JP2004175849A - Prepreg for printed wiring board and metal-clad laminated sheet - Google Patents

Prepreg for printed wiring board and metal-clad laminated sheet Download PDF

Info

Publication number
JP2004175849A
JP2004175849A JP2002340958A JP2002340958A JP2004175849A JP 2004175849 A JP2004175849 A JP 2004175849A JP 2002340958 A JP2002340958 A JP 2002340958A JP 2002340958 A JP2002340958 A JP 2002340958A JP 2004175849 A JP2004175849 A JP 2004175849A
Authority
JP
Japan
Prior art keywords
prepreg
resin
printed wiring
wiring board
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002340958A
Other languages
Japanese (ja)
Inventor
Shinji Shimaoka
伸治 島岡
Hiroshi Sakai
広志 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002340958A priority Critical patent/JP2004175849A/en
Publication of JP2004175849A publication Critical patent/JP2004175849A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-clad laminated sheet for a printed wiring board having high connection reliability to packaged parts with a low coefficient of thermal expansion and excellent heat resistance. <P>SOLUTION: A prepreg for the printed wiring board is obtained by impregnating a glass woven fabric with a thermosetting resin varnish comprising (a) an epoxy resin having at least ≥2 epoxy groups in one molecule, (b) a polycondensate of phenols with formaldehyde, (c) a compound having a triazine ring or an isocyanuric ring and (d) a curing accelerator and (e) high-purity aluminum hydroxide as essential components and further (e) an inorganic filler as the essential component in an amount so as to afford 50-150 wt.% thereof based on the solid content of an organic resin in the varnish, heating and drying the resultant material and providing a B-stage. Good substrate characteristics are obtained by converting (a) the epoxy resin into a glycidyl etherified material of the polycondensate of the phenols and the formaldehyde. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、プリント配線板をはじめとする電気絶縁材料に使用するプリプレグの製造方法および積層板の製造方法に関するものである。
【0002】
【従来の技術】
エポキシ樹脂積層板はエポキシ樹脂組成物のワニス溶液をガラス織布に含浸し、乾燥してBステージ化したプリプレグを積層し、加熱加圧して製造されている。
【0003】
