JP2004176448A - Floor structure and construction method therefor - Google Patents

Floor structure and construction method therefor Download PDF

Info

Publication number
JP2004176448A
JP2004176448A JP2002345323A JP2002345323A JP2004176448A JP 2004176448 A JP2004176448 A JP 2004176448A JP 2002345323 A JP2002345323 A JP 2002345323A JP 2002345323 A JP2002345323 A JP 2002345323A JP 2004176448 A JP2004176448 A JP 2004176448A
Authority
JP
Japan
Prior art keywords
layer
resin
floor structure
reinforced resin
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002345323A
Other languages
Japanese (ja)
Inventor
Toshiyuki Sugiura
俊之 杉浦
Fumio Asakawa
文男 浅川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aica Kogyo Co Ltd
Original Assignee
Aica Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aica Kogyo Co Ltd filed Critical Aica Kogyo Co Ltd
Priority to JP2002345323A priority Critical patent/JP2004176448A/en
Publication of JP2004176448A publication Critical patent/JP2004176448A/en
Pending legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To overcome a problem that there are cases that bulging occurs because moisture trapped after the execution of work pushes up a floor, and that water leakage occurs due to cracks generated, in a substrate and the like affectting a waterproof layer, though a resin waterproof material for floor coating, a reinforced resin floor and the like are conventionally used for floors requiring waterproofness, dust proofing, water resistance and the like, of various kinds of factories, a storehouse, a parking lot and the like. <P>SOLUTION: A floor structure is constituted by sequentially constructing a tack coat layer, a resin mortar layer, a filler layer, a buffer layer, a reinforced resin layer and the like on the substrate, so that the bulging can be prevented from being caused by the moisture in the substrate, and the displacement of the substrate caused by the cracks is absorbed by the buffer layer, so that the cracks in the reinforced resin layer can be prevented, to avoid the water leakage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は各種の床、例えば食品工場、薬品工場、電子部品工場など各種の工場や倉庫、あるいは駐車場などの床に防水性や耐磨耗性、耐スリップ性などの高度な性能が求められる各種の床と床の施工法に関するものであり、詳しくは樹脂モルタル層、緩衝層及び熱硬化性樹脂と繊維補強材とからなる強化樹脂層などが重層して仕上げられている床構造体とその施工法に関するものである。
【0002】
【従来の技術】
従来、防水性、耐薬品性、防塵性などを求められる食品工場、薬品工場、電子部品工場、その他各種の工場等の床にはエポキシ樹脂系、ウレタン樹脂系などの樹脂系材を塗布して仕上げた床が主として使用されてきている。
これらの床は下地コンクリートを打設し、1ヶ月程度放置して乾燥させたのち、プライマーを塗布し、中塗り、上塗りの工程を経て仕上げられていたが、施工管理の不備などでコンクリート下地が充分に乾燥していない状態において施工すると、コンクリート中の水分が施工された樹脂系床の下に閉じこめられて逃げ場を失ってしまい、水分が樹脂系床を下から突き上げる状況となるためフクレ現象が多発することがある。 このためにコンクリート下地を十分乾燥させるため止むを得ず長い工期をかけて施工が行われている状況にある。
【0003】
このような問題は、優れた耐水性、耐久性、耐磨耗性、耐スリップ性などの性能を備えるため、駐車場、工場床、倉庫の床、その他の場所に広く採用されている強化樹脂層を採用した防水床においても発生している。
