ−ル11を設ける。ペルチェ素子は相異なる導体を接触し電流を通じると接合部でペルチェ効果により熱の発生吸収がおこるものであり、これを組み込んだサ−モモジュ−ル11をヒ−トシンク7の他方、実施形態では開口2A側に熱的に接続する。すなわち、サ−モモジュ−ル11の内側をベ−ス7Aの開口2A側に接続すると共に、サ−モモジュ−ル11の外側を内容器4の周壁部4Aに接続する。このサ−モモジュ−ル11の外側は、熱伝導性に優れ、かつ熱の伝達面積が大きい伝熱板12を介して接続されている。
【0015】
そして、冷却機構9とサ−モモジュ−ル11に制御回路13を接続する。この制御回路13は、前記内容器4内を冷却する際には冷却機構9を駆動し、一方スイッチ等の除霜操作部14を操作して行なう除霜運転時には前記内容器4側からヒ−トシンク7側に熱が移動するようにサ−モモジュ−ル11に通電する。
【0016】
次に前記実施形態についてその作用を説明する。筐体1の内容器4内を冷却する場合、制御回路13によって冷却機構9を駆動し、この冷却機構9によって発生した冷熱をヒ−トシンク7に伝導させ、このヒ−トシンク7によって内容器4内の空気との間で熱交換を行うことで内容器4内の空気を冷却する。
【0017】
長時間冷却してヒ−トシンク7のフィン7Bに霜が付着するようになると、ヒ−トシンク7の除霜を行う必要が生ずる。この場合には、制御回路13によって内容器4からヒ−トシンク7に向かって熱が移動する方向にサ−モモジュ−ル11に通電することで、サ−モモジュ−ル11が加熱されてこのサ−モモジュ−ル11に付着した霜が融ける。尚、除霜前期において、前記サ−モモジュ−ル11によってヒ−トシンク7に移動した熱は、その大部分が霜(即ち氷)の融解熱として霜に奪われるので、ヒ−トシンク7と内容器4内の空気との間で殆ど熱交換されず、従って内容器4内の温度は上昇しない。一方、サ−モモジュ−ル11により周壁部4Aは冷却されて吸熱状態となり、これは伝熱板12を介して内容器4に伝達され、この結果内容器4が冷却されることで、内容器4内の空気が冷却され続ける。そして、除霜後期において、霜が大部分融けてヒ−トシンク7から流下した場合、サ−モモジュ−ル11が移動させた熱によってヒ−トシンク7と内容器4内の空気との間で熱交換が行われることになるが、前記サ−モモジュ−ル11によって内容器4が冷却され続けることで、内容器4内全体として見ると温度の上昇は抑えられることになる。
【0018】
以上のように、前記実施形態では、アルミニウム等の良伝熱性の内容器4を有する筐体1と、前記内容器4の内側に設けられたヒ−トシンク7と、このヒ−トシンク7を介して前記内容器4の内部を冷却する冷却機構9とを備え、前記内容器4と前記ヒ−トシンク7の間にペルチェ素子からなるサ−モモジュ−ル11を設けると共に、前記内容器4内を冷却する際には冷却機構9を駆動し、除霜運転時には前記内容器4側から前記ヒ−トシンク7側に熱が移動するようにサ−モモジュ−ル11に通電する制御回路13を設け、サ−モモジュ−ル11によりヒ−トシンク7の除霜を行う場合、サ−モモジュ−ル11の冷却側を利用して内容器4を冷却することで、内容器4内の温度を殆ど上げることなくヒ−トシンク7に付着した霜を融かすことができる。
【0019】
また、冷却機構9の冷却部位10をヒ−トシンク7のベ−ス7Aの一方たる底部4B側に設け、一方サ−モモジュ−ル11をヒ−トシンク7のベ−ス7Aの他方たる開口2A側に設けて、前記サ−モモジュ−ル11を前記冷却機構9と並列に設けたことにより、冷却機構9から発生した冷熱が冷却部位10、ベ−ス7Aを介して直接ヒ−トシンク7に伝導するため、サ−モモジュ−ルが熱抵抗となることはなく内容器4内を冷却することができる。
【0020】
図4は第2実施形態を示しており、前記第1実施形態と同一部分には同一符号を付し、その詳細な説明を省略する。第2実施形態においては、筐体本体2の一側上部に内容器4と連通開口部20を介して連通する冷却室21が形成されると共に、この冷却室21に吸熱部たるヒ−トシンク7が設けられている。このヒ−トシンク7は、板状のベース7Aと、このベース7Aに対して冷却室21の内側に突設して一体に設けられた複数の熱交換用のフィン7Bとで構成されている。尚、前記ベース7Aは、冷却室21の底壁部21Aの内側に間隔Wをおいて平行に配置されている。また、前記フィン7Bは、それぞれが横方向に形成されていると共に、これらのフィン7Bが前記ベース7Aに対して横方向に複数平行に並設されている。さらに、冷却室21の下方に、先端部を冷却部位10とした冷却機構たるスタ−リングサイクル冷凍機22が収容されている。そして、ベ−ス7Aの一側下部、すなわち連通開口部20と反対側の下部に、冷却部位10が、銅板等良伝熱性の伝熱板23を介して接続されている。一方、ベ−ス7Aの他側下部、すなわち連通開口部20側の下部に、サ−モモジュ−ル11が、銅板等良伝熱性の伝熱板12を介して周壁部4Aの端部に接続されている。
【0021】
したがって、筐体1の内容器4内を冷却する場合、制御回路13によってスタ−リングサイクル冷凍機22を駆動し、このスタ−リングサイクル冷凍機22によって発生した冷熱を冷却部位10、伝熱板23を介してヒ−トシンク7に伝導させ、このヒ−トシンク7によって冷却室21内の空気との間で熱交換を行い、この熱交換された空気を図示しないファン等によって内容器4内に送ると共に、内容器4内の空気を冷却室21に導入することで内容器4内の空気を冷却する。
【0022】