電子機器の小型化,高性能化に伴い,その中に搭載されるプリント配線板は高多層化,スルーホールの小型化及び穴間隔の減少などによる高密度化が進行している。また、メモリー容量の増加にともなうチップの大型化や,封止材の薄肉化により実装部品の低熱膨張率化が進行している。実装部品との接続信頼性を確保するためには,基板材料への更なる低熱膨張率化や高弾性率化が要求されている。この低熱膨張率化や高弾性率化に対する要求を満たすために充填剤の添加による方法がある。
また、エポキシ樹脂の硬化剤として従来から用いられているジシアンジアミドはエポキシ樹脂との相溶性が悪く、プリプレグとした場合にジシアンジアミドが析出する場合が多く、しかも、この硬化系によるプリント配線板は軟化温度が低いなどの理由により、ドリル加工時に内層回路銅に樹脂が付着するスミアが発生しやすく、気中での長期耐熱性にも劣る。
これらの問題を解決する樹脂系として、フェノール類とホルムアルデヒドの重縮合物で硬化させたエポキシ樹脂がある。この硬化系によるプリント配線板は、ジシアンジアミド硬化系に比べてスミアの発生が半分以下となり気中での耐熱性も2倍以上に向上する。
しかし、フェノール類とホルムアルデヒドの重縮合物で硬化させたエポキシ樹脂は接着性が低いこと、硬くもろいことなどの欠点を有しており、特に無機充填剤を添加した場合には十分な信頼性を得ることはできない。
【0004】
【発明が解決しようとする課題】
本発明はかかる状況に鑑みなされたもので、低い熱膨張率により実装部品との高い接続信頼性を有し、耐熱性に優れたプリント配線板用プリプレグ及びそれを使用した金属張り積層板を提供することにある。
【0005】
【課題を解決するための手段】
本発明は次のものに関する。
(1) (a)1分子中に少なくとも2個以上のエポキシ基を有するエポキシ樹脂、(b)フェノール類とホルムアルデヒドの重縮合物、および(c)トリアジン環あるいはイソシアヌル環を有する化合物、(d)硬化促進剤、(e)無機充填剤を必須成分とし、かつ(e)の無機充填物がワニス中の有機樹脂固形分に対して50〜150重量%となる熱硬化性樹脂ワニスをガラス織布に含浸し、加熱,乾燥して、Bステージ化したプリント配線板用プリプレグ。
(2) (a)のエポキシ樹脂がフェノール類とホルムアルデヒドの重縮合物のグリシジルエーテル化物である請求項1に記載のプリプレグ。
(3) 請求項1、2のいずれかに記載のプリプレグを少なくとも1枚以上重ね、その片面若しくは両面に金属箔を配して加熱加圧成形して得られる金属張り積層板。
【0006】
【発明の実施の形態】
本発明で使用する(a)のエポキシ樹脂の種類としては、分子内に2個以上のエポキシ基を有するものであれば特に制限はなく、例えば、ビスフェノールA型エポキシ樹脂,ビスフェノールF型エポキシ樹脂,ビスフェノールS型エポキシ樹脂,ビフェニル型エポキシ樹脂,脂環式エポキシ樹脂,多官能フェノールのジグリシジルエーテル化物,多官能アルコールのジグリシジルエーテル化物,これらの水素添加物等があり、何種類かを併用することもできる。また、硬化後の樹脂系のTgや耐熱性を向上するために、フェノール類とホルムアルデヒドの重縮合物のグリシジルエーテル化物を用いることがより好ましい。このような樹脂としては、例えば、フェノールノボラック型エポキシ樹脂,クレゾールノボラック型エポキシ樹脂,ビスフェノールAノボラック型エポキシ樹脂等が挙げられ、これらは単独若しくは併用して使用することができる。
【0007】
本発明で用いるエポキシ樹脂の硬化剤である(b)のフェノール類とホルムアルデヒドの重縮合物は,分子量の制限はなく,このような樹脂としては、例えば、フェノールノボラック樹脂,クレゾールノボラック樹脂,ビスフェノールAノボラック樹脂等が挙げられ、これらは単独若しくは併用して使用することができる。硬化剤の配合量は,使用する硬化剤の水酸基当量に対しエポキシ当量が水酸基当量/エポキシ当量=0.8〜1.2となるように配合するのが好ましい。0.8未満及び1.2を越えると耐熱性に劣るようになるためである。
【0008】
本発明で用いられるトリアジン環あるいはイソシアヌル環を有する化合物は,(a)エポキシ樹脂と(b)フェノール類とホルムアルデヒドの重縮合物100重量部に対し,窒素成分が0.01〜5重量部になるように配合することが好ましい。0.01重量部未満だと効果に乏しく,5重量部を越えるとプリント配線板の耐熱性が悪くなる。
【0009】
本発明で用いる(d)の硬化促進剤として,イミダゾール化合物,アミン類等があるが特に制限はない。イミダゾールとしては,2−メチルイミダゾール,2−エチル−4−メチルイミダゾール,2−ウンデシルイミダゾール,2−ヘプタデシルイミダゾール,2−フェニルイミダゾール,2−フェニル−4−メチルイミダゾール,1−ベンジル−2−メチルイミダゾール,2−エチルイミダゾール,2−イソプロピルイミダゾール,1−シアノエチル−2−メチルイミダゾール,1−シアノエチル−2−フェニルイミダゾール,1−シアノエチル−2−ウンデシルイミダゾール,1−シアノエチル−2−イソプロピルイミダゾール,1−シアノエチル−2−フェニルイミダゾリウムトリメリテート,1−シアノエチル−2−エチル−4−メチルイミダゾールトリメリテート,1−シアノエチル−2−ウンデシルイミダゾールトリメリテート,1−シアノエチル−2−フェニルイミダゾールトリメリテート,1−シアノエチル−2−フェニル−4,5ジ(シアノエトキシメチル)イミダゾール等が挙げられる。