JP2004174373A - Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method - Google Patents

Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method Download PDF

Info

Publication number
JP2004174373A
JP2004174373A JP2002343547A JP2002343547A JP2004174373A JP 2004174373 A JP2004174373 A JP 2004174373A JP 2002343547 A JP2002343547 A JP 2002343547A JP 2002343547 A JP2002343547 A JP 2002343547A JP 2004174373 A JP2004174373 A JP 2004174373A
Authority
JP
Japan
Prior art keywords
hydrogen
alloy
permeable
film
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343547A
Other languages
Japanese (ja)
Inventor
Isao Ando
勲雄 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2002343547A priority Critical patent/JP2004174373A/en
Publication of JP2004174373A publication Critical patent/JP2004174373A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen permeable alloy membrane excellent in a performance for selectively permeating/separating hydrogen from a mixed gas containing hydrogen and applicable to a purification/separation device for hydrogen gas used as a fuel for a fuel cell, a member for hydrogen permeation and its production method. <P>SOLUTION: The hydrogen permeable alloy membrane is characterized in that it is a metal membrane containing Pd or Pd alloy having face-centered cubic crystal structure as a main component, it contains 1-20 at% of B and grating constant (room temperature) of the face-centered cubic crystal structure is 0.390 nm or more. In the member for hydrogen permeation, the hydrogen permeable alloy membrane is formed on a gas permeable porous metal support. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、水素透過合金膜、水素透過用部材及びその製造方法に関し、さらに詳しくは、水素を含む混合ガスから水素を選択的に透過・分離する性能に優れ、燃料電池用の燃料に用いる水素ガスの精製・分離装置への適用も可能な水素透過合金膜、水素透過用部材及びその製造方法に関する。
【0002】
【従来の技術】
Pdに代表される金属膜(以下、合金膜ともいう)は、水素を選択的に透過・分離する性質を持つことから、半導体用シリコンなどの製造において、還元ガスなどを対象とした高純度水素精製装置で水素透過合金膜として使用されているが、近年、燃料電池用の水素ガスの精製・分離装置へも適用が模索されている。
【0003】
水素ガスの精製・分離装置は、装置本体及び水素含有ガスの供給手段と水素ガスの排出手段から構成され、この装置本体に水素透過合金膜が設置される。
水素透過合金膜に水素ガスが接近すると、水素原子が合金膜に電子を渡してプロトンとなるが、プロトンは極めて微小なため、水素透過合金膜のPd合金の格子間(隙間)をぬって圧力の低い対向面に移動し、ここで、電子を受け取って水素原子となる。水素が合金膜を透過するのに対して、酸素、窒素、一酸化炭素あるいは水などは、水素よりもはるかに大きいために合金膜を透過することができない。このようなメカニズムで、水素透過合金膜によって水素が高純度に精製される。
【0004】
水素透過合金膜の材料は、Pd単体では水素脆化しやすいため、これにAgを10〜30at.%添加したPd−Ag合金として実用化されている。また、同一温度、同一水素ガス圧下での水素透過率をPd−Ag合金よりも大きくするために、希土類元素を添加した合金が検討されている。
【0005】
例えば、Pdと、イットリウムおよびランタニド(但し、LaとPrを除く)からなる群から選ばれた一種以上の金属元素との合金が提案されている(特許文献1を参照)。
また、Agを5〜25at%と、Y又はGdを1〜10at%と、残部Pdより成る合金が提案され(特許文献2を参照)、Pdと合金化する金属がAg、Au、Pt、Rh、Ru、Ir、Ce、Y又はGdであるPd合金膜が提案されている(特許文献3を参照)。
希土類元素のSm、Ce、又はYbの少なくとも一種を3〜15at%と、残部Pdと不純物よりなる合金(特許文献4を参照)、高温下でも優れた水素透過特性を有する希土類元素のTb、Dy、Ho、又はErの少なくとも一種を3〜15at%と、残部Pdと不純物よりなる合金(特許文献5を参照)、Ag、Au、又はCuのうち少なくとも一種の金属元素を0〜20at%とし、Ce、Sm、Tb、Dy、Ho、Er、又はYbの少なくとも一種の金属元素を3〜15at%と、残部Pdと不純物よりなる合金(特許文献6を参照)なども提案されている。
【0006】
また、水素透過合金膜を透過した水素を流し出すために、通常、多孔質金属基板を支持体として用い、その上に合金膜が形成される。
例えば、多数の小孔を有する耐熱性多孔体(多孔質硝子)の上に、化学メッキ法で水素透過合金膜を形成すること(特許文献7を参照)、金属多孔質支持体の上に合金膜を形成し、さらに、水素透過合金膜に金属多孔質金属基板の成分が拡散して水素透過性能が劣化することを防止するために、高融点金属又はセラミックスのバリヤ層を形成することが提案されている(特許文献8を参照)。
【0007】
しかしながら、従来のPd合金膜を燃料電池用の水素ガスの精製・分離装置へ適用しようとしても、水素透過性能がいまだ不十分であり、また、多孔質硝子や多孔質セラミックス製の支持体を用いる水素透過合金膜は、機械的強度が小さく、あるいは金属製部品との接合が困難であるという問題があった。
【0008】
このような状況下、燃料電池用の水素ガスの精製・分離装置へも適用できるだけの水素透過性能があり、充分な機械的強度をもつとともに、多孔質支持体から構成元素の拡散がない水素透過合金膜、水素透過用部材及びその製造方法が切望されていた。
【0009】
【特許文献1】
特開昭46−7562号公報(特許請求の範囲)
【特許文献2】
特開平3−271337号公報(特許請求の範囲)
【特許文献3】
特開2000−247605号公報(段落[0016])
【特許文献4】
特開2001−46845号公報(特許請求の範囲)
【特許文献5】
特開2001−131653号公報(特許請求の範囲)
【特許文献6】
特開2001−262252号公報(特許請求の範囲)
【特許文献7】
特開昭63−294925号公報(特許請求の範囲、第3項)
【特許文献8】
特開2001−286742号公報(特許請求の範囲)
【0010】
【発明が解決しようとする課題】
本発明は、上記の問題点に鑑み、水素を含む混合ガスから水素を選択的に透過・分離する性能に優れ、燃料電池用の燃料に用いる水素ガスの精製・分離装置への適用も可能な水素透過合金膜、水素透過用部材及びその製造方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者は、前述の課題を解決するために鋭意研究を重ねた結果、Pd又はPd合金に特定量のBを含有させると、Bのイオン半径が非常に小さいので、Pd合金の格子間に位置して面心立方結晶構造の格子を膨張させることになり、水素が格子間距離を押し広げてPd中に侵入するのに必要な弾性エネルギーが低減することにより、水素透過係数を大幅に増大できることを見出し、本発明を完成するに至った。
【0012】
すなわち、本発明の第1の発明によれば、面心立方結晶構造のPdまたはPd合金を主成分とする金属膜であって、Bを1〜20at%含有し、かつ面心立方結晶構造の格子定数(室温)が0.390nm以上であることを特徴とする水素透過合金膜が提供される。
【0013】
また、本発明の第2の発明によれば、第1の発明において、Bの含有量が3〜18at%であることを特徴とする水素透過合金膜が提供される。
【0014】
また、本発明の第3の発明によれば、第1の発明において、Pd合金が、Cu、Ag、またはAuから選択される少なくとも1種の金属元素を0〜50at%含むことを特徴とする水素透過合金膜が提供される。
【0015】
また、本発明の第4の発明によれば、第1の発明において、Pd合金が、Yまたはランタノイド元素から選択される少なくとも1種を0〜10at%含むことを特徴とする水素透過合金膜が提供される。
【0016】
さらに、本発明の第5の発明によれば、第1の発明において、面心立方結晶構造の格子定数が、0.395〜0.420nmであることを特徴とする水素透過合金膜が提供される。
【0017】
一方、本発明の第6の発明によれば、第1〜5のいずれかの水素透過合金膜を通気性多孔質金属支持体上に形成してなる水素透過用部材が提供される。
【0018】
また、本発明の第7の発明によれば、第6の発明において、通気性多孔質金属支持体が、金属粒子または金属繊維を焼結して得られた成形体であることを特徴とする水素透過用部材が提供される。
【0019】
また、本発明の第8の発明によれば、第7の発明において、金属粒子または金属繊維が、ステンレスまたはニッケル基合金であることを特徴とする水素透過用部材が提供される。
【0020】