長時間冷却してヒ−トシンク7のフィン7Bに霜が付着した場合には、制御回路13によって内容器4から伝熱板12を介してヒ−トシンク7に向かって熱が移動する方向にサ−モモジュ−ル11に通電することで、ヒ−トシンク7が加熱されてこのヒ−トシンク7に付着した霜が融ける。一方、サ−モモジュ−ル11により伝熱板12を介して内容器4の周壁部4Aの端部、ひいては内容器4が冷却されることで、内容器4内の空気が冷却される。
【0023】
以上のように、前記実施形態では、サ−モモジュ−ル11によりヒ−トシンク7の除霜を行う場合、サ−モモジュ−ル11の冷却側を利用して内容器4を冷却することで、内容器4内の温度を殆ど上げることなくヒ−トシンク7に付着した霜を融かすことができる。
【0024】
また、スタ−リングサイクル冷凍機22の冷却部位10をヒ−トシンク7のベ−ス7Aの一側に設け、一方サ−モモジュ−ル11をヒ−トシンク7のベ−ス7Aの他側に設けて、前記サ−モモジュ−ル11をスタ−リングサイクル冷凍機22と並列に設けたことにより、スタ−リングサイクル冷凍機22から発生した冷熱が冷却部位10、伝熱板23を介して直接ヒ−トシンク7に伝導するため、サ−モモジュ−ルが熱抵抗となることはなく内容器4内を冷却することができる。
【0025】
尚、本発明は上記実施形態に限定されるものではなく、本発明の要旨の範囲内において、種々の変形実施が可能である。
【0026】
【発明の効果】
本発明の請求項1の冷却庫は、良伝熱性の内容器を有する筐体と、前記内容器の内側に設けられた吸熱部と、この吸熱部を介して前記内容器の内部を冷却する冷却機構とを有する冷却庫において、前記内容器と前記吸熱部の間にペルチェ素子からなるサ−モモジュ−ルを設けると共に、前記内容器内を冷却する際には冷却機構を駆動し、除霜運転時には前記内容器側から前記吸熱部側に熱が移動するようにサ−モモジュ−ルに通電する制御回路を設けたものであり、吸熱部の除霜を行う場合、制御回路によって内容器から吸熱部に向かって熱が移動する方向にサ−モモジュ−ルに通電することで、吸熱部が加熱されてこの吸熱部に付着した霜が融ける一方で、サ−モモジュ−ルによって内容器が冷却されることで、内容器内の空気が冷却されるので、内容器内の温度を殆ど上げることなく吸熱部に付着した霜を融かすことができる。
【0027】
また、本発明の請求項2の冷却庫は、請求項1において、前記サ−モモジュ−ルを前記冷却機構と並列に設けたものであり、冷却機構から発生した冷熱が直接吸熱部に伝導するため、サ−モモジュ−ルが熱抵抗とならず効率よく吸熱部、ひいては内容器内を冷却することができる。
【図面の簡単な説明】
【図1】第1実施形態を示す縦断面図である。
【図2】第1実施形態を示す要部の横断面図である。
【図3】第1実施形態を示すブロック図である。
【図4】第2実施形態を示す縦断面図である。
【符号の説明】
1 筐体
4 内容器
7 ヒ−トシンク(吸熱部)
9 冷却機構
11 サ−モモジュ−ル
13 制御回路
22 スタ−リングサイクル冷凍機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerator such as a refrigerator or a freezer, and more particularly to a defrosting mechanism thereof.
[0002]
[Problems to be solved by the invention]
Conventionally, for example, the following refrigerators of this type exist.
[0003]
In a vending machine, when the temperature detected by the temperature switch does not reach the lower limit set temperature for a predetermined time and the evaporator (cooling mechanism) is in a state in which it is estimated that excessive frost is formed, the cooling operation of the evaporator is set to a predetermined value. In addition to forcibly stopping over time, a defrosting operation is performed by applying air in the refrigerator to the evaporator by a blower for circulating the refrigerator (for example, Patent Document 1).
[0004]
Further, in a refrigerator, when the temperature of the cooler becomes constant, defrosting is performed by melting the frost attached to the cooler with a defrosting heater (for example, Patent Document 2).
[0005]
[Patent Document 1]
JP-A-6-52421 [Patent Document 2]