アミン類として,ジメチルアミノメチルフェノール,2,4,6,−トリ(ジメチルアミノメチル)フェノール,トリ(ジメチルアミノメチル)フェノールのトリ−2−エチルヘキサン塩等が挙げられる。また,子の他に,3ふっ化ほう素錯化合物である,3ふっ化ほう素・モノエチルアミン錯化合物,3ふっ化ほう素・トリエチルアミン錯化合物,3ふっ化ほう素・ピペリジン錯化合物,3ふっ化ほう素・n−ブチルエーテル錯化合物,3ふっ化ほう素・アミン錯化合物等が挙げられる。硬化促進剤は,(a)エポキシ樹脂と(b)フェノール類とホルムアルデヒドの重縮合物100重量部に対し,0.1〜10重量部配合することが好ましい。0.1重量部未満だと効果に乏しく,10重量部を越えるとプリプレグの保存安定性が悪くなる。
【0010】
本発明で用いる(e)の無機充填剤は特に制限はなく、例えば炭酸カルシウム、アルミナ、マイカ、炭酸アルミニウム、水酸化アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、シリカ、ガラス短繊維やホウ酸アルミニウムや炭酸珪素等の各種ウィスカが用いられる。また、これらを数種類併用してもよい。この無機充填剤は、有機樹脂成分100重量%に対して50〜150重量%配合することが好ましい。50重量%未満では低熱膨張率化や高弾性率化に効果が得られず、150重量%を越えると塗工作業性が低下したり、成形性の悪化、耐熱性およびピール強度の低下等の原因となる。
【0011】
上記(a)、(b),(c)、(d)および(e)は必須成分であり、その他必要に応じて着色剤、酸化防止剤、還元剤、紫外線不透過剤等を加えてもよい。
【0012】
上記(a)、(b),(c)、(d)および(e)を溶剤中で配合して得たエポキシ樹脂ワニスをガラス織布に含浸させて、乾燥することによりプリプレグを得ることができる。ここで使用するガラス織布の種類には特に指定はなく、厚さ0.02〜0.4mmまでのものを、目的のプリプレグまたは積層板の厚さに合わせて使用することができる。含浸量は樹脂分として示されるが、樹脂分とはプリプレグの全重量に対する有機樹脂固形分と無機充填剤類の合計重量の割合のことであり、30〜90重量%であると好ましく、40〜80重量%であるとより好ましい。樹脂分は目的のプリプレグの性能、および積層後の絶縁層の厚さに合せて適宜決定される。プリプレグを製造する時の乾燥条件は乾燥温度60〜200℃、乾燥時間1〜30分間の間で目的のプリプレグ特性に合わせて自由に選択することができる。
【0013】
目的とする積層板の厚みに合わせて得られたプリプレグを積層し、その片側または両側に金属箔を重ね、加熱加圧して積層板を製造する。金属箔としては主に銅箔やアルミ箔を用いるが、他の金属箔を用いてもよい。金属箔の厚みは通常3〜200μmである。
【0014】
積層板製造時の加熱温度は130〜250℃、より好ましくは160〜200℃で、圧力は0.5〜10MPa、より好ましくは1〜4MPaであり、プリプレグ特性や、プレス機の能力、目的の積層板の厚み等により適宜決定する。
【0015】
【実施例】
以下、本発明を実施例に基づき具体的に説明する。
実施例1

Figure 2004175849
上記化合物をエチレングリコールモノメチルエーテルに溶解,分散し,不揮発分75wt%の樹脂ワニスを作成した。このワニスを100μmのガラス織布(IPC品番#2116タイプ)に含浸し、180℃の乾燥器中で6分間乾燥し、樹脂分60%のB−ステージ状態のプリプレグを得た。
【0016】
実施例2
Figure 2004175849
上記化合物を混合,分散して樹脂ワニスを作成し,実施例1と同様にしてプリプレグを得た。
【0017】
実施例3
Figure 2004175849
上記化合物を混合,分散して樹脂ワニスを作成し,実施例1と同様にしてプリプレグを得た。
【0018】
実施例4
実施例1において,シリカの代わりに水酸化アルミニウムを配合し,その他は実施例1と同様にしてプリプレグを得た。
【0019】
比較例1
実施例1において,アミノトリアジン変性フェノールノボラックを添加せず,ビスフェノールA型ノボラック樹脂の配合量を58重量部に、その他は実施例1と同様にしてプリプレグを得た。
【0020】
比較例2
実施例1において,ビスフェノールA型ノボラック樹脂を添加せず,アミノトリアジン変性フェノールノボラックを62重量部にし,その他は実施例1と同様にしてプリプレグを得た。
【0021】
比較例3
実施例1におけるシリカの配合量を70重量部にした以外は実施例1と同様な方法で、B−ステージ状態のプリプレグを得た。
【0022】
金属箔張り積層板の製造方法
実施例1,2および比較例1,2,3で得られたプリプレグ4枚を重ねて、その両側に厚み18μmの銅箔を配し、圧力3MPa、温度185℃で90分間加熱加圧して両面銅張積層板を得た。