また、本発明の第9の発明によれば、第6の発明において、通気性多孔質金属支持体が、相対密度55〜75%であることを特徴とする水素透過用部材が提供される。
【0021】
また、本発明の第10の発明によれば、第6の発明において、通気性多孔質金属支持体は、表面にバリア膜が形成されていることを特徴とする水素透過用部材が提供される。
【0022】
また、本発明の第11の発明によれば、第10の発明において、バリア膜がAl、Si、Cr、又はTiから選択される少なくとも1種の酸化膜又は窒化膜であることを特徴とする水素透過用部材が提供される。
【0023】
一方、本発明の第12の発明によれば、第6〜11のいずれかの発明において、真空蒸着法、イオンプレーティング法、スパッタリング法、合金スラリーの塗布法、無電解若しくは電気メッキ法、又は合金の圧延法から選ばれたいずれかの方法で通気性多孔質金属支持体上に水素透過合金膜を形成させることを特徴とする水素透過用部材の製造方法が提供される。
【0024】
【発明の実施の形態】
以下、本発明の水素透過合金膜、水素透過用部材及びその製造方法を詳しく説明する。
1.水素透過合金膜
【0025】
本発明の水素透過合金膜は、面心立方結晶構造のPdまたはPd合金を主成分とする金属膜であって、Bを特定量含有させることで、面心立方結晶構造の室温における格子定数を特定範囲とした水素透過合金膜である。
【0026】
ベースとなるPdは単独でもよいが、これにCu、Ag、またはAuの少なくとも1種の金属元素を0〜50at%含むPd合金、及び又は、Yあるいはランタノイド元素の少なくとも1種の金属元素を0〜10at%含むPd合金であることが好ましい。ランタノイド元素としては、例えば、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、或いはLuなどが挙げられる。
【0027】
Cu、Ag、またはAuは、Pdと合金化して強度を向上させ、水素脆化を抑制する効果があり、Yまたはランタノイド元素は、高温での強度を向上させる効果がある。水素ガスが400℃以上になりうる水素ガス精製・分離装置に適用するには、高温強度を維持できるようにCu、Ag、またはAuを特定量含んだ合金組成とすることが望ましい。
Cuは1〜40at%、Agは1〜40at%、Auは1〜40at%であることが好ましい。一方、Yは1〜8at%、ランタノイド元素のLaなどは1〜8at%であることが好ましい。
【0028】
Bを添加するPd又はPd合金には、Ag、Cu、Au、Yやランタノイド元素などの他に、Pt、Rh、Ir、Ru、Ni、Co、Ti、Nb、又はTaのいずれかを置換固溶させても良い。Pt、Rh、Irなどの金属元素の添加量は、金属2元状態図に知られるところである。
【0029】
Bは非常にイオン半径の小さな原子であるので、Pd原子を置換するのではなくPdの格子間に入り込んで、0.389nmであったPdの面心立方結晶構造の格子定数(室温)を0.390nm以上に膨張させる作用がある。この作用によって水素が透過するときに、HがPd格子を押し広げて侵入するのに要する弾性エネルギーが小さくて済み、水素透過係数が増大する。
【0030】
面心立方結晶構造の格子定数(室温)は、0.390nm以上であり、特に0.395〜0.420nmとすることが好ましい。Pd合金相によっては面心立方結晶構造でない部分もありうるが、この場合の格子定数は、主成分であるPdの面心立方結晶構造の部分を指すものとする。
面心立方結晶構造の格子定数(室温)が0.390nm未満では、水素透過性能の改善効果が不十分である。格子定数は大きいほど水素透過性能が向上するが、0.420nmを超えると、この領域は、B添加量やBと同時に添加する金属元素量が増加したところであり、Pd−B金属間化合物相や他の金属間化合物相が現れ始め、格子定数の増加としても限界に近いところであり、水素透過性能は低下を始めるので好ましくない。
【0031】
B添加量が1at%未満であると、Pd合金の面心立方結晶構造の格子定数が大きくならず、水素透過性能を向上させることができない。逆に、20at%を超えて添加すると、PdとBとの金属間化合物相が析出して、格子が拡大した面心立方結晶構造の体積割合が減少し、水素透過性能を下げてしまう。好ましいB添加量は3〜18at%である。
【0032】
また、合金膜の膜厚は1〜50μm、特に5〜30μmが好ましい。1μmより薄いと、機械的強度が不十分であるだけでなく多孔質金属基板表面の気孔を閉塞できず、透過ガス側に不純物ガスが混入してしまい、50μmを超えると透過する水素流量が減少してしまう。
【0033】
2.水素透過用部材
本発明の水素透過用部材は、基体部分にステンレスやニッケル基合金等を焼結加工した通気性多孔質金属支持体(以下、多孔質金属基板あるいは単に支持体ということもある)を用い、その上に水素透過合金膜を形成したものである。
【0034】
通気性多孔質金属支持体は、金属粒子または金属繊維の焼結体であることが機械的強度を持たせる上で望ましい。使用される金属粒子または金属繊維の材料としては、ステンレスまたはニッケル基合金を用いることが望ましい。これら素材を用いれば、耐熱性、耐食性、耐水素脆化の特性を改善することもできる。
【0035】
通気性多孔質金属支持体としては、相対密度55〜75%、特に60〜70%の多孔質金属基板が好ましい。多孔質金属支持体の材料と相対密度は、通気性と機械的強度を考慮して選択する必要がある。相対密度が55%未満では機械的強度が不十分であり、一方、75%を超えると通気性が低下するので好ましくない。
【0036】
通気性多孔質金属支持体表面には、多孔質金属基板の成分が水素透過合金膜中へ拡散して水素透過性能を劣化させないようにするため、酸化物膜または窒化物膜のバリア膜を形成することが望ましい。バリア膜の材料としては、Al、Si、Cr、又はTiから選択される少なくとも1種の酸化物、または窒化物膜が好ましい。これらの材料は、通気性多孔質金属支持体表面への密着性も優れているので、支持体の機械的強度を損なうこともない。
【0037】
形成される酸化物膜または窒化物膜の膜厚は、0.01〜10μm、特に0.1〜5μmが好ましい。0.01μmより薄いと拡散防止効果が得られず、10μmを超えると多孔質金属基板表面の気孔が閉塞されるので、ガス通気性に支障が出てしまう。
【0038】
3.水素透過合金用部材の製造方法
本発明の水素透過合金用部材は、通気性多孔質金属支持体を用意する工程、その表面にバリア膜を形成する工程、さらに水素透過合金膜を形成する工程を順に行うことで製造される。
【0039】
(1)通気性多孔質金属支持体の作製
支持体は、金属粒子または金属繊維の焼結体に機械的強度を持たせられるものであれば、その製法に制限はないが、金型成形法、射出成形法やスラリー法等で形成することができる。
【0040】
金属粒子または金属繊維としては、耐熱性、耐食性、耐水素脆化を有するステンレスまたはニッケル基合金の金属粒子または金属繊維を用いることができる。特に平均粒径または断面直径が5〜15μm、好ましくは8〜13μmのものを用いることが望ましい。平均粒径または断面直径が5〜15μmの範囲を外れると、適度な通気性が得られにくくなる。
【0041】
金型成形法を用いる場合には、まずステンレスまたはニッケル基合金の金属粒子または金属繊維にパラフィンやナイロン等のバインダーを混合して、コンパウンドを作製する。
【0042】
次に、このコンパウンドをプレス成形して、所定の大きさ(面積)で厚さ0.5〜3mm、好ましくは1〜1.5mmの成形体を作製する。厚さ0.5mm未満では機械的強度が不十分であり、一方、3mmを超えると通気性が低下する。
【0043】
最後に、この成形体を真空中およそ200〜400℃で数時間加熱して脱バインダー処理した後、600〜1100℃程度で1〜5時間、真空焼結を行って多孔質金属基板を作製することができる。多孔質金属支持体の材料(種類、サイズ)と相対密度(55〜75%)は、通気性と機械的強度を考慮して選択すればよい。
【0044】
なお、支持体を射出成形法で形成するのであれば、上記と同様にしてコンパウンドを調製し、これを射出成形機にかけて所定の大きさの型内に射出する。また、スラリー法で形成するのであれば、金属粉末とアクリル樹脂などの結合成分と水などの溶媒をボールミルなどで混合してスラリーを作製し、ドクターブレードを用いてプラスチックフィルム上に塗布、乾燥、焼成する。加熱の条件は上記の金型成形法と同様である。
【0045】
(2)バリア膜の形成
通気性の多孔質金属支持体表面には、水素透過合金膜に多孔質金属基板の成分が拡散して水素透過性能が劣化することを防止するため、Al、Si、Cr、又はTiから選択される少なくとも1種の金属元素を含むバリア膜(酸化物膜または窒化物膜)が形成される。
【0046】
酸化物膜または窒化物膜の製造方法に制限はなく、上記通気性多孔質金属支持体上に、真空蒸着法、スパッタリング法、イオンプレーティング法等のPVD法によって形成される。
【0047】
真空蒸着法は、真空蒸着機内の水冷ハースにアルミナなどの原料酸化物を設置し、装置を真空(真空度10−2Pa>)として、電子銃で原料酸化物を加熱、蒸発させて直接に所望の膜厚の酸化物膜を形成する方法である。
スパッタリング法は、真空装置内に原料のターゲットを設置し、真空条件のアルゴンガス雰囲気下、プラズマをターゲットに照射し、原料の微粒子を叩き出して基板の支持体に成膜する方法である。
スパッタリング法には、アルゴンプラズマを高周波で発生させる高周波スパッタリング法(RFスパッタリング)、直流電力で発生させる直流スパッタリング法(DCスパッタリング)があるが、いずれも高効率化のため、ターゲットの裏側にマグネットを配置してアルゴンプラズマをターゲット直上に集中させ、アルゴンイオンの衝突効率を上げて、低いガス圧で成膜可能としたマグネトロンスパッタ法が付加されている。
イオンプレーティング法は、高周波プラズマやアーク放電でイオン化させた原料金属蒸気を基板上に成膜させる方法である。酸化物膜や窒化物膜は、真空装置内に酸素や窒素ガスを導入して原料金属蒸気と反応させて成膜する。
【0048】
(3)水素透過合金膜の形成
本発明の水素透過部材は、通気性多孔質金属支持体に形成したバリア膜の上に、水素透過合金膜を成膜することで完成する。
【0049】
PdまたはPd合金にBを1〜20at%含有させうる方法であれば、水素透過合金膜の製造方法に制限はなく、真空蒸着法、イオンプレーティング法、スパッタリング法、合金スラリーの塗布法、無電解または電気メッキなどの方法で水素透過合金膜を形成することができる。また、アーク溶解などで作製した合金を圧延して作製しても良い。
【0050】
ここで、真空蒸着法を用いた一例として、Pd−Ag−B合金膜を作製する方法について説明する。真空蒸着装置は特に制限されず、市販されている一般的な電子銃を用いた真空蒸着機が使用できる。
【0051】