JP-A-5-93567
[Problems to be solved by the invention]
In a refrigerator such as the former vending machine, only the air inside the refrigerator was exposed to the frosted evaporator, so not only the efficiency of defrosting was low, but also the temperature of the air in the refrigerator was below the freezing point. In such a case, there is a problem that defrost cannot be performed.
[0007]
Also, in the latter refrigerator such as a refrigerator-freezer, if there is a cooler in the refrigerator (direct cooling type), the temperature inside the refrigerator rises because the defrosting heater operates every time defrosting is performed. There was a fear.
[0008]
An object of the present invention is to solve the above-mentioned problems, and to provide a cooling box having good defrosting efficiency and in which the temperature in the chamber is hardly increased during defrosting.
[0009]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a cooler having a housing having an inner container having good heat conductivity, a heat absorbing portion provided inside the inner container, and cooling the inside of the inner container through the heat absorbing portion. In a cooling cabinet having a cooling mechanism, a thermo module made of a Peltier element is provided between the container and the heat absorbing section, and the cooling mechanism is driven to cool the inner container, thereby performing a defrosting operation. In some cases, a control circuit for energizing the thermo module is provided so that heat is transferred from the inner container to the heat absorbing portion.
[0010]
The present invention is configured as described above, when cooling the inner container of the housing, drives the cooling mechanism by the control circuit, conducts the cold generated by the cooling mechanism to the heat absorbing portion, and the heat absorbing portion The air in the inner container is cooled by performing heat exchange with the air in the inner container. When defrosting the heat absorbing portion, the control circuit energizes the thermo module in a direction in which heat moves from the inner container toward the heat absorbing portion, so that the heat absorbing portion is heated and adheres to the heat absorbing portion. While the frost melts, the inner module is cooled by the thermo module, thereby cooling the air in the inner module.