【0023】
以上得られた両面銅箔張積層板のピール強度、熱膨張率、Tgおよび基板はんだ耐熱性試験を行なった。その結果を表1に示す。なお、熱膨張率とTgの測定はデュポン社製TMAを用いて行った。また、基板はんだ耐熱性は、表1に記載した吸湿処理後に288℃のはんだ槽に20秒間浸漬した基材を観察した結果である。各記号は、○:変化無し、△:ミーズリング発生、×:ふくれ発生を意味し、3つの記号は、3つの試験片により評価した結果をそれぞれ示したものである。
【0024】
【表1】
Figure 2004175849
表1から、本発明のプリプレグを用いた金属張り積層板はTgが高く、銅箔との高い接着性を持ち、また熱膨張率も十分に低いものであった。これに対して、トリアジン環あるいはイソシアヌル環を有する化合物を添加していない比較例1では耐熱性は有するものの銅箔との接着性が劣る結果となった。また、窒素成分が5%以上含まれる比較例2は、Tgが低く耐熱性に劣る結果となった。更に,無機充填剤の配合量が有機樹脂固形分に対して50重量部未満の比較例3は熱膨張率が高く、耐熱性にも劣る結果となった。
【0025】
【発明の効果】
本発明によるプリプレグを用いれば、低い熱膨張率により実装部品との高い接続信頼性を有し、耐熱性に優れたプリント配線板用金属張り積層板を得ることができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a prepreg used for an electrical insulating material such as a printed wiring board and a method for producing a laminate.
[0002]
[Prior art]
The epoxy resin laminate is manufactured by impregnating a glass woven cloth with a varnish solution of the epoxy resin composition, drying and drying a B-staged prepreg, and applying heat and pressure.
[0003]
2. Description of the Related Art With the miniaturization and high performance of electronic devices, printed wiring boards mounted therein have been increasing in density by increasing the number of layers, reducing the size of through holes, and reducing the space between holes. Further, as the size of a chip is increased with an increase in memory capacity and the thickness of a sealing material is reduced, the thermal expansion coefficient of a mounted component is being reduced. In order to ensure the connection reliability with the mounted components, further lowering the coefficient of thermal expansion and increasing the modulus of elasticity of the substrate material are required. There is a method of adding a filler in order to satisfy the demand for the low thermal expansion coefficient and the high elastic modulus.
In addition, dicyandiamide, which has been conventionally used as a curing agent for epoxy resins, has poor compatibility with epoxy resins, and dicyandiamide often precipitates when used as a prepreg. For example, smearing of resin adhered to the inner layer circuit copper during drilling is likely to occur, and the long-term heat resistance in the air is poor.