まず、真空蒸着機内の水冷ハースにAg、B、及びPdの原料金属を設置する。次に、装置を真空(真空度10−2Pa>)にして、ハースを回転させて原料金属を選択し、原料金属を上記順番で、成膜される膜厚を水晶発振式膜厚モニターで監視しながら蒸着を行う。3種類の積層膜のそれぞれの膜厚を、PdとAgの膜厚の和とBの膜厚の比がPd+Ag:B=9〜200:1で、PdとAgの膜厚の比がPd:Ag=1:0〜1となるように成膜し、これを1単位として、複数回蒸着を繰り返し行い、総膜厚が1〜50μmの範囲のPd−Ag−B多層膜を作製する。
多元同時蒸着装置を用いれば、各原料金属への電子ビーム照射時間の制御あるいは電子ビーム強度の制御等で組成をコントロールすることができる。
【0052】
Pd(合金)中にBが1at%よりも少ないと水素透過性能が低く、20at%を超えて含有すると、金属間化合物相が析出して水素透過性能を下げてしまう。Pd合金にCu、Ag、Auの少なくとも1種が0〜50at%含まれていることが好ましく、これら金属が全く含まれていないと水素透過性能が大きくならず、50at%を超えて含有すると水素透過性能が小さくなってしまう。上記の膜厚比(Pd+Ag:B=9〜200:1、Pd:Ag=1:0〜1)は、これらの条件を勘案した結果、決定されたものである。
【0053】
同様に、Pd合金にはYまたはランタノイド元素の少なくとも1種が0〜10at%含まれていることが好ましく、これら金属が全く含まれていないと水素透過性能が大きくならず、10at%を超えて含有すると金属間化合物相が析出して水素透過性能が小さくなってしまう。例えば、Yが含まれた合金膜を得るには、膜厚比をPd+Y:B=9〜200:1、Pd:Y=1:0〜0.2とすることが好ましい。
【0054】
その後、この多層膜を真空蒸着機から取り出し、真空中(真空度10−2Pa>)、500〜1000℃、好ましくは600〜900℃で熱処理する。均一な合金にするには、この温度範囲で0.5〜20時間熱処理を行う。
【0055】
一方、スパッタリング法によるのであれば、真空装置内に原料となるPd−Ag−Bからなるターゲットを設置し、真空条件のアルゴン、クリプトンなどの希ガス雰囲気下、希ガスイオンをターゲットに照射して原料の微粒子を叩き出し、基板とする通気性多孔質支持体上に成膜する。スパッタリング装置の基板温度は、室温〜300℃とすることが好ましい。
ターゲットとしてPd−Ag合金を用い、Bはガス状の化合物として装置内に存在させてもよい。いずれにしても一枚のターゲットを用いて、連続的にスパッタリングできる方法が効率的である。
【0056】
また、イオンプレーティング法によるのであれば、電子銃などで発生させた原料金属蒸気を高周波プラズマやアーク放電でイオン化させて基板上に金属膜を形成する。
【0057】
合金スラリーを通気性多孔質支持体に塗布する方法によるのであれば、微粉末状の原料を所定の重量割合(Pd+Ag:B=400〜1000:1、Pd:Ag=1:0〜1)で混合し、アセトンなどの溶剤中に均一に混合し、必要により粘度調整剤などを添加した後、通気性多孔質支持体に塗布し、乾燥、焼成する。
【0058】
無電解または電気メッキ法によるのであれば、原料化合物が所定の濃度で溶解した槽内に通気性多孔質支持体を設置し、原料化合物を化学反応させることにより、あるいは通電して通気性多孔質支持体上に反応生成物を堆積させて、Pd合金の緻密な膜を得る。
【0059】
合金を圧延する方法によるのであれば、先ずアーク溶解などで合金を作製しておき、これを圧延機にかけ、上下のロールで加圧して所定の厚さにすればよい。
【0060】
これらの方法によって、PdまたはPd合金にBを1〜20at%含有し、面心立方結晶構造の格子定数(室温)が0.390nm以上の水素透過合金膜を形成することができる。
本発明では、真空蒸着法、イオンプレーティング法、スパッタリング法、圧延法によることが好ましく、酸化防止の観点から、真空蒸着法、イオンプレーティング法、スパッタリング法で水素透過合金膜を形成することが最も好ましい。
【0061】
4.水素ガスの精製・分離装置
本発明の水素ガスの精製・分離装置は、装置本体及び水素含有ガスの供給手段と水素ガスの排出手段から構成され、この装置本体に上記の方法で製造された水素透過合金用部材を設置したものである。
水素透過合金用部材(水素透過合金膜)が、水素ガスの透過性能に優れるだけでなく、高温でも安定した強度を有するので、溶融炭酸塩型、固体電解質型などの燃料電池のように400℃以上の高温動作条件となりうる水素ガスの精製・分離装置でも安定した機能が期待できる。
【0062】
【実施例】
次に、本発明の実施例を比較例とともに例示するが、本発明は、これら実施例によって何ら限定されるものではない。
【0063】
(実施例1)
平均粒径10μmのSUS316L粉にパラフィン2wt%を混合したコンパウンド10gを、プレス成形して、直径50mm、厚さ1.2mmの成形体を作製した。この成形体を通気性のある多孔質アルミナセッター2枚で挟み、真空中、300℃で2時間、脱バインダー処理した後に、1000℃で1時間、真空焼結を行って、相対密度63%の多孔質金属基板を作製した。
次に、この多孔質金属基板を電子銃真空蒸着装置内に取り付け、Alを蒸発させて、多孔質金属基板の表面に1μmのバリア膜(拡散防止層)を形成した。
その後、電子銃を用いた真空蒸着機(神港精機社製AIF−850SB型)で、水冷ハースに別々に用意したAg、B、Pd金属をこの順序で繰り返して蒸発させ、それぞれの膜厚比がPd:Ag:B=20:6.4:1で、総膜厚が20μmとなるPd−Ag−B多層膜を作製した。
これを蒸着機より取り出し、700℃で2時間、真空熱処理して、均一な合金になった水素透過合金膜を作製した。
この水素透過合金膜の組成を、誘導結合プラズマ発光分光分析装置ICP(セイコーインスツルメンツ社製)で分析したところ、Agが22.7at%、Bが5.9at%、残りPdであった。
また、X線回折分析(理学電機社製)した結果、JCPDSカード5−681面心立方結晶構造のPdであることがわかり、その格子定数(室温)は0.399nmであった。
次に、この水素透過用部材を水素透過係数測定装置に取り付け、水素圧力差0.6MPa、温度300〜500℃の条件で透過水素流量を測定して、水素透過係数を求めた。結果を図1に示す。本発明の水素透過用部材は、大きな水素透過係数を有することが分かった。
【0064】
(実施例2)
電子銃を用いた真空蒸着装置(実施例1と同じ)で、Agを蒸発させなかった以外は実施例1と同様にして、水素透過合金膜を作製した。
この水素透過合金膜の組成をICP分析した結果、Bが6.4at%、残りPdであった。また、X線回折分析の結果、面心立方結晶構造のPdであり、格子定数は0.396nmであった。
実施例1と同様な方法で水素透過係数を求めたところ、図1に示すように、大きな水素透過係数を有することが分かった。
【0065】
(実施例3)
膜厚比がPd:Ag:B=20:6.4:3となるように、真空蒸着装置でAg、B、Pdの順で成膜した以外は実施例1と同様にして、水素透過合金膜を作製した。
この水素透過合金膜の組成をICP分析した結果、Agが19.0at%、Bが17.1at%、残りPdであった。また、X線回折分析の結果、面心立方結晶構造Pdであり、格子定数は0.410nmであった。
実施例1と同様な方法で水素透過係数を求めたところ、図1に示すように、大きな水素透過係数を有することが分かった。
【0066】
(比較例1)
電子銃を用いた真空蒸着装置で、Bを蒸発させなかったこと以外は実施例1と同様にして、水素透過合金膜を作製した。
この水素透過合金膜をICP分析した結果、Agが24.1at%、残りPdの組成であった。またX線回折分析の結果、面心立方結晶構造Pdの格子定数は0.393nmであった。
実施例1と同様な方法で水素透過係数を求めたところ、図1に示すように、実施例に比較して小さな水素透過係数しか得られなかった。
【0067】
(比較例2)
電子銃を用いた真空蒸着装置(実施例1と同じ)で、Agを蒸発させないで、膜厚比がPd:B=20:4となるように、真空蒸着装置でB、Pdの順で成膜した以外は実施例1と同様にして、水素透過合金膜を作製した。
この水素透過合金膜の組成をICP分析した結果、Bが25.2at%、残りPdであった。また、X線回折分析の結果、格子定数が0.408nmの面心立方結晶構造Pdの他に金属間化合物相が生成していた。
実施例1と同様な方法で水素透過係数を求めたところ、図1に示すように、実施例に比較して小さな水素透過係数しか得られなかった。
【0068】
【発明の効果】
本発明の水素透過合金膜は、PdまたはPd合金にBを特定量含有させたので、面心立方結晶構造PdまたはPd合金の格子定数が大きくなり、従来の合金膜に比べ大幅に水素透過性能が改善される。したがって、該合金膜を用いることで、燃料電池用の水素ガスの精製・分離装置への適用も可能な水素透過用部材を提供でき、その工業的価値は極めて大きい。
【図面の簡単な説明】
【図1】実施例1〜3、比較例1、2の水素透過合金膜を用いた場合、水素透過係数と温度との関係を示す。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydrogen permeable alloy membrane, a member for hydrogen permeation, and a method for producing the same. The present invention relates to a hydrogen permeable alloy membrane, a hydrogen permeable member, and a method for producing the same, which can be applied to a gas purification / separation device.
[0002]
[Prior art]
Since a metal film represented by Pd (hereinafter also referred to as an alloy film) has a property of selectively transmitting and separating hydrogen, high-purity hydrogen for reducing gas and the like is used in the production of silicon for semiconductors and the like. Although used as a hydrogen permeable alloy membrane in a purifying apparatus, in recent years, application to a hydrogen gas purifying / separating apparatus for a fuel cell has been sought.