[0011]
Further, the cooling cabinet according to a second aspect of the present invention is the cooling cabinet according to the first aspect, wherein the thermomodule is provided in parallel with the cooling mechanism.
[0012]
According to the present invention, since the cold generated from the cooling mechanism is directly conducted to the heat absorbing portion, the thermo-module does not become a thermal resistor.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 to 3 show a first embodiment. In the drawings, reference numeral 1 denotes a housing, and the housing 1 includes a housing main body 2 for housing an object A to be stored therein and a housing main body 2 And a lid 3 that closes the upper opening 2A. The housing body 2 is made of a good heat conductive material such as aluminum, and an outer container 6 is provided via a heat insulating layer 5 outside the inner container 4 having a peripheral wall 4A and a bottom 4B. Further, a heat sink 7 as a heat absorbing portion is provided inside the inner container 4. The heat sink 7 includes a plate-like base 7A and a plurality of heat exchange fins 7B protruding from the inside of the inner container 4 with respect to the base 7A and provided integrally therewith. The base 7A is disposed inside the vertical wall 4A of the inner container 4 in parallel with a space W therebetween. Each of the fins 7B is formed in the vertical direction, and a plurality of the fins 7B are arranged in parallel in the horizontal direction with respect to the base 7A. Further, a cooling mechanism 9 for cooling the inside of the inner container 4 is provided. The cooling mechanism 9 is disclosed in, for example, Japanese Patent Application Laid-Open No. 2000-337725, and includes a piston that can reciprocate in a cylinder (not shown), a driving device that reciprocates the piston in the axial direction, In addition to a stirling cycle refrigerator equipped with a displacer or the like that reciprocates in the axial direction following the reciprocating motion, a refrigerant is used, and a compressor, a condenser, an expansion valve, an evaporator, etc., not shown And the like. Then, the cooling part 10 of the cooling mechanism 9 is thermally connected to one of the heat sinks 7, in the embodiment, the bottom part 4 </ b> B side. In the Stirling cycle refrigerator disclosed in Japanese Patent Application Laid-Open No. 2000-337725, the front end of the cylinder may be connected to the bottom 4B of the base 7A, and in the refrigeration cycle apparatus, the evaporator is connected to the base. What is necessary is just to connect to the bottom 4B side of 7A.
[0014]
Further, a thermo module 11 composed of a Peltier element is provided between the inner container 4 and the base 7A of the heat sink 7. In the Peltier element, when different conductors are brought into contact with each other and a current is passed, heat is generated and absorbed at the junction due to the Peltier effect. It is thermally connected to the opening 2A side. That is, the inside of the thermo-module 11 is connected to the opening 2A side of the base 7A, and the outside of the thermo-module 11 is connected to the peripheral wall 4A of the inner container 4. The outside of the thermomodule 11 is connected via a heat transfer plate 12 which has excellent heat conductivity and a large heat transfer area.
[0015]
Then, the control circuit 13 is connected to the cooling mechanism 9 and the thermo module 11. The control circuit 13 drives the cooling mechanism 9 to cool the inside of the inner container 4 and heats up the inner container 4 from the inner container 4 during a defrosting operation performed by operating a defrosting operation unit 14 such as a switch. The thermo module 11 is energized so that heat moves to the sink 7 side.
[0016]
Next, the operation of the above embodiment will be described. When the inside of the inner container 4 of the housing 1 is cooled, the cooling mechanism 9 is driven by the control circuit 13, and the heat generated by the cooling mechanism 9 is transmitted to the heat sink 7, and the heat sink 7 is used by the heat sink 7. The air in the inner container 4 is cooled by performing heat exchange with the air in the inner container.
