JP4346045B2 - Method for producing metal-clad laminate - Google Patents

Method for producing metal-clad laminate Download PDF

Info

Publication number
JP4346045B2
JP4346045B2 JP34345996A JP34345996A JP4346045B2 JP 4346045 B2 JP4346045 B2 JP 4346045B2 JP 34345996 A JP34345996 A JP 34345996A JP 34345996 A JP34345996 A JP 34345996A JP 4346045 B2 JP4346045 B2 JP 4346045B2
Authority
JP
Japan
Prior art keywords
woven fabric
resin
weight
glass woven
epoxy resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34345996A
Other languages
Japanese (ja)
Other versions
JPH10180932A (en
Inventor
康裕 村井
泰幸 青木
明徳 塙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP34345996A priority Critical patent/JP4346045B2/en
Publication of JPH10180932A publication Critical patent/JPH10180932A/en
Application granted granted Critical
Publication of JP4346045B2 publication Critical patent/JP4346045B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電気・電子機器等に用いられるプリント配線板用金属張り積層板の製造方法に関し、特に耐トラッキング性に優れた金属張り積層板の製造方法に関する。
【0002】
【従来の技術】
民生用電子機器、産業用電子機器の小型化、高性能化に伴い計測機器やコンピュータ、テレビ、エアコン等の高電圧が印加される電源用基板にはガラスエポキシ積層板が多く使われている。最近では表面層以外のところにガラス不織布を用いたコンポジット積層板が低コストで加工性に優れていることから使用され始めている。 これらの積層板を用いた民生用や産業用の電子機器は、PL法の施行により耐トラッキング性や難燃性などの安全性に対する要求が非常に多くなっている。しかしながら、従来のガラスエポキシ積層板やコンポジット積層板では機械、電気、熱的特性に優れているものの、耐トラッキング指数は200V程度であり安全上の問題となっている。この耐トラッキング性を改善するため、臭素含有量の低減や充填剤の添加による方法が主流となっている。
【0003】
【発明が解決しようとする課題】
耐トラッキング性を改善するために行われている臭素含有量の低減は、臭素化合物が難燃性を呈するため樹脂が炭化し導電路となるため、その含有量を低下させ炭化を防ぐ方法である。また、充填剤の添加は、充填剤の添加により相対的に樹脂の含有量を低下させ炭化する樹脂の割合を下げる方法である。しかし、これらの方法において、臭素含有量の低減や充填剤の添加による方法は、難燃性の低下や耐熱性などの一般特性の低下が避けられず、耐トラッキング性と難燃性を満足することができなかった。
【0004】
【課題を解決するための手段】
本発明は上記の問題点を解決するため、ガラスエポキシ積層板やコンポジット積層板の耐熱性などの一般特性や難燃性を低下させることなく耐トラッキング性に優れた金属張り積層板を提供するものである。本発明は、(a)エポキシ樹脂、(b)ビスフェノールAとホルムアルデヒドの重縮合物、(c)硬化促進剤、(d)高純度水酸化アルミニウムを必須成分とし、かつ臭素含有率が5〜15wt%となる熱硬化性樹脂をガラス織布に含浸して得られたプリプレグを金属箔と積層し加熱加圧成形する金属張り積層板の製造方法であって、(d)高純度水酸化アルミニウムのNa 2 0の含有率が0.2wt%未満である金属張り積層板の製造方法である。また、ガラス織布が開繊処理したガラス織布である金属張り積層板であることが好ましい
【0005】
【発明の実施の形態】
以下、本発明について詳細に説明する。本発明で使用する(a)のエポキシ樹脂は、分子内に2個以上のエポキシ基を有するものであればよく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のフェノール類ノボラック型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン型エポキシ樹脂等があり、またこれらを臭素化したものがより好ましい。なお、臭素化したエポキシ樹脂を用いない場合には、テトラブロモビスフェノールAやテトラフェニルホスフィン等を難燃剤として添加することも可能である。また、これらのエポキシ樹脂の分子量は特に制限はなく、何種類かを併用することもできる。
【0006】