[0003]
The hydrogen gas purifying / separating device is composed of a device main body, a hydrogen-containing gas supply means and a hydrogen gas discharging means, and a hydrogen permeable alloy membrane is installed in the device main body.
When the hydrogen gas approaches the hydrogen permeable alloy film, the hydrogen atoms pass electrons to the alloy film and become protons. However, since the protons are extremely minute, the pressure passes through the lattices (gaps) of the Pd alloy of the hydrogen permeable alloy film. Move to the lower facing surface, where electrons are received and become hydrogen atoms. While hydrogen permeates the alloy film, oxygen, nitrogen, carbon monoxide, water, and the like cannot permeate the alloy film because they are much larger than hydrogen. By such a mechanism, hydrogen is purified to high purity by the hydrogen permeable alloy membrane.
[0004]
Since the material of the hydrogen-permeable alloy film is easily embrittled by hydrogen with Pd alone, Ag is added to the material at 10 to 30 at. % Of Pd-Ag alloy. Further, in order to make the hydrogen permeability at the same temperature and under the same hydrogen gas pressure higher than that of the Pd-Ag alloy, an alloy to which a rare earth element is added has been studied.
[0005]
For example, an alloy of Pd and one or more metal elements selected from the group consisting of yttrium and lanthanides (excluding La and Pr) has been proposed (see Patent Document 1).
Further, an alloy comprising 5 to 25 at% of Ag, 1 to 10 at% of Y or Gd, and the balance of Pd has been proposed (see Patent Document 2), and the metal to be alloyed with Pd is Ag, Au, Pt, Rh. , Ru, Ir, Ce, Y or Gd Pd alloy films have been proposed (see Patent Document 3).
An alloy comprising at least one of the rare earth elements Sm, Ce, and Yb in an amount of 3 to 15 at%, and a balance of Pd and impurities (see Patent Document 4). , Ho, or Er at least 3 to 15 at%, and the balance of an alloy composed of Pd and impurities (see Patent Document 5), at least one metal element of Ag, Au, or Cu at 0 to 20 at%; An alloy comprising 3 to 15 at% of at least one metal element of Ce, Sm, Tb, Dy, Ho, Er, or Yb and the balance of Pd and impurities (see Patent Document 6) has also been proposed.
[0006]
In addition, a porous metal substrate is usually used as a support for flowing out hydrogen that has passed through the hydrogen-permeable alloy film, and an alloy film is formed thereon.
For example, forming a hydrogen-permeable alloy film on a heat-resistant porous body (porous glass) having a large number of small holes by a chemical plating method (see Patent Document 7), and forming an alloy on a metal porous support It is proposed to form a barrier layer of high melting point metal or ceramics to prevent the deterioration of hydrogen permeation performance due to the formation of the membrane and the diffusion of the components of the metal porous metal substrate into the hydrogen permeable alloy membrane. (See Patent Document 8).
[0007]
However, even if a conventional Pd alloy membrane is applied to a hydrogen gas purification / separation apparatus for a fuel cell, the hydrogen permeation performance is still insufficient, and a support made of porous glass or porous ceramics is used. The hydrogen permeable alloy film has a problem that mechanical strength is small or that it is difficult to bond with a metal part.
[0008]
Under such circumstances, it has hydrogen permeation performance that can be applied to hydrogen gas purification / separation equipment for fuel cells, has sufficient mechanical strength, and has no permeation of constituent elements from the porous support. An alloy film, a member for hydrogen permeation, and a method for producing the same have been desired.
[0009]
[Patent Document 1]
JP-A-46-7562 (Claims)
[Patent Document 2]
JP-A-3-271337 (Claims)
[Patent Document 3]
JP-A-2000-247605 (paragraph [0016])
[Patent Document 4]
JP 2001-46845 A (Claims)
[Patent Document 5]
Japanese Patent Application Laid-Open No. 2001-131653 (Claims)
[Patent Document 6]
JP 2001-262252 A (Claims)
[Patent Document 7]
JP-A-63-294925 (Claims, Claim 3)
[Patent Document 8]
JP 2001-286742 A (Claims)
[0010]
[Problems to be solved by the invention]
In view of the above problems, the present invention has excellent performance of selectively permeating and separating hydrogen from a mixed gas containing hydrogen, and can be applied to a hydrogen gas purifying / separating apparatus used for fuel for a fuel cell. An object of the present invention is to provide a hydrogen permeable alloy film, a hydrogen permeable member, and a method for manufacturing the same.