[0017]
If frost adheres to the fins 7B of the heat sink 7 after being cooled for a long time, it becomes necessary to defrost the heat sink 7. In this case, the control module 13 energizes the thermomodule 11 in a direction in which the heat moves from the inner container 4 toward the heat sink 7, so that the thermomodule 11 is heated and the thermomodule 11 is heated. The frost adhering to the module 11 melts; Most of the heat transferred to the heat sink 7 by the thermo-module 11 in the first half of the defrosting is taken by the frost as heat of melting of the frost (that is, ice). Almost no heat is exchanged with the air in the inner container 4, and therefore the temperature in the inner container 4 does not rise. On the other hand, the peripheral wall portion 4A is cooled by the thermo-module 11 to be in a heat absorbing state, which is transmitted to the inner container 4 through the heat transfer plate 12, and as a result, the inner container 4 is cooled, and thereby the inner container 4 is cooled. The air in 4 continues to cool. In the latter half of the defrosting, when most of the frost melts and flows down from the heat sink 7, heat is transferred between the heat sink 7 and the air in the inner container 4 by the heat transferred by the thermomodule 11. Although the replacement is performed, since the inner container 4 is continuously cooled by the thermo-module 11, the rise in the temperature as a whole in the inner container 4 can be suppressed.
[0018]
As described above, in the above embodiment, the housing 1 having the inner container 4 having good heat conductivity such as aluminum, the heat sink 7 provided inside the inner container 4, and the heat sink 7 via the heat sink 7 are provided. A cooling mechanism 9 for cooling the inside of the inner container 4 with a thermo module 11 made of a Peltier element between the inner container 4 and the heat sink 7. A control circuit 13 is provided for driving the cooling mechanism 9 for cooling, and for supplying electricity to the thermo module 11 so that heat is transferred from the inner container 4 to the heat sink 7 during the defrosting operation. When the heat sink 7 is defrosted by the thermo module 11, the temperature inside the inner container 4 is almost increased by cooling the inner container 4 using the cooling side of the thermo module 11. To melt the frost adhering to the heat sink 7 Can.
[0019]
Further, a cooling portion 10 of the cooling mechanism 9 is provided on the bottom 4B, which is one of the bases 7A of the heat sink 7, and the thermomodule 11 is provided with the other opening 2A of the base 7A of the heat sink 7. Side, and the thermo-module 11 is provided in parallel with the cooling mechanism 9, so that the cold generated from the cooling mechanism 9 is directly transmitted to the heat sink 7 via the cooling portion 10 and the base 7A. Because of the conduction, the inside of the inner container 4 can be cooled without the thermal module becoming a thermal resistance.
[0020]
FIG. 4 shows a second embodiment, in which the same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. In the second embodiment, a cooling chamber 21 communicating with the inner container 4 through a communication opening 20 is formed in an upper portion of one side of the housing body 2, and a heat sink 7 serving as a heat absorbing part is formed in the cooling chamber 21. Is provided. The heat sink 7 is composed of a plate-like base 7A and a plurality of heat exchange fins 7B protruding from the base 7A inside the cooling chamber 21 and provided integrally therewith. The base 7A is disposed in parallel with a space W inside the bottom wall 21A of the cooling chamber 21. The fins 7B are each formed in the horizontal direction, and a plurality of the fins 7B are arranged in parallel in the horizontal direction with respect to the base 7A. Further, below the cooling chamber 21, a Stirling cycle refrigerator 22 is accommodated as a cooling mechanism having a cooling portion 10 at the tip. The cooling portion 10 is connected to a lower portion of one side of the base 7A, that is, a lower portion opposite to the communication opening portion 20 through a good heat transfer plate 23 such as a copper plate. On the other hand, at the lower part on the other side of the base 7A, that is, at the lower part on the side of the communication opening 20, a thermo module 11 is connected to the end of the peripheral wall part 4A via a good heat transfer plate 12 such as a copper plate. Have been.