As a resin system which solves these problems, there is an epoxy resin cured with a polycondensate of phenols and formaldehyde. The printed wiring board using this curing system has less than half the occurrence of smear and more than twice the heat resistance in the air, compared to the dicyandiamide curing system.
However, epoxy resins cured with polycondensates of phenols and formaldehyde have drawbacks such as low adhesiveness and are hard and brittle.Sufficient reliability is obtained especially when inorganic fillers are added. I can't get it.
[0004]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and provides a prepreg for a printed wiring board which has high connection reliability with a mounted component due to a low coefficient of thermal expansion and has excellent heat resistance, and a metal-clad laminate using the same. Is to do.
[0005]
[Means for Solving the Problems]
The present invention relates to the following.
(1) (a) an epoxy resin having at least two epoxy groups in one molecule, (b) a polycondensate of phenols and formaldehyde, and (c) a compound having a triazine ring or an isocyanuric ring, (d) A thermosetting resin varnish comprising a curing accelerator, (e) an inorganic filler as an essential component, and (e) an inorganic filler in an amount of 50 to 150% by weight based on the solid content of the organic resin in the varnish. B-staged prepreg for printed wiring boards.
(2) The prepreg according to claim 1, wherein the epoxy resin (a) is a glycidyl etherified product of a polycondensate of a phenol and formaldehyde.
(3) A metal-clad laminate obtained by laminating at least one or more prepregs according to any one of claims 1 and 2, disposing a metal foil on one or both surfaces thereof, and heating and pressing the laminate.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The type of the epoxy resin (a) used in the present invention is not particularly limited as long as it has two or more epoxy groups in a molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, There are bisphenol S type epoxy resin, biphenyl type epoxy resin, alicyclic epoxy resin, diglycidyl ether compound of polyfunctional phenol, diglycidyl ether compound of polyfunctional alcohol, hydrogenated product of these, etc. You can also. Further, in order to improve the Tg and heat resistance of the cured resin system, it is more preferable to use a glycidyl etherified product of a polycondensate of a phenol and formaldehyde. Examples of such a resin include a phenol novolak type epoxy resin, a cresol novolak type epoxy resin, a bisphenol A novolak type epoxy resin, and the like, and these can be used alone or in combination.
[0007]
The polycondensate of phenol and formaldehyde (b), which is a curing agent for the epoxy resin used in the present invention, has no restriction on the molecular weight. Examples of such a resin include phenol novolak resin, cresol novolak resin, and bisphenol A. Novolak resins and the like can be mentioned, and these can be used alone or in combination. The amount of the curing agent is preferably such that the epoxy equivalent is the hydroxyl equivalent / epoxy equivalent = 0.8 to 1.2 with respect to the hydroxyl equivalent of the curing agent to be used. If the ratio is less than 0.8 and exceeds 1.2, the heat resistance becomes poor.
[0008]
The compound having a triazine ring or an isocyanuric ring used in the present invention has a nitrogen component of 0.01 to 5 parts by weight based on 100 parts by weight of a polycondensate of (a) an epoxy resin, (b) a phenol and formaldehyde. It is preferable to mix them. If the amount is less than 0.01 part by weight, the effect is poor, and if it exceeds 5 parts by weight, the heat resistance of the printed wiring board deteriorates.
[0009]
Examples of the curing accelerator (d) used in the present invention include imidazole compounds and amines, but are not particularly limited. Examples of imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2-imidazole. Methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-isopropylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 1-cyanoethyl-2-ethyl-4-methylimidazole trimellitate, 1-cyanoethyl-2-undecylimidazole trimellitate, 1 Cyanoethyl-2-phenylimidazole trimellitate, 1-cyanoethyl-2-phenyl-4,5-di (cyano ethoxymethyl) imidazole, and the like. Examples of the amines include dimethylaminomethylphenol, 2,4,6-tri (dimethylaminomethyl) phenol, and tri-2-ethylhexane salt of tri (dimethylaminomethyl) phenol. In addition to the children, boron trifluoride complex compounds such as boron trifluoride / monoethylamine complex compound, boron trifluoride / triethylamine complex compound, boron trifluoride / piperidine complex compound, and trifluoride complex compound And boron trifluoride / amine complex compounds. The curing accelerator is preferably blended in an amount of 0.1 to 10 parts by weight based on 100 parts by weight of a polycondensate of (a) an epoxy resin, (b) a phenol and formaldehyde. If the amount is less than 0.1 part by weight, the effect is poor, and if it exceeds 10 parts by weight, the storage stability of the prepreg deteriorates.