[0011]
[Means for Solving the Problems]
The present inventor has conducted intensive studies to solve the above-mentioned problems. As a result, when a specific amount of B is contained in Pd or a Pd alloy, the ionic radius of B is very small. Positioning will expand the lattice of the face-centered cubic crystal structure, which significantly increases the hydrogen permeation coefficient by reducing the elastic energy required for hydrogen to expand the interstitial distance and penetrate into Pd. They have found that they can do this and have completed the present invention.
[0012]
That is, according to the first aspect of the present invention, a metal film mainly containing Pd or a Pd alloy having a face-centered cubic crystal structure, containing 1 to 20 at% of B, and having a face-centered cubic crystal structure A hydrogen permeable alloy film having a lattice constant (room temperature) of 0.390 nm or more is provided.
[0013]
According to a second aspect of the present invention, there is provided the hydrogen permeable alloy film according to the first aspect, wherein the content of B is 3 to 18 at%.
[0014]
According to a third aspect of the present invention, in the first aspect, the Pd alloy contains 0 to 50 at% of at least one metal element selected from Cu, Ag, and Au. A hydrogen permeable alloy membrane is provided.
[0015]
According to a fourth aspect of the present invention, there is provided the hydrogen-permeable alloy film according to the first aspect, wherein the Pd alloy contains 0 to 10 at% of at least one selected from Y or a lanthanoid element. Provided.
[0016]
Further, according to a fifth aspect of the present invention, there is provided the hydrogen permeable alloy film according to the first aspect, wherein the lattice constant of the face-centered cubic crystal structure is 0.395 to 0.420 nm. You.
[0017]
On the other hand, according to the sixth invention of the present invention, there is provided a hydrogen permeable member formed by forming any one of the first to fifth hydrogen permeable alloy membranes on a gas-permeable porous metal support.
[0018]
According to a seventh aspect of the present invention, in the sixth aspect, the air-permeable porous metal support is a molded body obtained by sintering metal particles or metal fibers. A member for hydrogen permeation is provided.
[0019]
According to an eighth aspect of the present invention, there is provided the hydrogen permeable member according to the seventh aspect, wherein the metal particles or the metal fibers are stainless steel or a nickel-based alloy.
[0020]
According to a ninth aspect of the present invention, there is provided the hydrogen permeable member according to the sixth aspect, wherein the permeable porous metal support has a relative density of 55 to 75%.
[0021]
According to a tenth aspect of the present invention, there is provided the hydrogen permeable member according to the sixth aspect, wherein the gas permeable porous metal support has a barrier film formed on a surface thereof. .
[0022]
According to an eleventh aspect of the present invention, in the tenth aspect, the barrier film is at least one kind of oxide film or nitride film selected from Al, Si, Cr, or Ti. A member for hydrogen permeation is provided.
[0023]
On the other hand, according to a twelfth aspect of the present invention, in any one of the sixth to eleventh aspects, a vacuum deposition method, an ion plating method, a sputtering method, a method of applying an alloy slurry, an electroless or electroplating method, or A method for producing a hydrogen-permeable member, comprising forming a hydrogen-permeable alloy film on a gas-permeable porous metal support by any method selected from alloy rolling methods.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the hydrogen permeable alloy film, the hydrogen permeable member, and the method of manufacturing the same according to the present invention will be described in detail.
1. Hydrogen permeable alloy membrane
[0025]
The hydrogen permeable alloy film of the present invention is a metal film containing Pd or a Pd alloy having a face-centered cubic crystal structure as a main component. By containing B in a specific amount, the lattice constant of the face-centered cubic crystal structure at room temperature is reduced. This is a hydrogen permeable alloy membrane within a specific range.
[0026]
The base Pd may be a single Pd alloy containing 0 to 50 at% of at least one metal element of Cu, Ag, or Au, and / or a Pd alloy containing at least one metal element of Y or a lanthanoid element. It is preferably a Pd alloy containing 10 to 10 at%. Examples of the lanthanoid element include La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu.
[0027]
Cu, Ag, or Au alloys with Pd to improve the strength and has the effect of suppressing hydrogen embrittlement, and Y or the lanthanoid element has the effect of improving the strength at high temperatures. In order to apply to a hydrogen gas purifying / separating apparatus in which hydrogen gas can reach 400 ° C. or higher, it is desirable to have an alloy composition containing a specific amount of Cu, Ag, or Au so that high-temperature strength can be maintained.
Preferably, Cu is 1 to 40 at%, Ag is 1 to 40 at%, and Au is 1 to 40 at%. On the other hand, Y is preferably 1 to 8 at%, and La and the like of the lanthanoid element are preferably 1 to 8 at%.
[0028]
In Pd or Pd alloy to which B is added, any one of Pt, Rh, Ir, Ru, Ni, Co, Ti, Nb, and Ta, in addition to Ag, Cu, Au, Y, and a lanthanoid element, is substituted. You may dissolve. The amounts of metal elements such as Pt, Rh, and Ir are known in the metal binary phase diagram.
[0029]
Since B is an atom having a very small ionic radius, it does not substitute for a Pd atom but penetrates into the lattice of Pd to reduce the lattice constant (room temperature) of 0.389 nm of the face-centered cubic crystal structure of Pd to 0. It has the effect of expanding to 390 nm or more. When hydrogen permeates by this action, the elastic energy required for H to expand and penetrate the Pd lattice can be small, and the hydrogen permeability coefficient increases.
[0030]
The lattice constant (room temperature) of the face-centered cubic crystal structure is 0.390 nm or more, and particularly preferably 0.395 to 0.420 nm. Depending on the Pd alloy phase, there may be a portion that does not have a face-centered cubic crystal structure, but the lattice constant in this case indicates a portion of the face-centered cubic crystal structure of Pd, which is a main component.
When the lattice constant (room temperature) of the face-centered cubic crystal structure is less than 0.390 nm, the effect of improving the hydrogen permeability is insufficient. The larger the lattice constant is, the higher the hydrogen permeation performance is. However, when the lattice constant exceeds 0.420 nm, this region is where the amount of B added and the amount of the metal element added simultaneously with B are increased, and the Pd-B intermetallic compound phase and Other intermetallic compound phases begin to appear, and the increase in lattice constant is close to the limit, and the hydrogen permeation performance starts to decrease, which is not preferable.
[0031]
If the amount of B is less than 1 at%, the lattice constant of the face-centered cubic crystal structure of the Pd alloy does not increase, and the hydrogen permeability cannot be improved. Conversely, if it is added in excess of 20 at%, an intermetallic compound phase of Pd and B precipitates, and the volume ratio of the face-centered cubic crystal structure with an enlarged lattice decreases, lowering the hydrogen permeation performance. A preferable addition amount of B is 3 to 18 at%.
[0032]
The thickness of the alloy film is preferably 1 to 50 μm, particularly preferably 5 to 30 μm. When the thickness is less than 1 μm, not only the mechanical strength is insufficient, but also the pores on the surface of the porous metal substrate cannot be closed, and an impurity gas is mixed into the permeated gas side. Resulting in.
[0033]
2. Hydrogen permeable member
The member for hydrogen permeation of the present invention uses a gas-permeable porous metal support (hereinafter sometimes referred to as a porous metal substrate or simply a support) obtained by sintering a stainless steel, a nickel-based alloy, or the like for a base portion. A hydrogen permeable alloy film is formed thereon.
[0034]
The air-permeable porous metal support is desirably a sintered body of metal particles or metal fibers in order to impart mechanical strength. As the material of the metal particles or metal fibers to be used, it is desirable to use stainless steel or a nickel-based alloy. By using these materials, the heat resistance, corrosion resistance, and hydrogen embrittlement resistance can be improved.
[0035]
As the gas-permeable porous metal support, a porous metal substrate having a relative density of 55 to 75%, particularly 60 to 70% is preferable. The material and relative density of the porous metal support need to be selected in consideration of air permeability and mechanical strength. When the relative density is less than 55%, the mechanical strength is insufficient. On the other hand, when the relative density is more than 75%, the air permeability decreases, which is not preferable.
[0036]
A barrier film of an oxide film or a nitride film is formed on the surface of the gas-permeable porous metal support to prevent the components of the porous metal substrate from diffusing into the hydrogen-permeable alloy film and deteriorating the hydrogen-permeable performance. It is desirable to do. As a material of the barrier film, at least one kind of oxide or nitride film selected from Al, Si, Cr, or Ti is preferable. These materials also have excellent adhesion to the surface of the gas-permeable porous metal support, and do not impair the mechanical strength of the support.