本発明で用いるエポキシ樹脂の硬化剤である(b)のビスフェノールAとホルムアルデヒドの重縮合物は、分子量の制限はなく、ビスフェノールAモノマーが含まれていてもよい。また、本発明の効果を損なわない範囲で、フェノールノボラック樹脂等のフェノール樹脂を併用するこども可能である。硬化剤の配合量は、使用する硬化剤の水酸基当量に対しエポキシ当量が水酸基当量/エポキシ当量=0.8〜1.2となるように配合するのが好ましい。0.8未満及び1.2を越えると耐熱性に劣るようになるためである。
【0007】
本発明で用いる(c)の硬化促進剤として、イミダゾール化合物やアミン類等があるが特に制限はない。イミダゾールとしては、2−メチルイミダゾール、2−エチル−4−メチルイミダゾール、2−ウンデシルイミダゾール、2−ヘプタデシルイミダゾール、2−フェニルイミダゾール、2−フェニル−4―メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、2−エチルイミダゾール、2−イソプロピルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−イソプロピルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−フェニルイミダゾリウムトリメリテート、1−シアノエチル−2−エチル−4−メチルイミダゾールトリメリテート、1−シアノエチル−2−ウンデシルイミダゾールトリメリテート、1−シアノエチル−2−フェニルイミダゾールトリメリテート、1−シアノエチル−2−フェニル−4,5−ジ(シアノエトキシメチル)イミダゾール等が挙げられる。アミン類として、ジメチルアミノメチルフェノール、2,4,6−トリ(ジメチルアミノメチル)フェノール、トリ(ジメチルアミノメチル)フェノールのトリ−2−エチルへキサン塩等が挙げられる。また、この他に、3ふっ化ほう素錯化合物である、3ふっ化ほう素・モノエチルアミン錯化合物、3ふっ化ほう素・トリエチルアミン錯化合物、3ふっ化ほう素・ピペリジン錯化合物、3ふっ化ほう素・n−ブチルエーテル錯化合物、3ふっ化ほう素・アミン錯化合物等が挙げられる。硬化促進剤は、(a)エポキシ樹脂と(b)ビスフェノールAとホルムアルデヒドの重縮合物の合計100重量部に対し0.1〜10重量部配合することが好ましい。0.1重量部未満では、効果に乏しく、10重量部を越えるとプリプレグの保存安定性が悪くなる。
【0008】
本発明で用いる(d)の高純度水酸化アルミニウムは、水酸化アルミニウムに含まれる不純物Na0の含有率が0.2wt%未満のものあれば良く、形状については特に制限はない。高純度水酸化アルミニウムは、市販されているものを使用することができる。この高純度水酸化アルミニウムは、樹脂100重量部に対し70〜180重量部配合するのが好ましい。70重量部未満では、耐トラッキング性が劣り、180重量部を越えると塗工作業性の低下や成形性が悪化し、耐熱性、ピール強度が低下する。
【0009】
本発明においては、熱硬化性樹脂の重量に対し臭素元素の含有率である臭素含有率が、5〜15重量%とされる。熱硬化性樹脂の重量に対する臭素元素の含有率とは、必須成分とする(a)エポキシ樹脂、(b)ビスフェノールAとホルムアルデヒドの重縮合物、(c)硬化促進剤とその他に配合した樹脂重量の合計量に対する臭素元素の含有率である。臭素含有率が5wt%未満では難燃性の低下が著しく、また、臭素含有率が15wt%を超えると耐トラッキング性の低下が避けられないためである。臭素元素は、エポキシ樹脂骨格中に臭素原子が導入されたブロム化エポキシ樹脂を使用すると良い。テトラブロムビスフェノールAとエピクロロヒドリンとの反応物、ビスフェノールA型エポキシ樹脂とテトラブロムビスフェノールAとの反応物、ブロム化フェノールノボラックとエピクロロヒドリンとの反応物により得られるブロム化エポキシ樹脂を好適に使用することができる。さらに、難燃剤としてテトラブロムビスフェノールA等の臭素含有化合物を配合することもできる。
【0010】
本発明で使用するガラス織布は、積層板分野で使用されている通常のガラス織布を使用することができる。特に、ガラス織布に高圧の水を吹き付けたり、ロールにより絞ったりすることで開繊処理したガラス織布を用いるのが好ましい。上記の熱硬化性樹脂を溶剤に溶かしたり分散させワニスとし、ガラス織布に含浸、乾燥しプリプレグを作製する。これを複数枚構成し、金属箔である、銅箔を上下または、片面に配し、加熱、加圧してガラス布基材エポキシ樹脂銅張積層板を製造することができる。また、上記のプリプレグをガラス不織布プリプレグの複数枚の上下に構成したコンポジット積層板をも製造することができる。
【0011】
本発明は、(a)エポキシ樹脂、(b)ビスフェノールAとホルムアルデヒドの重縮合物、(c)硬化促進剤、(d)高純度水酸化アルミニウムを必須成分とし、かつ臭素含有率が5〜15wt%となる熱硬化性樹脂をガラス織布に含浸して得られたプリプレグを使用する、すなわち、エポキシ樹脂の硬化剤に特定のビスフェノールAとホルムアルデヒドの重縮合物を用い、さらに不純物として含まれるNa2Oの少ない高純度水酸化アルミニウムそして、熱硬化性樹脂の臭素含有率を特定の値にすることにより、耐熱性と耐トラッキング性の両立をはかることができたものである。さらに、ガラス織布に開繊処理したガラス織布を用いることにより耐トラッキング性が著しく向上する。本発明のプリプレグは、積層板の外部(表面層)に用いれば耐トラッキング性を改良できるので、積層板の表層以外には、通常に使用されているプリプレグを用いことができる。特にコンポジット積層板は、積層板の外部にガラス織布のプリプレグ、内部に不織布を用いるので特に好適である。
【0012】