[0010]
The inorganic filler (e) used in the present invention is not particularly limited, and examples thereof include calcium carbonate, alumina, mica, aluminum carbonate, aluminum hydroxide, magnesium silicate, aluminum silicate, silica, short glass fiber and aluminum borate. Various whiskers such as silicon carbonate are used. These may be used in combination of several types. This inorganic filler is preferably blended in an amount of 50 to 150% by weight based on 100% by weight of the organic resin component. If it is less than 50% by weight, the effect of lowering the coefficient of thermal expansion or increasing the modulus of elasticity cannot be obtained. If it exceeds 150% by weight, the coating workability decreases, the moldability deteriorates, the heat resistance and the peel strength decrease. Cause.
[0011]
The above (a), (b), (c), (d) and (e) are essential components, and if necessary, a coloring agent, an antioxidant, a reducing agent, an ultraviolet ray opaque agent and the like may be added. Good.
[0012]
An epoxy resin varnish obtained by blending the above (a), (b), (c), (d) and (e) in a solvent is impregnated into a glass woven fabric and dried to obtain a prepreg. it can. The type of glass woven fabric used here is not particularly specified, and those having a thickness of 0.02 to 0.4 mm can be used according to the thickness of the target prepreg or laminate. The impregnation amount is indicated as a resin content, and the resin content is a ratio of the total weight of the organic resin solid content and the inorganic filler to the total weight of the prepreg, and is preferably 30 to 90% by weight, more preferably 40 to 90% by weight. More preferably, it is 80% by weight. The resin content is appropriately determined according to the performance of the target prepreg and the thickness of the insulating layer after lamination. The drying conditions for producing the prepreg can be freely selected in accordance with the desired prepreg characteristics between a drying temperature of 60 to 200 ° C. and a drying time of 1 to 30 minutes.
[0013]
The prepregs obtained according to the desired thickness of the laminate are laminated, and a metal foil is laminated on one or both sides thereof, and the laminate is manufactured by heating and pressing. A copper foil or an aluminum foil is mainly used as the metal foil, but another metal foil may be used. The thickness of the metal foil is usually 3 to 200 μm.
[0014]
The heating temperature during the production of the laminated board is 130 to 250 ° C., more preferably 160 to 200 ° C., and the pressure is 0.5 to 10 MPa, more preferably 1 to 4 MPa. The thickness is appropriately determined according to the thickness of the laminated plate.
[0015]
【Example】
Hereinafter, the present invention will be specifically described based on examples.
Example 1
Figure 2004175849
The above compound was dissolved and dispersed in ethylene glycol monomethyl ether to prepare a resin varnish having a nonvolatile content of 75% by weight. This varnish was impregnated with a 100 μm glass woven fabric (IPC part number # 2116 type) and dried in a dryer at 180 ° C. for 6 minutes to obtain a B-stage prepreg having a resin content of 60%.
[0016]
Example 2
Figure 2004175849
The above compounds were mixed and dispersed to prepare a resin varnish, and a prepreg was obtained in the same manner as in Example 1.
[0017]
Example 3
Figure 2004175849
The above compounds were mixed and dispersed to prepare a resin varnish, and a prepreg was obtained in the same manner as in Example 1.
[0018]
Example 4
A prepreg was obtained in the same manner as in Example 1 except that aluminum hydroxide was blended in place of silica.