[0037]
The thickness of the formed oxide film or nitride film is preferably 0.01 to 10 μm, particularly preferably 0.1 to 5 μm. If the thickness is less than 0.01 μm, the diffusion preventing effect cannot be obtained.
[0038]
3. Method for producing member for hydrogen permeable alloy
The member for a hydrogen permeable alloy of the present invention is manufactured by sequentially performing a step of preparing a gas permeable porous metal support, a step of forming a barrier film on the surface thereof, and a step of forming a hydrogen permeable alloy film.
[0039]
(1) Preparation of air-permeable porous metal support
The support is not limited in its manufacturing method as long as it can impart mechanical strength to the sintered body of metal particles or metal fibers, but may be formed by a die molding method, an injection molding method, a slurry method, or the like. Can be.
[0040]
As the metal particles or metal fibers, metal particles or metal fibers of stainless steel or nickel-based alloy having heat resistance, corrosion resistance, and hydrogen embrittlement resistance can be used. In particular, it is desirable to use one having an average particle diameter or a cross-sectional diameter of 5 to 15 μm, preferably 8 to 13 μm. When the average particle diameter or the cross-sectional diameter is out of the range of 5 to 15 μm, it becomes difficult to obtain appropriate air permeability.
[0041]
In the case of using a mold forming method, first, a compound is prepared by mixing a binder such as paraffin or nylon with metal particles or metal fibers of stainless steel or a nickel-based alloy.
[0042]
Next, the compound is press-molded to produce a molded body having a predetermined size (area) and a thickness of 0.5 to 3 mm, preferably 1 to 1.5 mm. If the thickness is less than 0.5 mm, the mechanical strength is insufficient, while if it exceeds 3 mm, the air permeability decreases.
[0043]
Finally, the molded body is heated in a vacuum at about 200 to 400 ° C. for several hours to remove the binder, and then vacuum sintered at about 600 to 1100 ° C. for 1 to 5 hours to produce a porous metal substrate. be able to. The material (type, size) and relative density (55 to 75%) of the porous metal support may be selected in consideration of air permeability and mechanical strength.
[0044]
If the support is formed by an injection molding method, a compound is prepared in the same manner as described above, and the compound is injected into a mold having a predetermined size by an injection molding machine. If formed by a slurry method, a metal powder, a binder such as an acrylic resin, and a solvent such as water are mixed with a ball mill or the like to prepare a slurry, and the slurry is applied to a plastic film using a doctor blade, dried, and dried. Bake. The heating conditions are the same as in the above-described mold forming method.
[0045]
(2) Formation of barrier film
In order to prevent the components of the porous metal substrate from diffusing into the hydrogen permeable alloy membrane and deteriorating the hydrogen permeable performance, the gas permeable porous metal support surface is selected from Al, Si, Cr, or Ti. A barrier film (oxide film or nitride film) containing at least one metal element is formed.
[0046]
The method for producing the oxide film or the nitride film is not limited, and the oxide film or the nitride film is formed on the air-permeable porous metal support by a PVD method such as a vacuum evaporation method, a sputtering method, and an ion plating method.
[0047]
In the vacuum evaporation method, a raw material oxide such as alumina is placed in a water-cooled hearth in a vacuum evaporation machine, and the apparatus is evacuated (to a degree of vacuum of 10 -2 Pa>) is a method in which the raw material oxide is heated and evaporated by an electron gun to directly form an oxide film having a desired thickness.
The sputtering method is a method in which a target of a raw material is placed in a vacuum apparatus, plasma is irradiated to the target in an argon gas atmosphere under vacuum conditions, and fine particles of the raw material are beaten to form a film on a substrate support.
The sputtering method includes a high frequency sputtering method (RF sputtering) for generating argon plasma at a high frequency and a direct current sputtering method (DC sputtering) for generating a DC power. In order to increase the efficiency, a magnet is provided on the back side of the target. A magnetron sputtering method has been added in which argon plasma is concentrated just above a target to increase the collision efficiency of argon ions so that a film can be formed at a low gas pressure.
The ion plating method is a method in which a raw metal vapor ionized by high-frequency plasma or arc discharge is formed on a substrate. An oxide film or a nitride film is formed by introducing oxygen or nitrogen gas into a vacuum device and reacting with a source metal vapor.
[0048]
(3) Formation of hydrogen permeable alloy film
The hydrogen permeable member of the present invention is completed by forming a hydrogen permeable alloy film on a barrier film formed on a gas-permeable porous metal support.
[0049]
The method for producing the hydrogen-permeable alloy film is not limited as long as B can be contained in Pd or a Pd alloy in an amount of 1 to 20 at%, and a vacuum evaporation method, an ion plating method, a sputtering method, an alloy slurry coating method, The hydrogen permeable alloy film can be formed by a method such as electrolysis or electroplating. Further, an alloy produced by arc melting or the like may be produced by rolling.
[0050]
Here, a method of forming a Pd-Ag-B alloy film will be described as an example using a vacuum evaporation method. The vacuum evaporation apparatus is not particularly limited, and a commercially available vacuum evaporation machine using an electron gun can be used.
[0051]
First, raw materials of Ag, B, and Pd are placed on a water-cooled hearth in a vacuum evaporation machine. Next, the apparatus is evacuated (vacuum degree 10). -2 Pa>), the hearth is rotated to select the source metal, and the source metal is vapor-deposited in the above order while monitoring the thickness of the film to be formed with a crystal oscillation type thickness monitor. The thickness of each of the three types of laminated films is such that the ratio of the sum of the thicknesses of Pd and Ag and the thickness of B is Pd + Ag: B = 9-200: 1, and the ratio of the thickness of Pd and Ag is Pd: A film is formed so that Ag = 1: 0 to 1, and this is set as one unit, and vapor deposition is repeated a plurality of times to produce a Pd-Ag-B multilayer film having a total film thickness of 1 to 50 μm.
If a multi-source simultaneous vapor deposition apparatus is used, the composition can be controlled by controlling the electron beam irradiation time to each raw material metal or controlling the electron beam intensity.
[0052]
If B is less than 1 at% in Pd (alloy), the hydrogen permeation performance is low, and if it exceeds 20 at%, an intermetallic compound phase precipitates and lowers the hydrogen permeation performance. It is preferable that the Pd alloy contains at least one of Cu, Ag, and Au in an amount of 0 to 50 at%. If these metals are not contained at all, the hydrogen permeation performance does not increase. The transmission performance is reduced. The film thickness ratios (Pd + Ag: B = 9 to 200: 1, Pd: Ag = 1: 0 to 1) are determined as a result of considering these conditions.
[0053]
Similarly, the Pd alloy preferably contains 0 to 10 at% of at least one of Y and lanthanoid elements. If these metals are not contained at all, the hydrogen permeation performance does not increase and the Pd alloy exceeds 10 at%. If it is contained, an intermetallic compound phase is precipitated and hydrogen permeation performance is reduced. For example, in order to obtain an alloy film containing Y, it is preferable that the film thickness ratio be Pd + Y: B = 9 to 200: 1 and Pd: Y = 1: 0 to 0.2.
[0054]
Thereafter, the multilayer film is taken out of the vacuum evaporator and placed in a vacuum (at a degree of vacuum of 10). -2 Pa>), heat treatment at 500 to 1000 ° C., preferably 600 to 900 ° C. To form a uniform alloy, heat treatment is performed in this temperature range for 0.5 to 20 hours.
[0055]
On the other hand, according to the sputtering method, a target made of Pd-Ag-B as a raw material is installed in a vacuum device, and the target is irradiated with rare gas ions in a rare gas atmosphere such as argon or krypton under vacuum conditions. The raw material fine particles are beaten out and a film is formed on a gas-permeable porous support serving as a substrate. The substrate temperature of the sputtering apparatus is preferably between room temperature and 300 ° C.
A Pd-Ag alloy may be used as a target, and B may be present in the apparatus as a gaseous compound. In any case, a method in which sputtering can be continuously performed using one target is efficient.
[0056]
In the case of using the ion plating method, a raw metal vapor generated by an electron gun or the like is ionized by high-frequency plasma or arc discharge to form a metal film on a substrate.