本発明は斯かる上記のような問題に鑑み、鋭意検討した結果なされたもので、コンクリートなど下地中の残留水分による膨れを防止するために、必要により第1プライマー層を設けたのち、タックコート層、樹脂モルタル層、目止め層、第2プライマー層、緩衝層並びに強化樹脂層が少なくとも施工されて仕上げられた床構造体とその施工法により、前記従来において問題となつていた問題を解決したものである。
【0004】
【特許文献1】特開平4−142323
【特許文献2】特開平5−33309
【0005】
【発明が解決しようとする課題】
本発明は前記のような課題、即ち従来の樹脂系の床施工において改良が求められていた課題、即ち施工期間の短縮対策、フクレ現象問題ならびに性能等の多くの課題を解決せんとするものである。
【0006】
【課題を解決するための手段】
前記のような課題を解決するため、本発明は、必要により第1プライマー層を設けたのち、タックコート層、樹脂モルタル層、目止め層、第2プライマー層、軟質樹脂からなる緩衝層並びに熱硬化性樹脂と繊維強化材からなる強化樹脂層を少なくとも重層して仕上げられた床構造体とその施工法により前記従来の課題を解決したものである。
【0007】
本発明の床構造体は、コンクリート、軽量コンクリート等の床下地に施工されるものであるが、これらの下地として汚れがないこと、ヒビ割れがないこと、植物油、鉱物油等がしみこんでいないことなどが必要になる。汚れが有る場合は洗剤による洗浄、ひび割れが有る場合はセメント配合物、エポキシ樹脂などによる充填、オイル等の油性の汚れについては中性洗剤による洗浄等の手段により調整できる。
【0008】
第1プライマー層は、下地との密着性を確保するために必要により設けられる層であつて、エポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂などの硬化性樹脂を有機溶剤に溶解させた樹脂溶液からなり0.1〜0.5kg/m 鏝、ローラー、刷毛などの塗布手段により塗布し、下地に一部浸透させ硬化させて形成される。なかでもエポキシ樹脂は密着性に優れるとともに、硬化時間が比較的長いため作業幅が広く、作業性がよい為好ましい。
樹脂濃度は1〜50重量%が適しており、1重量%以下では下地に過剰に浸透してしまい表面に残らないため密着確保の目的にそぐわない。50重量%以上の濃度は粘度が高く浸透性が低下し下地に対するアンカー効果が無くなるため適さない。
なお、下地コンクリートの表面の脆弱部をショツトブラスト、サンドブラスト等で機械的に削除すれば第1プライマー層を省くことができる。
【0009】
タックコートは樹脂モルタル層の接着向上のために設けるもので、エポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂などの接着性に優れる硬化性樹脂あるいは硅砂、炭酸カルシウム等の充填材などを配合したものでもよい。
中でもエポキシ樹脂は密着性、タック性などに優れて作業幅が広く、作業性がよいため好ましい。
該タックコートは0.15〜0.5kg/m鏝、刷毛などの塗布具により下地もくは第1プライマー層の上に設けられる。
【0010】
該タックコート層の上には、樹脂モルタル層が設けられる。該樹脂モルタル層は、膨れ防止機能のために厚み3〜10ミリに設けられるもので、エポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂などの硬化性樹脂に骨材、例えば、硅砂、川砂、海砂、セラミツクス粉などを該硬化性樹脂100重量部に対して、200〜1500重量部を配合したものが鏝、刷毛などの塗布具により5.0〜30kg/m塗工して形成される。
なかでも硬化性樹脂にエポキシ樹脂を使用したものは膨れ防止機能、耐薬品性、耐アルカリ性などに優れ、並びに作業幅が広く作業性が良好なため、本発明の目的に相応しいものとして適合している。
【0011】
該樹脂モルタル層の上には、目止め層が設けられる。
該目止め層は該樹脂モルタル層の凹凸状態の凹部と空隙部を充填することが目的であるが、下地コンクリート中の水分を遮蔽する効果も得られる。
該目止め層はエポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂などの硬化性樹脂に増粘剤、例えば、石綿、シリカ、鉱物繊維などを配合してTI値(チクソ係数)を3〜8に調整した目止め材が使用されて形成される。この範囲のTI値に設定することにより、該凹部への充填性を確保できる。なかでもエポキシ樹脂系の目止め材は密着性に優れ、硬化が緩やかで作業幅が広く作業性に優れるため目止め材として適している。
【0012】
該目止め層の上に、第2プライマーが塗布され、これまで施工された層と、このあと施工される層との密着性の確保が図られる。
該プライマーには、エポキシ樹脂、ウレタン樹脂、ビニルエステル樹脂など硬化性樹脂からなるプライマー、なかでもウレタン樹脂系の1液タイプの湿気硬化型樹脂100重量部に水硬性セメント、例えばポルトランドセメント、白色ポルトランドセメント、高アルミナ含有速硬化型セメントなどを30〜200重量部配合したものが、塗布するだけでプライマー層が形成でき、しかも緩衝層との密着効果が得られるため使用に適している。
【0013】
該第2プライマーの上に、軟質の緩衝層が設けられる。
該緩衝層は駆体、下地のひび割れ、寸法変化、動きなどによる応力が上層の強化樹脂層にまで波及することを回避するために設けられるもので、応力を遮断、吸収する特性が求められる。このため、軟質で好ましくはJISA6021に規定する−20〜60℃の温度条件下における破断時のつかみ間の伸び率が30%以上であるウレタン樹脂、アクリル樹脂、アクリル・ウレタン変性樹脂、不飽和ポリエステル樹脂、シリコーン樹脂などが使用できる。このような樹脂であれば、駆体や下地の動きに伴う応力に十分に対応できるため、該緩衝層の存在により該応力による駆体や下地の動きが生じても強化樹脂層のクラック、割れなどを回避することができる。これらの中でも、不飽和ポリエステル樹脂は速硬化性で工期を短縮できるため好ましい。
該緩衝層の厚みは前記のような緩衝効果を確保し、耐久性を持たせるために少なくとも0.5ミリ以上あることが望ましい。
【0014】
該緩衝層の上に強化樹脂層が形成される。
該強化樹脂層は、熱硬化性樹脂と繊維強化材とが複合化されて形成されるものであつて、該熱硬化性樹脂には、周知の不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、ウレタン樹脂、その他硬化性の樹脂が硬化剤とともに使用される。