耐トラッキング性は、積層板の表面が湿潤または汚染された基板が、アーク放電により漏電性の経路が形成されるのに耐える性質のことであり、トラッキングは、回路間の高電圧によるアーク放電などで樹脂が炭化し発生する。本発明では、これを防止するため、特定の硬化剤を使用し、水酸化アルミニウムに含まれる不純物のNa2Oの少ない高純度水酸化アルミニウムを使用することにより樹脂の炭化を抑制し耐トラッキング特性を向上させた。なお、水酸化アルミニウムを高純度にすることで熱分解温度が向上し積層板の耐熱性の低下を抑制させることができる。また、本発明者らは、ガラス織布については通常のガラス織布を用いた場合、積層板表面のガラス織布のクロス目付近の樹脂付着量が少なく耐トラッキング特牲を低下させる傾向にあることが分かった。これは、おそらく積層板の表面層近傍に露出するガラスに付着した少量の樹脂がガラス界面と接触しているため、アーク放電による熱、熱伝導、触媒的作用が絡み合い熱分解炭化が促進されるためではないかと思われる。そこで開繊処理したガラス織布を用いることにより、ガラス織布への樹脂の含浸性を向上させ、積層板表面のクロス目付近の樹脂付着量が均一で極端に薄くならないようにして、耐トラッキング特性を向上させることができた。また、おそらくガラスと同様に触媒的な作用をすると思われる不純物のNa2O含有量の少ない高純度の水酸化アルミニウムを用いることで、臭素含有率が高くても耐トラッキング性に優れ、難燃性を従来の積層板と同様に維持した積層板を得ることができた。
【0013】
以下に本発明を実施例により具体的に説明する。
【実施例】
(実施例1)
臭素化ビスフェノールA型エポキシ樹脂(エポキシ当量480、臭素含有量21.5wt%) 60重量部
ビスフェノールA型エポキシ樹脂(エポキシ当量450) 40重量部
ビスフェノールA型ノボラック樹脂(水酸基当量118) 24.5重量部
2−エチル−4−メチルイミダゾール 0.2重量部
高純度水酸化アルミニウム 150重量部
(Na20の含有量0.03wt%)
上記化合物をメチルエチルケトンに溶解、分散し、不揮発分75wt%、臭素含有量10wt%の樹脂ワニスを作製した。このワニスを開繊処理したガラス織布(厚み0.2mm、坪量210g/m2)に樹脂分が46wt%になるように含浸、乾燥しプリプレグAを得た。また、ガラス不織布(日本バイリーン株式会社製、EPM一4075を使用)に上記樹脂ワニスの樹脂分が90wt%になるように含浸、乾燥し不織布プリプレグBを得た。この不織布プリプレグBを3枚中間層とし、その上下にプリプレグAを配置し、さらにその両面に18μmの銅箔を配し、170℃、90分、4MPaの条件で成形し、厚さ1.6mmのコンポジット積層板を作製した。
【0014】
(比較例1)
臭素化ビスフェノールA型エポキシ樹脂(エポキシ当量480、臭素含有量21.5wt%) 58重量部
ビスフェノールA型エポキシ樹脂(エポキシ当量450) 64重量部
ジシアンジアミド 3重量部
2−エチル−4−メチルイミダゾール 0.2重量部
エチレングリコールモノメチルエーテル 25重量部
N、Nジメチルホルムアミド 25重量部
高純度水酸化アルミニウム 150重量部
(Na20の含有量0.03wt%)
上記化合物を混合、分散し樹脂ワニスを作製し、実施例1と同様にしてコンポジット積層板を得た。
【0015】
(比較例2)
実施例1の高純度水酸化アルミニウム(Na20の含有量0.03wt%)を一般的な水酸化アルミニウム(Na20の含有量0.2wt%)にした他は実施例1と同様にしてコンポジット積層板を得た。
【0016】
(比較例3)
実施例1のワニス配合比を以下に示すように変更し、臭素含有量を4wt%とした。その他は実施例1と同様にしてコンポジット積層板を得た。
臭素化ビスフェノールA型エポキシ樹脂(エポキシ当量480、臭素含有量21.5%) 23重量部
ビスフェノールA型エポキシ樹脂(エポキシ当量450) 76重量部
ビスフェノールA型ノボラック樹脂(水酸基当量118) 25.6重量部
2−エチル−4−メチルイミダゾール 0.2重量部
高純度水酸化アルミニウム 150重量部
(Na20の含有量0.03wt%)
【0017】
(比較例4)
実施例1のワニス配合比を以下に示すように変更し、臭素含有量を16wt%とした。その他は実施例1と同様にしてコンポジット積層板を得た。
臭素化ビスフェノールA型エポキシ樹脂(エポキシ当量480、臭素含有量21.5%) 92重量部
ビスフェノールA型エポキシ樹脂(エポキシ当量450) 7重量部
ビスフェノールA型ノボラック樹脂(水酸基当量118) 25重量部
2−エチル−4−メチルイミダゾール 0.2重量部
高純度水酸化アルミニウム 150重量部
(Na20の含有量0.03wt%)
【0018】
(実施例2)
実施例1の開繊処理ガラス織布を一般のガラス織布(厚み0.2mm、坪量210g/m2)に変更し、その他は実施例1と同様にしてコンポジット積層板を得た。
【0019】
実施例、比較例で得らたコンポジット積層板を以下に示す試験法により評価し、その結果を表1に示した。
【0020】
(耐トラッキング性):白金電極を用いIEC法により試験を行いトラッキング電圧曲線よりCTI値(耐トラッキング性)を求めた。
(難燃性):UL燃焼試験に準拠して行った。
(はんだ耐熱性):全面エッチングした50×50mmの試験片を121℃、1215hPaのプレッシャークッカーで所定時間吸湿処埋後、260℃のはんだに20秒間浸漬し、異常の有無を目視で観察した。試験片を3枚とし、その結果を各々について評価し、ふくれ等の異常のあったものを×で、異常のないものを○で示した。
【0021】
【表1】