[0057]
According to the method of applying the alloy slurry to the gas-permeable porous support, the raw material in the form of fine powder is mixed at a predetermined weight ratio (Pd + Ag: B = 400 to 1000: 1, Pd: Ag = 1: 0 to 1). After mixing and uniformly mixing in a solvent such as acetone and adding a viscosity modifier and the like as needed, the mixture is applied to a gas-permeable porous support, dried and fired.
[0058]
If the electroless or electroplating method is used, a gas-permeable porous support is placed in a tank in which the raw material compound is dissolved at a predetermined concentration, and the raw material compound is chemically reacted, or a current is supplied to the gas-permeable porous support. The reaction product is deposited on the support to obtain a dense film of the Pd alloy.
[0059]
According to the method of rolling an alloy, first, an alloy is prepared by arc melting or the like, and the alloy is set in a rolling mill and pressurized by upper and lower rolls to obtain a predetermined thickness.
[0060]
By these methods, a hydrogen-permeable alloy film containing Pd or a Pd alloy containing 1 to 20 at% of B and having a lattice constant (room temperature) of a face-centered cubic crystal structure of 0.390 nm or more can be formed.
In the present invention, it is preferable to use a vacuum deposition method, an ion plating method, a sputtering method, and a rolling method, and from the viewpoint of preventing oxidation, it is possible to form a hydrogen permeable alloy film by a vacuum deposition method, an ion plating method, and a sputtering method. Most preferred.
[0061]
4. Hydrogen gas purification / separation equipment
The hydrogen gas purifying / separating apparatus of the present invention comprises an apparatus main body, a hydrogen-containing gas supply means and a hydrogen gas discharge means, and a hydrogen permeable alloy member produced by the above-described method is installed in the apparatus main body. Things.
Since the hydrogen permeable alloy member (hydrogen permeable alloy membrane) not only has excellent hydrogen gas permeation performance but also has a stable strength even at high temperatures, it can be used at a temperature of 400 ° C. as in a fuel cell of a molten carbonate type or a solid electrolyte type. A stable function can be expected even with a hydrogen gas purifying / separating apparatus that can be operated under the above-mentioned high-temperature operating conditions.
[0062]
【Example】
Next, examples of the present invention are illustrated together with comparative examples, but the present invention is not limited to these examples.
[0063]
(Example 1)
10 g of a compound obtained by mixing 2 wt% of paraffin with SUS316L powder having an average particle diameter of 10 μm was press-molded to produce a molded body having a diameter of 50 mm and a thickness of 1.2 mm. This molded body is sandwiched between two porous alumina setters having air permeability, subjected to a binder removal treatment in vacuum at 300 ° C. for 2 hours, and then subjected to vacuum sintering at 1000 ° C. for 1 hour to give a relative density of 63%. A porous metal substrate was manufactured.
Next, this porous metal substrate was mounted in an electron gun vacuum evaporation apparatus, 2 O 3 Was evaporated to form a 1 μm barrier film (diffusion preventing layer) on the surface of the porous metal substrate.
Then, Ag, B, and Pd metals separately prepared in a water-cooled hearth were repeatedly evaporated in this order by a vacuum evaporation machine using an electron gun (AIF-850SB type manufactured by Shinko Seiki Co., Ltd.), and the respective film thickness ratios A Pd-Ag-B multilayer film having a Pd: Ag: B = 20: 6.4: 1 and a total film thickness of 20 μm was prepared.
This was taken out from the vapor deposition machine and subjected to a vacuum heat treatment at 700 ° C. for 2 hours to produce a uniform alloy hydrogen permeable alloy film.
The composition of this hydrogen permeable alloy film was analyzed with an inductively coupled plasma emission spectrometer ICP (manufactured by Seiko Instruments Inc.). As a result, Ag was 22.7 at%, B was 5.9 at%, and the remaining was Pd.
In addition, as a result of X-ray diffraction analysis (manufactured by Rigaku Corporation), it was found that the crystal was Pd having a JCPDS card 5-681 face-centered cubic crystal structure, and its lattice constant (room temperature) was 0.399 nm.
Next, this member for hydrogen permeation was attached to a hydrogen permeation coefficient measuring apparatus, and the permeated hydrogen flow rate was measured under the conditions of a hydrogen pressure difference of 0.6 MPa and a temperature of 300 to 500 ° C. to obtain a hydrogen permeation coefficient. The results are shown in FIG. It has been found that the member for hydrogen permeation of the present invention has a large hydrogen permeation coefficient.
[0064]
(Example 2)
A hydrogen permeable alloy film was produced in the same manner as in Example 1 except that Ag was not evaporated by a vacuum evaporation apparatus using an electron gun (same as in Example 1).
As a result of ICP analysis of the composition of this hydrogen permeable alloy film, B was 6.4 at% and the remaining was Pd. Moreover, as a result of X-ray diffraction analysis, it was Pd having a face-centered cubic crystal structure, and the lattice constant was 0.396 nm.
When the hydrogen permeability coefficient was determined in the same manner as in Example 1, the hydrogen permeability coefficient was found to be large as shown in FIG.
[0065]
(Example 3)
A hydrogen permeable alloy was formed in the same manner as in Example 1 except that a film was formed in the order of Ag, B, and Pd by a vacuum evaporation apparatus so that the film thickness ratio was Pd: Ag: B = 20: 6.4: 3. A film was prepared.
As a result of ICP analysis of the composition of the hydrogen permeable alloy film, Ag was 19.0 at%, B was 17.1 at%, and the remaining was Pd. Moreover, as a result of X-ray diffraction analysis, the crystal had a face-centered cubic crystal structure Pd and a lattice constant of 0.410 nm.
When the hydrogen permeability coefficient was determined in the same manner as in Example 1, the hydrogen permeability coefficient was found to be large as shown in FIG.
[0066]
(Comparative Example 1)
A hydrogen permeable alloy film was produced in the same manner as in Example 1 except that B was not evaporated by a vacuum evaporation apparatus using an electron gun.
As a result of ICP analysis of this hydrogen permeable alloy film, the composition was such that Ag was 24.1 at% and the remaining Pd was Pd. As a result of X-ray diffraction analysis, the lattice constant of the face-centered cubic crystal structure Pd was 0.393 nm.
When the hydrogen permeability coefficient was determined in the same manner as in Example 1, as shown in FIG. 1, only a small hydrogen permeability coefficient was obtained as compared with the Example.
[0067]
(Comparative Example 2)
In a vacuum deposition apparatus using an electron gun (same as in Example 1), B and Pd were formed in that order without evaporating Ag so that the film thickness ratio became Pd: B = 20: 4. A hydrogen permeable alloy film was produced in the same manner as in Example 1 except that the film was formed.
As a result of ICP analysis of the composition of this hydrogen permeable alloy film, B was 25.2 at%, and the remaining was Pd. As a result of X-ray diffraction analysis, an intermetallic compound phase was generated in addition to the face-centered cubic crystal structure Pd having a lattice constant of 0.408 nm.
When the hydrogen permeability coefficient was determined in the same manner as in Example 1, as shown in FIG. 1, only a small hydrogen permeability coefficient was obtained as compared with the Example.
[0068]
【The invention's effect】
In the hydrogen permeable alloy film of the present invention, since a specific amount of B is contained in Pd or the Pd alloy, the lattice constant of the face-centered cubic crystal structure Pd or the Pd alloy is increased, and the hydrogen permeable performance is significantly higher than that of the conventional alloy film. Is improved. Therefore, by using the alloy membrane, it is possible to provide a hydrogen permeable member that can be applied to a hydrogen gas purification / separation device for a fuel cell, and its industrial value is extremely large.
[Brief description of the drawings]
FIG. 1 shows the relationship between the hydrogen permeability coefficient and the temperature when the hydrogen permeable alloy films of Examples 1 to 3 and Comparative Examples 1 and 2 are used.