[0021]
Therefore, when cooling the inner container 4 of the housing 1, the control circuit 13 drives the stirling cycle refrigerator 22, and the cooling generated by the stirling cycle refrigerator 22 is used to cool the cooling part 10, the heat transfer plate, The heat sink 7 conducts heat to the heat sink 7, and the heat sink 7 exchanges heat with the air in the cooling chamber 21, and the heat exchanged air is introduced into the inner container 4 by a fan (not shown) or the like. At the same time, the air in the inner container 4 is cooled by introducing the air in the inner container 4 into the cooling chamber 21.
[0022]
When frost adheres to the fins 7B of the heat sink 7 after cooling for a long time, the control circuit 13 supports the heat sink 7 in a direction in which heat moves from the inner container 4 to the heat sink 7 via the heat transfer plate 12. -When the module 11 is energized, the heat sink 7 is heated and the frost attached to the heat sink 7 melts. On the other hand, the air in the inner container 4 is cooled by cooling the end of the peripheral wall portion 4A of the inner container 4 via the heat transfer plate 12 by the thermo-module 11, and eventually the inner container 4.
[0023]
As described above, in the above-described embodiment, when the heat sink 7 is defrosted by the thermo module 11, the inner container 4 is cooled by using the cooling side of the thermo module 11. The frost adhering to the heat sink 7 can be melted without increasing the temperature in the inner container 4 almost.
[0024]
The cooling part 10 of the stirling cycle refrigerator 22 is provided on one side of the base 7A of the heat sink 7, while the thermo module 11 is provided on the other side of the base 7A of the heat sink 7. The cooling module 11 is provided in parallel with the stirling cycle refrigerator 22, so that the cold generated from the stirling cycle refrigerator 22 is directly transmitted through the cooling part 10 and the heat transfer plate 23. Since the heat is transmitted to the heat sink 7, the thermo-module does not become a heat resistor and the inside of the inner container 4 can be cooled.
[0025]
Note that the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention.
[0026]
【The invention's effect】
The cooler according to claim 1 of the present invention cools the inside of the inner container through a housing having an inner container having good heat conductivity, a heat absorbing portion provided inside the inner container, and the heat absorbing portion. In a cooling cabinet having a cooling mechanism, a thermo module composed of a Peltier element is provided between the inner container and the heat absorbing portion, and when cooling the inner container, the cooling mechanism is driven to perform defrosting. In operation, a control circuit is provided to energize the thermo module so that heat is transferred from the inner container side to the heat absorbing portion side. By energizing the thermo module in the direction in which heat moves toward the heat absorbing section, the heat absorbing section is heated and the frost attached to the heat absorbing section is melted, while the inner module is cooled by the thermo module. The air inside the inner container is cooled Since, it is possible to melt the frost adhering to the heat absorbing portion without increasing almost the temperature of the inner container.
[0027]
According to a second aspect of the present invention, there is provided a cooling cabinet according to the first aspect, wherein the thermomodule is provided in parallel with the cooling mechanism, and cold generated by the cooling mechanism is directly transmitted to the heat absorbing portion. As a result, the thermo module does not become a thermal resistance, and the heat absorbing portion, and hence the inner container, can be efficiently cooled.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment.
FIG. 2 is a cross-sectional view of a main part showing the first embodiment.
FIG. 3 is a block diagram showing the first embodiment.
FIG. 4 is a longitudinal sectional view showing a second embodiment.