Figure 0004346045
【0022】
以上の結果から明らかなように硬化剤の違いにより耐トラッキング特性が向上し(実施例1と比較例1)、また、水酸化アルミニウムとして不純物の少ない高純度のものを使用することて耐トラッキング性、耐熱性が向上している(実施例1と比較例2)。また臭素含有率については5wt%未満では難燃性が低下し(比較例3)、15wt%を超える場合では耐トラッキング性が低下することが分かる(比較例4)。また、ガラス織布については開繊処理したガラス織布を使用することてより安定した耐トラッキング特性が得られることが分かった(実施例1と実施例2)。
【0023】
【発明の効果】
本発明は、(a)エポキシ樹脂、(b)ビスフェノールAとホルムアルデヒドの重縮合物、(c)硬化促進剤、(d)高純度水酸化アルミニウムを必須成分とし、かつ臭素含有率を5〜15wt%に配合した熱硬化性樹脂をガラス織布に含浸して得られたプリプレグを用いることにより、耐熱性などの一般特性および難燃性を低下させることなく耐トラッキング性に優れた金属張り積層板を提供することができ、またガラス織布として開繊処理したガラス織布を用いることにより耐トラッキング性がより向上し安定した特性を得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a metal-clad laminate for printed wiring boards used in electrical / electronic devices, and more particularly to a method for producing a metal-clad laminate excellent in tracking resistance.
[0002]
[Prior art]
Glass epoxy laminates are often used for power supply substrates to which high voltages are applied, such as measuring instruments, computers, televisions, and air conditioners, as consumer electronic devices and industrial electronic devices become smaller and have higher performance. Recently, composite laminates using glass nonwoven fabrics other than the surface layer have begun to be used because of their low cost and excellent workability. Consumer and industrial electronic devices using these laminates are increasingly demanded for safety such as tracking resistance and flame resistance due to the enforcement of the PL method. However, although conventional glass epoxy laminates and composite laminates are excellent in mechanical, electrical and thermal properties, the tracking resistance index is about 200 V, which is a safety problem. In order to improve this tracking resistance, methods using a reduction in bromine content or addition of fillers have become mainstream.
[0003]
[Problems to be solved by the invention]
Reduction of bromine content to improve tracking resistance is a method of preventing carbonization by reducing the content of the resin because the bromine compound exhibits flame retardancy and the resin is carbonized to form a conductive path. . The addition of the filler is a method of lowering the ratio of the resin to be carbonized by relatively reducing the resin content by the addition of the filler. However, in these methods, the method of reducing bromine content or adding a filler inevitably reduces the flame retardancy and the general properties such as heat resistance, and satisfies the tracking resistance and flame retardancy. I couldn't.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides a metal-clad laminate excellent in tracking resistance without deteriorating general properties such as heat resistance and flame retardancy of glass epoxy laminates and composite laminates. It is. The present invention comprises (a) an epoxy resin, (b) a polycondensate of bisphenol A and formaldehyde, (c) a curing accelerator, (d) high-purity aluminum hydroxide as an essential component, and a bromine content of 5 to 15 wt. % Of a prepreg obtained by impregnating a glass woven fabric with a thermosetting resin to be% and laminated with a metal foil, followed by heating and pressing to form a metal-clad laminate, (d) This is a method for producing a metal-clad laminate in which the content of Na 2 O is less than 0.2 wt% . Moreover, it is preferable that the glass woven fabric is a metal-clad laminate that is a glass woven fabric subjected to fiber opening treatment.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The epoxy resin (a) used in the present invention only needs to have two or more epoxy groups in the molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc. Bisphenol type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin and other phenolic novolak type epoxy resin, alicyclic epoxy resin, glycidylamine type epoxy resin, etc., and those brominated preferable. When a brominated epoxy resin is not used, tetrabromobisphenol A, tetraphenylphosphine, or the like can be added as a flame retardant. In addition, the molecular weight of these epoxy resins is not particularly limited, and several types can be used in combination.
[0006]
The polycondensate of bisphenol A and formaldehyde (b), which is an epoxy resin curing agent used in the present invention, has no molecular weight limitation and may contain a bisphenol A monomer. In addition, a phenol resin such as a phenol novolac resin can be used in combination as long as the effects of the present invention are not impaired. It is preferable to mix | blend the compounding quantity of a hardening | curing agent so that an epoxy equivalent may become a hydroxyl equivalent / epoxy equivalent = 0.8-1.2 with respect to the hydroxyl equivalent of the hardening | curing agent to be used. This is because if it is less than 0.8 or exceeds 1.2, the heat resistance becomes poor.
[0007]
Examples of the curing accelerator (c) used in the present invention include imidazole compounds and amines, but are not particularly limited. Examples of imidazole include 2-methylimidazole, 2-ethyl-4-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and 1-benzyl-2- Methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-isopropylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-phenylimidazolium trimellitate, 1-cyanoethyl-2-ethyl-4-methylimidazole trimellitate, 1-cyanoethyl- - undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazole trimellitate, 4,5-1-cyanoethyl-2-phenyl-di (cyano ethoxymethyl) imidazole, and the like. Examples of amines include dimethylaminomethylphenol, 2,4,6-tri (dimethylaminomethyl) phenol, tri-2-ethylhexane salt of tri (dimethylaminomethyl) phenol, and the like. In addition, boron trifluoride complex compounds such as boron trifluoride / monoethylamine complex compounds, boron trifluoride / triethylamine complex compounds, boron trifluoride / piperidine complex compounds, and trifluoride compounds. Examples thereof include boron / n-butyl ether complex compounds, boron trifluoride / amine complex compounds, and the like. The curing accelerator is preferably blended in an amount of 0.1 to 10 parts by weight with respect to a total of 100 parts by weight of the polycondensate of (a) epoxy resin, (b) bisphenol A and formaldehyde. If it is less than 0.1 parts by weight, the effect is poor, and if it exceeds 10 parts by weight, the storage stability of the prepreg is deteriorated.