【0015】
また、熱硬化性樹脂には、強化樹脂層を露出した施工が採用される場合などにあつては、仕上がり外観を良好とするために顔料を含むトナーを配合することが行われる。
顔料には酸化チタン、ベンガラ、酸化鉄、カーボンブラック等或いはこれらの混合物として目的とする色調に応じて選定される。顔料はそのまま配合する場合と液状媒体に分散してペーストとして配合使用する場合がありるが、後者の使用方法が簡便に配合できるため好ましい。
【0016】
繊維強化材としては、各種の繊維素材、例えばナイロン、ビニロン、ポリエステル、アクリル、アラミド、カーボンファイバーなどの合成繊維材、ガラス繊維、石綿繊維、岩綿繊維など無機質繊維材、麻など天然繊維材などが使用されるが、これらの中でも、坪量300〜600g/mのガラス繊維、合成繊維が取り扱い性、施工性、強度、入手性などの点から好ましい。
【0017】
ガラス繊維、合成繊維には平織り状、マツト状、チップ状の製品があり、それらの形態で使用することができる。なかでもマット状の形態であれば繊維間への液状樹脂の浸透性に優れるため、塗布された熱硬化性樹脂が繊維間に浸透し易く施工に好都合である。更にロール状に巻き取られたものであれば、下地層の表面に熱硬化性樹脂を塗布したのち、ロール状のものを広げて熱硬化性樹脂の塗布面に重ね、さらに熱硬化性樹脂を塗布するか、ロール状のものを下地層の表面に広げたのち、熱硬化性樹脂を十分に塗布して、該緩衝層の表面に至らしめるとともに、繊維間に浸透させ硬化させて繊維強化材と熱硬化性樹脂とを複合化させて、強化樹脂層を形成させることができる。
マツト状のものでは坪量300〜600g/mの素材が、補強効果、取り扱い性、熱硬化性樹脂の浸透性や作業性などの点から使用に適している。
【0018】
強化樹脂層の上に耐スリップ性、耐磨耗性などの特性を確保するために、必要により骨材が散布される。骨材には、硅砂、碍子のリサイクル粉末、アルミナ粉、ガラス粉、川砂、山砂、海砂、スラッグ、その他セラミックの粉砕物等が使用される。
これらの骨材は単独で使用されるか、適宜、複数の成分が混合されて使用される。該骨材の粒子径は0.05〜3mm、好ましくは0.1〜2mmの粒子サイズが使用に適合する。0.05mm以下では耐スリップ性が悪くなり好ましくない。また3mm以上では作業性が劣り、仕上がりがよくないため好ましくない。
骨材は強化樹脂層を形成させる際の熱硬化性樹脂が硬化する過程で散布され、硬化とともに強化樹脂層の内部に沈下もしくは一部沈下させて保持させることが望ましいが、強化樹脂層が硬化した後に散布し、次に述べる上塗り層により固定させ、保持させる施工も採用することができる。
【0019】
強化樹脂層が硬化したのち、仕上がり外観、耐候性の確保などのために上塗り層が施工される。上塗り層としてアクリル樹脂、アクリルシリコン樹脂、アクリルウレタン樹脂、フッソ樹脂、不飽和ポリエステル樹脂などの樹脂を使用したもので耐候性に優れる塗料を塗布量0.2〜1.0kg/m塗布する方法が採用される。なかでもサイズが1〜10ミリの雲母片、プラスチック片、金属片など薄片を混入させた塗料であれば薄片により太陽光を遮蔽する効果により表面層および強化樹脂層の劣化を防止できる。
【0020】
これらの樹脂には、必要により増粘剤、充填剤、低収縮剤、レベリング剤、消泡剤、分散剤などが添加されて施工に都合のよい粘度、硬化性、塗布性などが調整されればよい。
【0021】
以下具体的な実施例について説明する。
実施例1
直径200ミリ、高さ120ミリの型中に水/ポルトランドセメント比が0.7のコンクリートを打設して、気中養生7日後(含水率9%)に実施例、比較例の各施工試験を行い、20℃で1日間養生して試験体を調製した。
エポキシ樹脂系溶剤型プライマー(アイカ工業(株)、JE−2570)を該試験体の表面に刷毛で0.2kg/m塗布して硬化させて第1プライマー層を形成したのち、タックコート層用に、エポキシ樹脂(アイカ工業(株)、JE−2540L)を0.3kg/m鏝で塗布し、直ちに、エポキシ樹脂(アイカ工業(株)、JE−2540L)100重量部に対して、骨材として硅砂3号を1500重量部配合した樹脂モルタルを鏝にて7.0kg/m塗布し、硬化させて樹脂モルタル層を形成した。ついで、目止め層として、エポキシ樹脂(アイカ工業(株) JE−2540L)に増粘剤(アイカ工業(株) JE−9004)を対重量比10%入れたTI値が4.0〜4.3の目止め材を0.3kg/m塗布して硬化させた。
更に、第2プライマー層としてウレタン樹脂(アイカ工業(株) JU−1270)100重量部にポルトランドセメントを100重量部配合した1液型プライマーを0.2kg/m塗布したのち、JISA6021に規定の−20〜60℃の温度条件下における破断時のつかみ間の伸び率が30%以上である軟質の不飽和ポリエステル樹脂(アイカ工業(株) JE−2010)を1.0kg/m2塗布・硬化させて緩衝層を形成した。
このあと、該緩衝層の表面に坪量450g/mのガラス繊維マットを配置した上に、不飽和ポリエステル樹脂(アイカ工業(株) JE−2000)を1.5kg/m塗布して該ガラス繊維マット内部に十分に浸透させるとともに、該緩衝層の表面にまで至らしめたのち、硅砂を1.0kg/m散布し、硅砂を一部沈下させた状態で硬化した強化樹脂層を形成した。
ついで、不飽和ポリエステル樹脂(アイカ工業(株) JE−2000)100重量部に灰色の着色トナーを10重量部を配合した上塗り材を0.5kg/m鏝で塗布・硬化させた。
最後にトップコートとして不飽和ポリエステル樹脂(アイカ工業(株) JE−2080)を0.4kg/m塗布・硬化させて実施例1の床構造体を仕上げた。
【0022】
比較例1
実施例1において、第1プライマー層、タックコート層、樹脂モルタル層、目止め層を無くした施工工程で仕上げて比較例1の床構造体を仕上げた。
【0023】
比較例2
実施例1における第1プライマー層、タックコート層、樹脂モルタル層、目止め層並びに第2プライマーを無くした代わりに、不飽和ポリエステル樹脂(アイカ工業(株) JE−2000)100重量部に硅砂3号を100重量部配合した下地調整材を1.0kg/m鏝で塗布し硬化させて下地調整層を形成する施工により比較例2の床構造体を仕上げた。
【0024】
実施例、比較例の床構造体の試験体について、膨れ促進試験を実施した結果は表1の通りであつた。
【表1】