[Explanation of symbols]
1 housing 4 inner container 7 heat sink (heat absorbing part)
9 Cooling mechanism 11 Thermo module 13 Control circuit 22 Stirling cycle refrigerator

Claims (2)

良伝熱性の内容器を有する筐体と、前記内容器の内側に設けられた吸熱部と、この吸熱部を介して前記内容器の内部を冷却する冷却機構とを有する冷却庫において、前記容器と前記吸熱部の間にペルチェ素子からなるサ−モモジュ−ルを設けると共に、前記容器内を冷却する際には冷却機構を駆動し、除霜運転時には前記容器側から前記吸熱部側に熱が移動するようにサ−モモジュ−ルに通電する制御回路を設けたことを特徴とする冷却庫。A container having a good heat transfer inner container, a heat absorbing portion provided inside the inner container, and a cooling mechanism having a cooling mechanism for cooling the inside of the inner container through the heat absorbing portion; A thermo module comprising a Peltier element is provided between the heat absorbing portion and the heat absorbing portion, and a cooling mechanism is driven when cooling the inside of the container, and heat is transferred from the container side to the heat absorbing portion side during the defrosting operation. A refrigerator having a control circuit for energizing the thermo module so as to move. 前記サ−モモジュ−ルを、前記冷却機構と並列に設けたことを特徴とする請求項1記載の冷却庫。2. A refrigerator according to claim 1, wherein said thermo module is provided in parallel with said cooling mechanism.
JP2002341310A 2002-11-25 2002-11-25 Cooling shed Pending JP2004176952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341310A JP2004176952A (en) 2002-11-25 2002-11-25 Cooling shed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341310A JP2004176952A (en) 2002-11-25 2002-11-25 Cooling shed

Publications (1)

Publication Number Publication Date
JP2004176952A true JP2004176952A (en) 2004-06-24

Family

ID=32703713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341310A Pending JP2004176952A (en) 2002-11-25 2002-11-25 Cooling shed

Country Status (1)

Country Link
JP (1) JP2004176952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630492A3 (en) * 2004-08-23 2008-10-29 Twinbird Corporation Temperature controlling unit and container using the same
EP2006622A3 (en) * 2007-06-19 2009-08-19 Niccolo' Gaggelli Refrigerating machine with defrosting unit
CN101102656B (en) * 2007-07-04 2012-07-11 杨伍民 Closed loop automatic compensation heat dispersion method and device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1630492A3 (en) * 2004-08-23 2008-10-29 Twinbird Corporation Temperature controlling unit and container using the same
EP2006622A3 (en) * 2007-06-19 2009-08-19 Niccolo' Gaggelli Refrigerating machine with defrosting unit
CN101102656B (en) * 2007-07-04 2012-07-11 杨伍民 Closed loop automatic compensation heat dispersion method and device

Similar Documents

Publication Publication Date Title
KR100376161B1 (en) A storage chamber with peltier element
US5713208A (en) Thermoelectric cooling apparatus
US5941085A (en) Refrigerator having an apparatus for defrosting
US6698210B2 (en) Cold insulating chamber
US20070101750A1 (en) Refrigeration system including thermoelectric module
CN1160178A (en) Refrigerator having warmer compartment
RU2465523C2 (en) Refrigerating device and method to maintain constant specified temperature in refrigerating chamber of refrigerating device
JP3616174B2 (en) Cooling device, refrigerator, showcase and vending machine
JP2957415B2 (en) Refrigerator refrigerator ice making unit
KR100666680B1 (en) A refrigerator defrosting apparatus and control method
JP2004176952A (en) Cooling shed
JP3625182B2 (en) Stirling refrigerator and Stirling refrigerator
KR101384235B1 (en) Apparatus for Radiating and defrosting for Refrigerator of Machine room and same Method
JP2001304745A (en) Cold reserving apparatus
JP2000097546A (en) Cooling storehouse
KR100513990B1 (en) Apparatus and control method for defrost of refrigerator
JP6026966B2 (en) refrigerator
JP2002235963A (en) Cooling apparatus
JP2004278890A (en) Refrigerator-freezer
JP3276927B2 (en) Defroster and cooling storage with defroster
KR19990017197U (en) Refrigerator
JPH10148453A (en) Electronic heating-refrigerating chamber
KR20030087151A (en) Device for prevention dewing of refrigerator
KR100547324B1 (en) Defrost apparatus of refrigerator
JP2001235266A (en) Cold insulation food warming cabinet