[0019]
Comparative Example 1
In Example 1, a prepreg was obtained in the same manner as in Example 1 except that the aminotriazine-modified phenol novolak was not added, the blending amount of the bisphenol A type novolak resin was changed to 58 parts by weight.
[0020]
Comparative Example 2
A prepreg was obtained in the same manner as in Example 1 except that the bisphenol A type novolak resin was not added and the aminotriazine-modified phenol novolak was changed to 62 parts by weight.
[0021]
Comparative Example 3
A prepreg in a B-stage state was obtained in the same manner as in Example 1 except that the amount of silica in Example 1 was changed to 70 parts by weight.
[0022]
Production method of metal foil-clad laminate Four prepregs obtained in Examples 1 and 2 and Comparative examples 1, 2 and 3 were stacked, copper foil having a thickness of 18 μm was arranged on both sides thereof, pressure 3 MPa, temperature 185 ° C. For 90 minutes to obtain a double-sided copper-clad laminate.
[0023]
The peel strength, coefficient of thermal expansion, Tg, and board solder heat resistance test of the obtained double-sided copper foil-clad laminate were performed. Table 1 shows the results. The coefficient of thermal expansion and Tg were measured using TMA manufactured by DuPont. The board solder heat resistance is a result of observing the base material immersed in a solder bath at 288 ° C. for 20 seconds after the moisture absorption treatment described in Table 1. Each symbol indicates ○: no change, Δ: occurrence of measling, ×: occurrence of blistering, and three symbols indicate the results of evaluation using three test pieces, respectively.
[0024]
[Table 1]
Figure 2004175849
From Table 1, it was found that the metal-clad laminate using the prepreg of the present invention had a high Tg, high adhesiveness to copper foil, and a sufficiently low coefficient of thermal expansion. On the other hand, in Comparative Example 1 in which the compound having a triazine ring or an isocyanuric ring was not added, the heat resistance was improved, but the adhesion to the copper foil was poor. Comparative Example 2 containing 5% or more of a nitrogen component resulted in low Tg and poor heat resistance. Furthermore, Comparative Example 3, in which the amount of the inorganic filler was less than 50 parts by weight based on the solid content of the organic resin, had a high coefficient of thermal expansion and was inferior in heat resistance.
[0025]
【The invention's effect】
By using the prepreg according to the present invention, it is possible to obtain a metal-clad laminate for a printed wiring board having a high coefficient of thermal expansion and a high connection reliability with a mounted component, and having excellent heat resistance.

Claims (3)

(a)1分子中に少なくとも2個以上のエポキシ基を有するエポキシ樹脂、(b)フェノール類とホルムアルデヒドの重縮合物、および(c)トリアジン環あるいはイソシアヌル環を有する化合物、(d)硬化促進剤、(e)無機充填剤を必須成分とし、かつ(e)の無機充填剤がワニス中の有機樹脂固形分に対して50〜150重量%となる熱硬化性樹脂ワニスをガラス織布に含浸し、加熱,乾燥して、Bステージ化したプリント配線板用プリプレグ。(A) an epoxy resin having at least two or more epoxy groups in one molecule, (b) a polycondensate of phenols and formaldehyde, and (c) a compound having a triazine ring or an isocyanuric ring, and (d) a curing accelerator. Impregnating a glass woven fabric with (e) a thermosetting resin varnish containing an inorganic filler as an essential component and (e) an inorganic filler of 50 to 150% by weight based on the solid content of the organic resin in the varnish. A prepreg for a printed wiring board which has been heated, dried and B-staged. (a)のエポキシ樹脂がフェノール類とホルムアルデヒドの重縮合物のグリシジルエーテル化物である請求項1に記載のプリプレグ。The prepreg according to claim 1, wherein the epoxy resin (a) is a glycidyl etherified product of a polycondensate of a phenol and formaldehyde. 請求項1、2のいずれかに記載のプリプレグを少なくとも1枚以上重ね、その片面若しくは両面に金属箔を配して加熱加圧成形して得られる金属張り積層板。A metal-clad laminate obtained by laminating at least one or more prepregs according to any one of claims 1 and 2, arranging a metal foil on one or both sides thereof, and heating and pressing.