Figure 2004176448
( )内は膨れ部分の面積比率%を示す。
膨れ促進試験
実施例及比較例で作成した試験体の塗膜とコンクリート部分の境界面より1センチ下までのコンクリート部分を50℃の温水中に浸漬した状態で経時的に膨れの発生状況などを観察して、異常の有無の観察と膨れの面積比率を測定する。
【0025】
【発明の効果】
従来の駆体表面など下地にプライマー、中塗り、上塗り層などの手順を経て施工した床構造体にあつては、下地から表面層に向けて突き上げる水分により密着性が低下するため、膨れの発生が避けられなかった。
しかしながら本発明になる床構造体並びにその施工法では、必要により第1プライマー層を設けたのち、タックコート層、樹脂モルタル層、目止め層、第2プライマー層並びに軟質の緩衝層を設け、ついで強化樹脂層を重層したものであるため、該樹脂モルタル層が下地水分の遮断層として機能して効果的に遮蔽することにより前記従来のような膨れの発生をなくすことがきた。また、下地との密着性に不安があつても、第1プライマー層を設けることにより下地との密着性を確保することができる。
また、伸びのある緩衝層を介在させているため、下地のひび割れなどに起因する動きに対して、柔軟に対応して吸収、遮断した強化樹脂層への影響を低減してクラックを防止できるため耐久性のある床構造体が得られる。
更に、強化樹脂層の上に骨材を散布して固定させた床構造体では、耐磨耗性、耐スリップ性が高められたものに仕上げられるため、人の歩行、車の走行に安全性が向上するとともに耐用年数を長くすることができる。[0001]
[Industrial applications]
According to the present invention, various floors, for example, various factories such as food factories, pharmaceutical factories, and electronic component factories, warehouses, and floors such as parking lots, are required to have high performance such as waterproofness, abrasion resistance, and slip resistance. The present invention relates to various floors and floor construction methods, and more specifically, a floor structure and a floor structure in which a resin mortar layer, a buffer layer, and a reinforced resin layer made of a thermosetting resin and a fiber reinforcing material are overlaid and finished. It concerns the construction method.
[0002]
[Prior art]
Conventionally, floors of food factories, chemical factories, electronic component factories, and other factories that require waterproofness, chemical resistance, dust resistance, etc. are coated with resin-based materials such as epoxy resin and urethane resin. Finished floors have been mainly used.
These floors were laid with foundation concrete, left for about one month and dried, then applied with a primer, intermediate coating, and top coating, but were finished. If the construction is not sufficiently dried, the moisture in the concrete will be trapped beneath the resin-based floor on which it was constructed, and there will be no escape, and the water will push up the resin-based floor from below, causing blistering. May occur frequently. For this reason, in order to sufficiently dry the concrete foundation, it is unavoidable that the construction is being carried out over a long construction period.
[0003]
This problem is due to its excellent water resistance, durability, abrasion resistance, slip resistance, etc., and reinforced resin widely used in parking lots, factory floors, warehouse floors and other places. It also occurs on waterproof floors that use layers.
The present invention has been made in view of such problems as described above, and has been made as a result of intensive studies. In order to prevent swelling due to residual moisture in the underlayer of concrete or the like, a first primer layer is provided if necessary, and then tack coating is performed. Layer, resin mortar layer, filler layer, second primer layer, buffer layer and reinforced resin layer at least have been constructed and finished floor structure and its construction method have solved the problem which has been a problem in the prior art. Things.
[0004]
[Patent Document 1] JP-A-4-142323
[Patent Document 2] JP-A-5-33309
[0005]
[Problems to be solved by the invention]
The present invention is intended to solve many problems such as the above-mentioned problems, that is, problems that have been required to be improved in conventional resin-based floor construction, that is, measures for shortening the construction period, blistering phenomena, and performance. is there.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a tack coat layer, a resin mortar layer, a filling layer, a second primer layer, a buffer layer made of a soft resin, and a heat layer after providing a first primer layer as necessary. The above-mentioned conventional problems have been solved by a floor structure finished by at least layering a reinforced resin layer made of a curable resin and a fiber reinforced material, and a construction method thereof.
[0007]
The floor structure of the present invention is to be installed on the floor foundation of concrete, lightweight concrete, etc., but these foundations are free from dirt, cracks, vegetable oil, mineral oil, etc. And so on. If there is dirt, it can be adjusted by means of washing with a detergent, if there is cracking, it can be filled with a cement compound or epoxy resin, and if it is oily dirt such as oil, it can be adjusted by means of washing with a neutral detergent.
[0008]
The first primer layer is a layer provided as needed to ensure adhesion to the base, and is made of a resin solution in which a curable resin such as an epoxy resin, a urethane resin, or a vinyl ester resin is dissolved in an organic solvent. It is applied by an application means such as a 0.1 to 0.5 kg / m 2 trowel, a roller, a brush, and the like, and partially penetrated into a base to be cured. Among them, epoxy resin is preferable because it has excellent adhesiveness and a relatively long curing time, so that the working width is wide and the workability is good.
The resin concentration is suitably from 1 to 50% by weight, and if it is 1% by weight or less, it excessively penetrates into the base and does not remain on the surface, which is not suitable for the purpose of ensuring adhesion. A concentration of 50% by weight or more is not suitable because the viscosity is high and the permeability is reduced, and the anchor effect on the substrate is lost.
The first primer layer can be omitted by mechanically removing the fragile portion on the surface of the foundation concrete by shot blasting, sand blasting or the like.
[0009]
The tack coat is provided for improving the adhesion of the resin mortar layer, and may be a curable resin having excellent adhesive properties such as an epoxy resin, a urethane resin, a vinyl ester resin, or a filler containing a filler such as silica sand or calcium carbonate. .
Among them, epoxy resin is preferable because it has excellent adhesiveness and tackiness, has a wide working width, and has good workability.
The tack coat is provided on the undercoat or the first primer layer by an applicator such as a 0.15 to 0.5 kg / m 2 trowel or a brush.
[0010]