Claims (12)

面心立方結晶構造のPdまたはPd合金を主成分とする金属膜であって、Bを1〜20at%含有し、かつ面心立方結晶構造の格子定数(室温)が0.390nm以上であることを特徴とする水素透過合金膜。A metal film mainly containing Pd or a Pd alloy having a face-centered cubic crystal structure, containing 1 to 20 at% of B, and having a lattice constant (room temperature) of 0.390 nm or more of the face-centered cubic crystal structure. A hydrogen permeable alloy membrane characterized by the following. Bの含有量が、3〜18at%であることを特徴とする請求項1に記載の水素透過合金膜。The hydrogen permeable alloy film according to claim 1, wherein the content of B is 3 to 18 at%. Pd合金が、Cu、Ag、またはAuから選択される少なくとも1種の金属元素を0〜50at%含有することを特徴とする請求項1に記載の水素透過合金膜。The hydrogen permeable alloy film according to claim 1, wherein the Pd alloy contains 0 to 50 at% of at least one metal element selected from Cu, Ag, and Au. Pd合金が、Yまたはランタノイド元素から選択される少なくとも1種の金属元素を0〜10at%含むことを特徴とする請求項1に記載の水素透過合金膜。The hydrogen permeable alloy film according to claim 1, wherein the Pd alloy contains 0 to 10 at% of at least one metal element selected from Y or a lanthanoid element. 面心立方結晶構造の格子定数(室温)が、0.395〜0.420nmであることを特徴とする請求項1に記載の水素透過合金膜。The hydrogen permeable alloy film according to claim 1, wherein a lattice constant (room temperature) of the face-centered cubic crystal structure is 0.395 to 0.420 nm. 請求項1〜5のいずれかに記載の水素透過合金膜を通気性多孔質金属支持体上に形成してなる水素透過用部材。A hydrogen-permeable member comprising the hydrogen-permeable alloy film according to claim 1 formed on a gas-permeable porous metal support. 通気性多孔質金属支持体が、金属粒子または金属繊維を焼結して得られた成形体であることを特徴とする請求項6に記載の水素透過用部材。The hydrogen-permeable member according to claim 6, wherein the gas-permeable porous metal support is a molded product obtained by sintering metal particles or metal fibers. 金属粒子または金属繊維が、ステンレスまたはニッケル基合金であることを特徴とする請求項7に記載の水素透過用部材。The member for hydrogen permeation according to claim 7, wherein the metal particles or the metal fibers are stainless steel or a nickel-based alloy. 通気性多孔質金属支持体は、相対密度が55〜75%であることを特徴とする請求項6に記載の水素透過用部材。The hydrogen permeable member according to claim 6, wherein the gas permeable porous metal support has a relative density of 55 to 75%. 通気性多孔質金属支持体は、表面にバリア膜が形成されていることを特徴とする請求項6に記載の水素透過用部材。The member for hydrogen permeation according to claim 6, wherein a barrier film is formed on the surface of the gas-permeable porous metal support. バリア膜が、Al、Si、Cr、またはTiから選択される少なくとも1種の酸化膜又は窒化膜であることを特徴とする請求項10に記載の水素透過用部材。The member for hydrogen permeation according to claim 10, wherein the barrier film is at least one kind of oxide film or nitride film selected from Al, Si, Cr, or Ti. 真空蒸着法、イオンプレーティング法、スパッタリング法、合金スラリーの塗布法、無電解若しくは電気メッキ法、または合金の圧延法から選択されるいずれかの方法で通気性多孔質金属支持体上に水素透過合金膜を形成させることを特徴とする請求項6〜11のいずれかに記載の水素透過用部材の製造方法。Hydrogen permeation on a permeable porous metal support by any method selected from vacuum deposition, ion plating, sputtering, coating of alloy slurry, electroless or electroplating, or rolling of alloy The method for producing a member for hydrogen permeation according to any one of claims 6 to 11, wherein an alloy film is formed.
JP2002343547A 2002-11-27 2002-11-27 Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method Pending JP2004174373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343547A JP2004174373A (en) 2002-11-27 2002-11-27 Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343547A JP2004174373A (en) 2002-11-27 2002-11-27 Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method

Publications (1)

Publication Number Publication Date
JP2004174373A true JP2004174373A (en) 2004-06-24

Family

ID=32705304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343547A Pending JP2004174373A (en) 2002-11-27 2002-11-27 Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method

Country Status (1)

Country Link
JP (1) JP2004174373A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1813694A1 (en) * 2004-11-15 2007-08-01 Nikko Materials Co., Ltd. Sputtering target for production of metallic glass film and process for producing the same
JP2011062699A (en) * 2004-09-15 2011-03-31 Korea Inst Of Energy Research Method for manufacturing palladium alloy composite membrane for hydrogen gas separation
JP2012200716A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable module and hydrogen separation method using the same
US8316927B2 (en) 2006-06-09 2012-11-27 Denso Corporation Loop heat pipe waste heat recovery device with pressure controlled mode valve
CN104046935A (en) * 2014-06-28 2014-09-17 西安瑞鑫科金属材料有限责任公司 Preparation method of palladium-copper alloy foil
WO2015194472A1 (en) * 2014-06-16 2015-12-23 日東電工株式会社 Hydrogen release film
WO2015194470A1 (en) * 2014-06-16 2015-12-23 日東電工株式会社 Hydrogen release film

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011062699A (en) * 2004-09-15 2011-03-31 Korea Inst Of Energy Research Method for manufacturing palladium alloy composite membrane for hydrogen gas separation
EP1813694A1 (en) * 2004-11-15 2007-08-01 Nikko Materials Co., Ltd. Sputtering target for production of metallic glass film and process for producing the same
EP1813694A4 (en) * 2004-11-15 2009-05-06 Nikko Materials Co Ltd Sputtering target for production of metallic glass film and process for producing the same
US8316927B2 (en) 2006-06-09 2012-11-27 Denso Corporation Loop heat pipe waste heat recovery device with pressure controlled mode valve
JP2012200716A (en) * 2011-03-28 2012-10-22 Jx Nippon Mining & Metals Corp Hydrogen permeable module and hydrogen separation method using the same
WO2015194472A1 (en) * 2014-06-16 2015-12-23 日東電工株式会社 Hydrogen release film
WO2015194470A1 (en) * 2014-06-16 2015-12-23 日東電工株式会社 Hydrogen release film
JPWO2015194470A1 (en) * 2014-06-16 2017-04-20 日東電工株式会社 Hydrogen discharge membrane
JPWO2015194472A1 (en) * 2014-06-16 2017-05-25 日東電工株式会社 Hydrogen discharge membrane
US10439185B2 (en) 2014-06-16 2019-10-08 Nitto Denko Corporation Hydrogen-releasing film
CN104046935A (en) * 2014-06-28 2014-09-17 西安瑞鑫科金属材料有限责任公司 Preparation method of palladium-copper alloy foil
CN104046935B (en) * 2014-06-28 2015-11-04 西安瑞鑫科金属材料有限责任公司 A kind of preparation method of palladium-copper alloy foil

Similar Documents

Publication Publication Date Title
US7468093B2 (en) Multiple phase alloys and metal membranes for hydrogen separation-purification and method for preparing the alloys and the metal membranes
EP4335945A1 (en) Production device and production method for thin film catalyst
JP2004174373A (en) Hydrogen permeable alloy membrane, member for hydrogen permeation and its production method
EP1992401B1 (en) Hydrogen-permeable separation thin membranes
JPH11286785A (en) Hydrogen-permeable membrane and its preparation
JP6600300B2 (en) Multi-layer arrangement for solid electrolyte
JP4742269B2 (en) Method for producing double-phase hydrogen permeable alloy and double-phase hydrogen permeable alloy
JP4953337B2 (en) Double phase alloy for hydrogen separation and purification
JP3645088B2 (en) Hydrogen permeable membrane and method for producing the same
JP4064774B2 (en) Hydrogen permeator and method for producing the same
JP2008212812A (en) Hydrogen separation membrane
JP2007237074A (en) Hydrogen permeable separation membrane exhibiting excellent hydrogen permeable separation capability
JP2004074070A (en) Hydrogen-permeable membrane
JP2000247605A (en) Palladium alloy film for hydrogen transmission and its formation
CN114921757A (en) Amorphous high-entropy alloy thick film preparation equipment and preparation method
JP4064662B2 (en) Hydrogen permeator and method for producing the same
JP4304666B2 (en) Proton conductive material, proton conductive structure, fuel cell, and method for producing proton conductive structure
JP2006000722A (en) Hydrogen-permeable alloy membrane and its manufacturing method
JP2006274298A (en) Diplophase alloy for separating/refining hydrogen and manufacturing method therefor
CN115652160B (en) Vanadium alloy membrane material for separating and purifying ammonia decomposition hydrogen and preparation method thereof
JP5138876B2 (en) Oxide proton conductive membrane and hydrogen permeable structure including the same
JP4953279B2 (en) Hydrogen permeation separation thin film with excellent hydrogen permeation separation performance
CN212403966U (en) Hydrogen separation purification membrane
JP4747737B2 (en) Hydrogen permeable alloy membrane and method for producing the same
JP5294229B2 (en) Hydrogen permeable membrane manufacturing equipment using chemical vapor deposition