JP2002340958A 2002-11-25 2002-11-25 Prepreg for printed wiring board and metal-clad laminated sheet Pending JP2004175849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002340958A JP2004175849A (en) 2002-11-25 2002-11-25 Prepreg for printed wiring board and metal-clad laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002340958A JP2004175849A (en) 2002-11-25 2002-11-25 Prepreg for printed wiring board and metal-clad laminated sheet

Publications (1)

Publication Number Publication Date
JP2004175849A true JP2004175849A (en) 2004-06-24

Family

ID=32703454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002340958A Pending JP2004175849A (en) 2002-11-25 2002-11-25 Prepreg for printed wiring board and metal-clad laminated sheet

Country Status (1)

Country Link
JP (1) JP2004175849A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222409A (en) * 2005-01-17 2006-08-24 Hitachi Chem Co Ltd Printed wiring board resin composition, prepreg, metal-clad laminated board, and printed wiring board
JP2011231196A (en) * 2010-04-27 2011-11-17 Denki Kagaku Kogyo Kk Resin composite composition and application thereof
KR101821009B1 (en) 2014-10-10 2018-01-22 주식회사 두산 Varnish composition, method for preparation thereof, and prepreg, metal-clad laminate and printe circuit board using the varnish composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006222409A (en) * 2005-01-17 2006-08-24 Hitachi Chem Co Ltd Printed wiring board resin composition, prepreg, metal-clad laminated board, and printed wiring board
JP2011231196A (en) * 2010-04-27 2011-11-17 Denki Kagaku Kogyo Kk Resin composite composition and application thereof
KR101821009B1 (en) 2014-10-10 2018-01-22 주식회사 두산 Varnish composition, method for preparation thereof, and prepreg, metal-clad laminate and printe circuit board using the varnish composition

Similar Documents

Publication Publication Date Title
KR101397221B1 (en) Insulation resin composition for printed circuit board having thermal conductivity and improved electrical properties, insulating film, prepreg and printed circuit board
CN101974205A (en) Resin composition for embedded capacitor, and dielectric layer and metal foil-clad plate manufactured by using same
KR101766552B1 (en) Laminate for circuit boards, metal-based circuit board, and power module
JP2009138201A (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board using the same
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
JP2000264986A (en) Prepreg and laminated plate
JP2007211182A (en) Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
WO2014122911A1 (en) Method for curing heat-curable resin composition, heat-curable resin composition, and prepreg, metal-clad laminated plate, resin sheet, printed wiring board and sealing material each produced using said composition
JP2010229368A (en) Epoxy resin composition and prepreg, laminated board, and wiring board
JP4706332B2 (en) Resin composition, prepreg, laminate and printed wiring board using the same
JP2013036041A (en) Varnish, prepreg, film with resin, metal foil-clad laminate, and printed wiring board
JP2004175849A (en) Prepreg for printed wiring board and metal-clad laminated sheet
JP2006324307A (en) Prepreg for printed wiring board and metal-clad laminated plate
JP5157045B2 (en) Resin composition for printed wiring board, prepreg, metal-clad laminate and printed wiring board
JP2005042043A (en) Prepreg and metal-clad laminate plate
JP3343443B2 (en) Resin composition and prepreg
JP4346045B2 (en) Method for producing metal-clad laminate
JP5382074B2 (en) Prepreg for printed wiring board and metal-clad laminate
JP2003064198A (en) Prepreg for printed wiring board and metal-clad laminated plate
JP2006028297A (en) Prepreg and metal-clad laminated board
JP2005048036A (en) Prepreg and metal foil-clad laminate board using the same
JP2002212394A (en) Prepreg for printed circuit board and metal-clad laminate
JP2006036936A (en) Epoxy resin composition, prepreg, and multilayer printed wiring board
JP2002145994A (en) Prepreg for printed circuit board and laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071220