A resin mortar layer is provided on the tack coat layer. The resin mortar layer is provided with a thickness of 3 to 10 mm for a swelling prevention function, and is made of a curable resin such as an epoxy resin, a urethane resin, a vinyl ester resin, and an aggregate, for example, silica sand, river sand, sea sand, A mixture obtained by mixing 200 to 1500 parts by weight of ceramics powder or the like with respect to 100 parts by weight of the curable resin is formed by applying 5.0 to 30 kg / m 2 using an applicator such as a trowel or a brush.
Among them, those using an epoxy resin as the curable resin are excellent in anti-swelling function, chemical resistance, alkali resistance, etc., and have a wide work width and good workability, so that they are suitable as suitable for the purpose of the present invention. I have.
[0011]
A filler layer is provided on the resin mortar layer.
The purpose of the filling layer is to fill the concave and convex portions and voids of the resin mortar layer, but also has the effect of shielding moisture in the underlying concrete.
The filling layer was adjusted to a TI value (Thixo coefficient) of 3 to 8 by blending a curable resin such as an epoxy resin, a urethane resin, or a vinyl ester resin with a thickener, for example, asbestos, silica, or mineral fiber. A filler material is used and formed. By setting the TI value in this range, it is possible to ensure the filling of the concave portion. Of these, epoxy resin-based fillers are suitable as fillers because of their excellent adhesion, gradual curing, wide working width, and excellent workability.
[0012]
The second primer is applied on the filling layer, and the adhesion between the previously applied layer and the subsequently applied layer is ensured.
The primer includes a primer made of a curable resin such as an epoxy resin, a urethane resin, and a vinyl ester resin. Above all, 100 parts by weight of a urethane resin-based one-pack type moisture-curable resin is added to a hydraulic cement, for example, Portland cement, white Portland cement. A mixture containing 30 to 200 parts by weight of a high-hardening cement containing high alumina and a high alumina content is suitable for use because a primer layer can be formed only by coating and an adhesion effect with a buffer layer can be obtained.
[0013]
A soft buffer layer is provided on the second primer.
The buffer layer is provided in order to prevent stress caused by cracks, dimensional changes, movements, and the like of the vehicle body, the base, from spreading to the upper reinforced resin layer, and is required to have a property of blocking and absorbing the stress. For this reason, urethane resins, acrylic resins, acrylic / urethane modified resins, and unsaturated polyesters which are soft and preferably have an elongation between grips of 30% or more at break under a temperature condition of −20 to 60 ° C. specified in JIS A6021 Resins and silicone resins can be used. Such a resin can sufficiently cope with the stress caused by the movement of the precursor and the base. Therefore, even if the presence of the buffer layer causes the movement of the precursor or the base due to the stress, cracks and cracks in the reinforced resin layer. Etc. can be avoided. Among these, unsaturated polyester resins are preferred because they are quick-curing and can shorten the construction period.
The thickness of the buffer layer is desirably at least 0.5 mm or more in order to secure the buffer effect as described above and to provide durability.
[0014]
A reinforced resin layer is formed on the buffer layer.
The reinforced resin layer is formed by compounding a thermosetting resin and a fiber reinforcing material, and the thermosetting resin includes a well-known unsaturated polyester resin, epoxy resin, vinyl ester resin, Urethane resin and other curable resins are used together with a curing agent.
[0015]
Further, in the case where a construction in which the reinforced resin layer is exposed is adopted, a toner containing a pigment is blended with the thermosetting resin in order to improve the finished appearance.
The pigment is selected as titanium oxide, red iron oxide, iron oxide, carbon black or the like or a mixture thereof according to the desired color tone. The pigment may be blended as it is or may be dispersed in a liquid medium and blended and used as a paste. The latter method is preferred because it can be blended easily.
[0016]
As the fiber reinforcing material, various fiber materials, for example, synthetic fiber materials such as nylon, vinylon, polyester, acrylic, aramid, carbon fiber, inorganic fiber materials such as glass fiber, asbestos fiber, rock wool fiber, and natural fiber materials such as hemp Among them, glass fibers and synthetic fibers having a basis weight of 300 to 600 g / m 2 are preferable from the viewpoint of handleability, workability, strength, availability, and the like.
[0017]
Glass fiber and synthetic fiber include plain weave, matte and chip products, which can be used in those forms. Above all, the mat-like form is excellent in the permeability of the liquid resin between the fibers, so that the applied thermosetting resin easily penetrates between the fibers, which is convenient for construction. If it is wound up in a roll, apply the thermosetting resin to the surface of the base layer, then spread the roll and place it on the thermosetting resin application surface. After applying or spreading a roll-shaped material on the surface of the base layer, a thermosetting resin is sufficiently applied to reach the surface of the buffer layer and, at the same time, penetrate between the fibers to be cured and cured. And a thermosetting resin can be combined to form a reinforced resin layer.
In the case of a mat-like material, a material having a basis weight of 300 to 600 g / m 2 is suitable for use in terms of reinforcing effect, handleability, permeability of a thermosetting resin and workability.
[0018]
Aggregate is sprayed on the reinforced resin layer as necessary to secure properties such as slip resistance and abrasion resistance. As the aggregate, silica sand, recycled powder of insulator, alumina powder, glass powder, river sand, mountain sand, sea sand, slug, and other crushed ceramic materials are used.
These aggregates may be used alone or as a mixture of a plurality of components as appropriate. A particle size of the aggregate of 0.05-3 mm, preferably 0.1-2 mm, is suitable for use. When the thickness is less than 0.05 mm, the slip resistance deteriorates, which is not preferable. On the other hand, if the thickness is 3 mm or more, the workability is inferior and the finish is not good.