[0008]
High purity aluminum hydroxide used in the present invention (d) is the content of impurities Na 2 0 contained in the aluminum hydroxide may be any less than 0.2 wt%, there is no particular restriction on the shape. Commercially available high-purity aluminum hydroxide can be used. This high-purity aluminum hydroxide is preferably blended in an amount of 70 to 180 parts by weight with respect to 100 parts by weight of the resin. If it is less than 70 parts by weight, the tracking resistance is inferior. If it exceeds 180 parts by weight, the coating workability and moldability deteriorate, and the heat resistance and peel strength deteriorate.
[0009]
In the present invention, the bromine content, which is the content of elemental bromine, is 5 to 15% by weight with respect to the weight of the thermosetting resin. The content of elemental bromine with respect to the weight of the thermosetting resin is the essential component (a) epoxy resin, (b) polycondensate of bisphenol A and formaldehyde, (c) resin weight blended with curing accelerator and others Is the content of elemental bromine with respect to the total amount. This is because when the bromine content is less than 5 wt%, the flame retardancy is remarkably reduced, and when the bromine content exceeds 15 wt%, the tracking resistance is unavoidably reduced. The bromine element is preferably a brominated epoxy resin in which bromine atoms are introduced into the epoxy resin skeleton. A reaction product of tetrabromobisphenol A and epichlorohydrin, a reaction product of bisphenol A type epoxy resin and tetrabromobisphenol A, and a brominated epoxy resin obtained by reaction of brominated phenol novolak and epichlorohydrin. It can be preferably used. Furthermore, a bromine-containing compound such as tetrabromobisphenol A can be blended as a flame retardant.
[0010]
As the glass woven fabric used in the present invention, a normal glass woven fabric used in the laminate field can be used. In particular, it is preferable to use a glass woven fabric that has been opened by spraying high-pressure water on the glass woven fabric or squeezing with a roll. The above thermosetting resin is dissolved or dispersed in a solvent to form a varnish, impregnated into a glass woven fabric and dried to prepare a prepreg. A plurality of these can be configured, and a copper foil, which is a metal foil, can be placed on the top or bottom or on one side, and heated and pressurized to produce a glass cloth base epoxy resin copper-clad laminate. Moreover, the composite laminated board which comprised said prepreg on the upper and lower sides of several sheets of glass nonwoven fabric prepreg can also be manufactured.
[0011]
The present invention comprises (a) an epoxy resin, (b) a polycondensate of bisphenol A and formaldehyde, (c) a curing accelerator, (d) high-purity aluminum hydroxide as an essential component, and a bromine content of 5 to 15 wt. % Prepreg obtained by impregnating a glass woven fabric with a thermosetting resin, ie, using a polycondensate of bisphenol A and formaldehyde as a curing agent for an epoxy resin, and Na contained as an impurity. By making the bromine content of the high-purity aluminum hydroxide with less 2 O and the thermosetting resin a specific value, both heat resistance and tracking resistance can be achieved. Furthermore, tracking resistance is remarkably improved by using a glass woven fabric that has been subjected to fiber opening treatment. Since the tracking resistance can be improved if the prepreg of the present invention is used on the outside (surface layer) of the laminate, a commonly used prepreg can be used in addition to the surface layer of the laminate. In particular, the composite laminate is particularly suitable because it uses a glass woven prepreg outside the laminate and a nonwoven fabric inside.
[0012]
Tracking resistance is the property that a substrate with a wet or contaminated laminate surface can withstand the formation of a leakage path due to arc discharge, and tracking is arc discharge caused by high voltage between circuits. The resin is carbonized and generated. In the present invention, in order to prevent this, a specific curing agent is used, and by using high-purity aluminum hydroxide containing a small amount of Na 2 O as an impurity contained in aluminum hydroxide, carbonization of the resin is suppressed and tracking resistance is prevented. Improved. In addition, the thermal decomposition temperature improves by making aluminum hydroxide highly purified, and the fall of the heat resistance of a laminated board can be suppressed. In addition, the present inventors, when using a normal glass woven fabric for the glass woven fabric, tends to reduce the tracking resistance characteristics with a small amount of resin adhesion in the vicinity of the cross of the glass woven fabric on the surface of the laminate. I understood that. This is probably because a small amount of resin adhering to the glass exposed in the vicinity of the surface layer of the laminate is in contact with the glass interface, and heat, heat conduction and catalytic action due to arc discharge are entangled to promote pyrolytic carbonization. It seems to be for this. Therefore, by using a glass woven fabric that has been spread, the resin impregnation property of the glass woven fabric is improved, and the amount of resin adhering near the crossing on the surface of the laminate is uniform and does not become extremely thin. The characteristics could be improved. In addition, by using high-purity aluminum hydroxide with a low Na 2 O content, which is likely to have a catalytic action similar to glass, it has excellent tracking resistance and high flame resistance even with a high bromine content. It was possible to obtain a laminate that maintained the same properties as conventional laminates.