Aggregate is scattered in the process of curing the thermosetting resin when forming the reinforced resin layer, and it is desirable that the aggregate be settled or partially settled inside the reinforced resin layer as it is cured. After that, it is also possible to adopt a construction in which the composition is sprayed, fixed by an overcoat layer described below, and held.
[0019]
After the reinforced resin layer is cured, an overcoat layer is applied to ensure a finished appearance and weather resistance. A method in which a resin such as an acrylic resin, an acrylic silicone resin, an acrylic urethane resin, a fluorine resin, an unsaturated polyester resin, or the like is used as an overcoat layer and has a coating amount of 0.2 to 1.0 kg / m 2 having excellent weather resistance. Is adopted. Above all, in the case of paint containing flakes such as mica pieces, plastic pieces and metal pieces having a size of 1 to 10 mm, deterioration of the surface layer and the reinforced resin layer can be prevented by the effect of shielding sunlight by the flakes.
[0020]
Thickeners, fillers, low-shrinkage agents, leveling agents, defoamers, dispersants, etc. are added to these resins as necessary to adjust viscosity, curability, applicability, etc., which are convenient for construction. Just fine.
[0021]
Hereinafter, specific examples will be described.
Example 1
Concrete having a water / Portland cement ratio of 0.7 was poured into a mold having a diameter of 200 mm and a height of 120 mm, and after 7 days of aerial curing (9% water content), execution tests of the examples and comparative examples And cured at 20 ° C. for 1 day to prepare a test body.
An epoxy resin-based solvent-type primer (Aika Kogyo Co., Ltd., JE-2570) is applied to the surface of the test piece with a brush at 0.2 kg / m 2 and cured to form a first primer layer, and then a tack coat layer For this, an epoxy resin (Aika Kogyo Co., Ltd., JE-2540L) was applied with a 0.3 kg / m 2 iron, and immediately, with respect to 100 parts by weight of the epoxy resin (Aika Kogyo Co., Ltd., JE-2540L), A resin mortar containing 1500 parts by weight of silica sand No. 3 as an aggregate was applied with a trowel at 7.0 kg / m 2 and cured to form a resin mortar layer. Next, as a filler layer, the epoxy resin (Aika Kogyo Co., Ltd., JE-2540L) and a thickener (Aika Kogyo Co., Ltd., JE-9004) with a weight ratio of 10% to the TI value of 4.0 to 4.0. The sealing material of No. 3 was applied at 0.3 kg / m 2 and cured.
Further, as a second primer layer, 100 kg of a urethane resin (Aika Kogyo Co., Ltd., JU-1270) was applied with 0.2 kg / m 2 of a one-pack primer prepared by mixing 100 parts by weight of Portland cement. 1.0 kg / m2 of a soft unsaturated polyester resin (Eika Kogyo Co., Ltd., JE-2010) having an elongation between grips of at least 30% at break at a temperature of -20 to 60 ° C. is applied and cured. To form a buffer layer.
Thereafter, a glass fiber mat having a basis weight of 450 g / m 2 was disposed on the surface of the buffer layer, and then 1.5 kg / m 2 of an unsaturated polyester resin (Aika Kogyo Co., Ltd., JE-2000) was applied. After fully penetrating into the interior of the glass fiber mat and reaching the surface of the buffer layer, 1.0 kg / m 2 of silica sand is sprayed to form a hardened resin layer with the silica sand partially settled. did.
Then, an overcoat material comprising 10 parts by weight of a gray colored toner mixed with 100 parts by weight of an unsaturated polyester resin (Aika Kogyo JE-2000) was applied and cured with a 0.5 kg / m 2 iron.
Finally, 0.4 kg / m 2 of an unsaturated polyester resin (JE-2080) was applied and cured as a top coat to complete the floor structure of Example 1.
[0022]
Comparative Example 1
In Example 1, the floor structure of Comparative Example 1 was completed by finishing in a construction step in which the first primer layer, the tack coat layer, the resin mortar layer, and the sealing layer were eliminated.
[0023]
Comparative Example 2
Instead of removing the first primer layer, the tack coat layer, the resin mortar layer, the filler layer and the second primer in Example 1, 100 parts by weight of an unsaturated polyester resin (Aika Kogyo Co., Ltd., JE-2000) was used and silica sand 3 was added. The floor structure of Comparative Example 2 was finished by applying a base adjustment material containing 100 parts by weight of No. 1 with a 1.0 kg / m 2 trowel and curing to form a base adjustment layer.
[0024]
Table 1 shows the results of the swelling acceleration test performed on the test pieces of the floor structures of the examples and comparative examples.
[Table 1]
Figure 2004176448
() Indicates the area ratio% of the swollen portion.
Swelling Acceleration Test The state of swelling of the concrete part up to 1 cm below the boundary surface between the coating film and the concrete part of the test piece prepared in the examples and comparative examples was immersed in warm water at 50 ° C. with time. Observation is performed to determine whether there is any abnormality and to measure the area ratio of the blister.
[0025]
【The invention's effect】
In the case of a floor structure constructed by applying a primer, intermediate coating, or overcoating layer to the base such as the conventional precursor surface, swelling occurs because the water that pushes up from the base toward the surface layer reduces the adhesion. Was inevitable.
However, in the floor structure and the method of construction according to the present invention, after providing the first primer layer as necessary, a tack coat layer, a resin mortar layer, a filling layer, a second primer layer, and a soft buffer layer are provided. Since the reinforced resin layer is overlaid, the resin mortar layer functions as a base moisture blocking layer and effectively shields it, thereby eliminating the occurrence of swelling as in the prior art. Further, even if the adhesion to the base is uncertain, the adhesion to the base can be ensured by providing the first primer layer.
In addition, since the buffer layer with elongation is interposed, it is possible to flexibly respond to movement caused by cracks in the base and reduce the effect on the reinforced resin layer that has been absorbed and blocked, thereby preventing cracks. A durable floor structure is obtained.
In addition, the floor structure, in which aggregate is sprayed and fixed on the reinforced resin layer, can be finished to have improved abrasion resistance and slip resistance, so that it is safe for human walking and car traveling And the service life can be prolonged.

Claims (6)

下地に、必要により第1プライマー層を設けたのち、タックコート層、樹脂モルタル層、目止め層、第2プライマー層、緩衝層、強化樹脂層が少なくとも順次施工されて仕上げられていることを特徴とする床構造体。After the first primer layer is provided on the base as necessary, a tack coat layer, a resin mortar layer, a filling layer, a second primer layer, a buffer layer, and a reinforced resin layer are applied at least sequentially to finish. Floor structure. 強化樹脂層の上に、骨材が散布され、更に上塗り層が設けられていることを特徴とする請求項1記載の床構造体。The floor structure according to claim 1, wherein aggregates are scattered on the reinforced resin layer, and an overcoat layer is further provided. 緩衝層にJISA6021に規定する−20〜60℃の温度条件下における破断時のつかみ間の伸び率が30%以上の樹脂が使用されている請求項1もしくは2記載の床構造体。The floor structure according to claim 1 or 2, wherein the buffer layer is made of a resin having an elongation between grips of 30% or more at the time of breakage under a temperature condition of -20 to 60 ° C specified in JISA6021. 下地に、必要により第1プライマー層を設けたのち、タックコート層、樹脂モルタル層、目止め層、第2プライマー層、緩衝層、強化樹脂層が少なくとも順次施工することを特徴とする床構造体の施工法。A floor structure comprising a base layer provided with a first primer layer as necessary, and then a tack coat layer, a resin mortar layer, a sealing layer, a second primer layer, a buffer layer, and a reinforced resin layer are applied at least sequentially. Construction method. 強化樹脂層の上に、骨材を散布し、更に上塗り層を施工する請求項4記載の床構造体の施工法。The method for constructing a floor structure according to claim 4, wherein an aggregate is sprayed on the reinforced resin layer, and a top coat layer is further constructed. 緩衝層にJISA6021に規定する−20〜60℃の温度条件下における破断時のつかみ間の伸び率が30%以上の樹脂を使用する請求項3もしくは4記載の床構造体の施工法。The method for constructing a floor structure according to claim 3 or 4, wherein a resin having an elongation ratio between grips at the time of breaking under a temperature condition of −20 to 60 ° C. specified in JISA6021 is 30% or more for the buffer layer.
JP2002345323A 2002-11-28 2002-11-28 Floor structure and construction method therefor Pending JP2004176448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002345323A JP2004176448A (en) 2002-11-28 2002-11-28 Floor structure and construction method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002345323A JP2004176448A (en) 2002-11-28 2002-11-28 Floor structure and construction method therefor