[0013]
Hereinafter, the present invention will be described specifically by way of examples.
【Example】
Example 1
Brominated bisphenol A type epoxy resin (epoxy equivalent 480, bromine content 21.5 wt%) 60 parts by weight Bisphenol A type epoxy resin (epoxy equivalent 450) 40 parts by weight Bisphenol A type novolak resin (hydroxyl equivalent 118) 24.5 parts by weight 2-ethyl-4-methylimidazole 0.2 parts by weight High-purity aluminum hydroxide 150 parts by weight (Na 2 0 content 0.03 wt%)
The above compound was dissolved and dispersed in methyl ethyl ketone to prepare a resin varnish having a nonvolatile content of 75 wt% and a bromine content of 10 wt%. A glass woven fabric (thickness 0.2 mm, basis weight 210 g / m 2 ) obtained by opening the varnish was impregnated so that the resin content was 46 wt%, and dried to obtain a prepreg A. Moreover, the nonwoven fabric prepreg B was obtained by impregnating and drying a glass nonwoven fabric (manufactured by Japan Vilene Co., Ltd., using EPM 14075) so that the resin content of the resin varnish was 90 wt%. Three sheets of this nonwoven fabric prepreg B are used as an intermediate layer, prepreg A is arranged on the upper and lower sides thereof, 18 μm copper foil is further arranged on both sides thereof, and molded under the conditions of 170 ° C., 90 minutes, 4 MPa, thickness 1.6 mm A composite laminate was prepared.
[0014]
(Comparative Example 1)
Brominated bisphenol A type epoxy resin (epoxy equivalent 480, bromine content 21.5 wt%) 58 parts by weight Bisphenol A type epoxy resin (epoxy equivalent 450) 64 parts by weight Dicyandiamide 3 parts by weight 2-ethyl-4-methylimidazole 0. 2 parts by weight Ethylene glycol monomethyl ether 25 parts by weight N, N dimethylformamide 25 parts by weight High-purity aluminum hydroxide 150 parts by weight (Na 2 0 content 0.03 wt%)
The above compounds were mixed and dispersed to prepare a resin varnish, and a composite laminate was obtained in the same manner as in Example 1.
[0015]
(Comparative Example 2)
The same procedure as in Example 1 was conducted except that the high-purity aluminum hydroxide of Example 1 (Na 2 0 content: 0.03 wt%) was changed to general aluminum hydroxide (Na 2 0 content: 0.2 wt%). A composite laminate was obtained.
[0016]
(Comparative Example 3)
The varnish compounding ratio of Example 1 was changed as shown below, and the bromine content was 4 wt%. Otherwise, a composite laminate was obtained in the same manner as in Example 1.
Brominated bisphenol A type epoxy resin (epoxy equivalent 480, bromine content 21.5%) 23 parts by weight Bisphenol A type epoxy resin (epoxy equivalent 450) 76 parts by weight Bisphenol A type novolak resin (hydroxyl equivalent 118) 25.6 weights 2-ethyl-4-methylimidazole 0.2 parts by weight High-purity aluminum hydroxide 150 parts by weight (Na 2 0 content 0.03 wt%)
[0017]
(Comparative Example 4)
The varnish blending ratio of Example 1 was changed as shown below, and the bromine content was 16 wt%. Otherwise, a composite laminate was obtained in the same manner as in Example 1.
Brominated bisphenol A type epoxy resin (epoxy equivalent 480, bromine content 21.5%) 92 parts by weight Bisphenol A type epoxy resin (epoxy equivalent 450) 7 parts by weight Bisphenol A type novolak resin (hydroxyl equivalent 118) 25 parts by weight 2 -Ethyl-4-methylimidazole 0.2 parts by weight High-purity aluminum hydroxide 150 parts by weight (Na 2 0 content 0.03 wt%)
[0018]
(Example 2)
The spread-treated glass woven fabric of Example 1 was changed to a general glass woven fabric (thickness 0.2 mm, basis weight 210 g / m 2 ), and the others were similar to Example 1 to obtain a composite laminate.
[0019]
The composite laminates obtained in Examples and Comparative Examples were evaluated by the following test methods, and the results are shown in Table 1.
[0020]
(Tracking resistance): A test was performed by the IEC method using a platinum electrode, and a CTI value (tracking resistance) was obtained from a tracking voltage curve.
(Flame Retardancy): Performed according to UL combustion test.
(Solder heat resistance): A 50 × 50 mm test piece etched on the entire surface was subjected to moisture absorption treatment at 121 ° C. and 1215 hPa for a predetermined time, then immersed in 260 ° C. solder for 20 seconds, and the presence or absence of abnormality was visually observed. The number of test pieces was three, and the results were evaluated for each. The case where there was an abnormality such as blistering was indicated by x, and the case where there was no abnormality was indicated by ○.
[0021]
[Table 1]
Figure 0004346045
[0022]
As apparent from the above results, the tracking resistance is improved by the difference in the curing agent (Example 1 and Comparative Example 1), and the tracking resistance is improved by using a high purity aluminum hydroxide with less impurities. The heat resistance is improved (Example 1 and Comparative Example 2). It can also be seen that when the bromine content is less than 5 wt%, the flame retardancy decreases (Comparative Example 3), and when it exceeds 15 wt%, the tracking resistance decreases (Comparative Example 4). In addition, it was found that more stable tracking resistance can be obtained by using a glass woven fabric that has been subjected to fiber opening treatment (Example 1 and Example 2).
[0023]
【The invention's effect】
The present invention comprises (a) an epoxy resin, (b) a polycondensate of bisphenol A and formaldehyde, (c) a curing accelerator, (d) high purity aluminum hydroxide as an essential component, and a bromine content of 5 to 15 wt. By using a prepreg obtained by impregnating a glass woven fabric with a thermosetting resin blended in a metal, a metal-clad laminate with excellent tracking resistance without degrading general properties such as heat resistance and flame retardancy Further, tracking resistance is further improved and stable characteristics can be obtained by using a glass woven fabric subjected to fiber opening treatment as a glass woven fabric.

Claims (3)

(a)エポキシ樹脂、(b)ビスフェノールAとホルムアルデヒドの重縮合物、(c)硬化促進剤、(d)高純度水酸化アルミニウムを必須成分とし、かつ臭素含有率が5〜15wt%となる熱硬化性樹脂をガラス織布に含浸して得られたプリプレグを金属箔と積層し加熱加圧成形する金属張り積層板の製造方法であって、(d)高純度水酸化アルミニウムのNa 2 0の含有率が0.2wt%未満であることを特徴とする金属張り積層板の製造方法。(A) epoxy resin, (b) polycondensate of bisphenol A and formaldehyde, (c) a curing accelerator, (d) heat having high purity aluminum hydroxide as an essential component and a bromine content of 5 to 15 wt% A method for producing a metal-clad laminate in which a prepreg obtained by impregnating a glass woven fabric with a curable resin is laminated with a metal foil and heated and pressed , and comprises (d) Na 2 O of high-purity aluminum hydroxide . Content rate is less than 0.2 wt% , The manufacturing method of the metal-clad laminated board characterized by the above-mentioned. ガラス織布が開繊処理したガラス織布である請求項1記載の金属張り積層板の製造方法。2. The method for producing a metal-clad laminate according to claim 1, wherein the glass woven fabric is a glass woven fabric subjected to fiber opening treatment. 内部に不織布、外部にガラス織布を用いたコンポジット積層板において、少なくとも外部の最外層に請求項1または請求項2に記載の樹脂を含浸して得られたプリプレグを用いることを特徴とする金属張り積層板の製造方法。A composite laminate using a non-woven fabric inside and a glass woven fabric outside, and using a prepreg obtained by impregnating at least the outermost layer with the resin according to claim 1 or 2 A method for producing a laminated laminate.
JP34345996A 1996-12-24 1996-12-24 Method for producing metal-clad laminate Expired - Lifetime JP4346045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34345996A JP4346045B2 (en) 1996-12-24 1996-12-24 Method for producing metal-clad laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34345996A JP4346045B2 (en) 1996-12-24 1996-12-24 Method for producing metal-clad laminate