Publications (1)

Publication Number Publication Date
JP2004176448A true JP2004176448A (en) 2004-06-24

Family

ID=32706526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002345323A Pending JP2004176448A (en) 2002-11-28 2002-11-28 Floor structure and construction method therefor

Country Status (1)

Country Link
JP (1) JP2004176448A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099207A (en) * 2009-11-04 2011-05-19 Abc Trading Co Ltd Method for constructing heat-resistant coated floor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099207A (en) * 2009-11-04 2011-05-19 Abc Trading Co Ltd Method for constructing heat-resistant coated floor

Similar Documents

Publication Publication Date Title
US4392335A (en) Flexible cementitious coatings
KR101963828B1 (en) Composite coating putty composition for repairing crack in concrete structure
KR101133782B1 (en) Concrete structure with strengthened durability by means of novel polymer composite material and crack reparing material comprising carbon nanotubes and finishing method for the same
KR101062734B1 (en) Penetraton &amp; protection coat has water-proof &amp; anti-corrosion function, when you apply to the concrete construction and that is application method
KR101058231B1 (en) Bridge water-proof material for mixing used mma resin and bridge water-proof constructing mehtod without connection of concrete and steel plate
KR100929389B1 (en) Hybrid inorganic elastic coating film waterproofing agent with excellent self-horizontality and its construction method
KR102193762B1 (en) Composite Repair Method for Concrete Structures Using Fast Drying Filling Repair Materials
KR102461905B1 (en) Powder type flexible coating for waterproofing, waterproofing method using the same and waterproofing layer
KR101623081B1 (en) Complex waterproofing construction method of building construction
JPS61266701A (en) Water-proof construction method of reticulated reinforced laminate
KR101719486B1 (en) Waterproof mortar composition and method for waterproofing therewith
KR102351177B1 (en) Cement composition for section repair and construction method using it
KR102525769B1 (en) Coating method for prevention of neutralization and microcrack in a concrete outer wall
JP2004176448A (en) Floor structure and construction method therefor
JP2000001821A (en) Floor-slab waterproof structure and execution method
KR101088315B1 (en) Construction Method for self-adhesive type composite waterproofing membrane
JP2004169361A (en) Floor structure and construction method thereof
HU220397B (en) Coating system for cementious floors
KR102154503B1 (en) Concrete Polishing Penetration Type Ceramic Strengthening Agent and Ceramic Coating Construction Method
KR101703947B1 (en) Floor construction method
KR101367095B1 (en) Repair and Reinforce Method of Outdoor Concrete Stand
KR100916179B1 (en) An improved waterproofing method
KR101653366B1 (en) Concrete structure waterproofing construction method using deposite-coating on site
JP2002070297A (en) Method of laminating floor film
KR20060083742A (en) Method for manufacturing a concrete surface controlling material and waterproofing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060410

A521 Written amendment

Effective date: 20060602

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070105