Publications (2)

Publication Number Publication Date
JPH10180932A JPH10180932A (en) 1998-07-07
JP4346045B2 true JP4346045B2 (en) 2009-10-14

Family

ID=18361694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34345996A Expired - Lifetime JP4346045B2 (en) 1996-12-24 1996-12-24 Method for producing metal-clad laminate

Country Status (1)

Country Link
JP (1) JP4346045B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3844109B2 (en) * 2000-03-22 2006-11-08 住友ベークライト株式会社 Laminate manufacturing method
JP2002212394A (en) * 2001-01-17 2002-07-31 Hitachi Chem Co Ltd Prepreg for printed circuit board and metal-clad laminate
JP2003171482A (en) * 2001-09-25 2003-06-20 Sumitomo Bakelite Co Ltd Method for producing composite laminated board
JP6183743B2 (en) * 2013-05-29 2017-08-23 パナソニックIpマネジメント株式会社 Prepreg, metal-clad laminate, printed wiring board
JP6331433B2 (en) * 2014-02-04 2018-05-30 日立化成株式会社 Method for manufacturing metal-clad laminate and metal-clad laminate

Also Published As

Publication number Publication date
JPH10180932A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
JP2009138201A (en) Resin composition for printed wiring board, prepreg, laminate, and printed wiring board using the same
JP2005248048A (en) Flame retardant adhesive composition, and adhesive sheet, cover lay film and flexible copper clad laminate plate by using the same
CN101974205A (en) Resin composition for embedded capacitor, and dielectric layer and metal foil-clad plate manufactured by using same
KR100632169B1 (en) Interlayer Insulation Adhesive For Multilayer Printed Circuit Board
JP2007308640A (en) Resin composition for laminate, organic substrate prepreg, metal foil-clad laminate and printed circuit board
JP2007211182A (en) Resin composition, pre-preg, laminated board and metal-plated lamianted board and printed wiring board
JP2015117358A (en) Insulating resin composition for printed circuit board, and products using the same
JP2007070418A (en) Adhesive sheet, metal foil-clad laminated sheet and built-up type multilayered printed wiring board
JP5170937B2 (en) Flame-retardant resin composition, prepreg and metal-clad laminate
JP2006328113A (en) Flame-retardant adhesive composition, and adhesive sheet, cover lay film and flexible copper-clad laminate obtained using the same
JP4915549B2 (en) Resin composition for printed wiring board, prepreg and laminate using the same
JP4346045B2 (en) Method for producing metal-clad laminate
JP2005248134A (en) Flame retardant adhesive composition, and cover lay film and flexible copper clad laminate plate by using the same
JP5040586B2 (en) Resin composition, prepreg and laminate
JP4797248B2 (en) Pre-preg for printed wiring board and laminated board using the same
JP2006324307A (en) Prepreg for printed wiring board and metal-clad laminated plate
JPH0722718A (en) Epoxy resin composition for printed wiring board, manufacture of prepreg for printed wiring board, and manufacture of composite laminated sheet
JP2006182991A (en) Resin composition for printed wiring board, resin varnish, prepreg and laminated plate using it
JP2005105182A (en) Resin composition, prepreg and laminate
JP2008050566A (en) Resin composition, prepreg, and laminate sheet clad with metal using the prereg
JPH0812744A (en) Resin composition and prepreg
JP2005042043A (en) Prepreg and metal-clad laminate plate
JP2006036936A (en) Epoxy resin composition, prepreg, and multilayer printed wiring board
JP2006028297A (en) Prepreg and metal-clad laminated board
JP3982507B2 (en) Prepreg and metal-clad laminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061026

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term