【0001】
【発明の属する技術分野】
本発明は軟磁性粉末との製造方法に関し、更に詳しくは、圧粉磁心の原料として用いたときに、当該圧粉磁心のコアロスを従来になく低減させることができる軟磁性粉末とそれを水アトマイズ法で製造する方法に関する。
【0002】
【従来の技術】
圧粉磁心は、対象製品が小型・複雑な形状であっても高い歩留まりで製造することができ、現在、OA機器や自動車部品などの制御用スイッチング電源やDC−DCコンバータのチョークコイルとして多用されている。また、ノイズフィルタ、バッテリ充電用トランスなどのコアとしても多く用いられている。
【0003】
この圧粉磁心は、概ね、次のようにして製造されている。
まず、所定組成の軟磁性合金に対し、機械粉砕法やアトマイズ法などを適用して、所望する形状と粒度の軟磁性粉末を製造する。
ついで、この軟磁性粉末に所定量の絶縁材料とバインダ成分を均一に混合して、軟磁性粉末の表面を絶縁皮膜で被覆する。
【0004】
得られた混合物を所定形状の金型に充填したのち所定の圧力でプレス成形して圧粉磁心のグリーンを得る。
そして最後に、上記グリーンに所定温度で熱処理を施して、プレス成形時に蓄積された成形歪みを解放し、目的の圧粉磁心にする。
上記した一連の製造工程において、軟磁性粉末の製造に関しては、従来は機械粉砕法が広く採用されてきたが、最近ではアトマイズ法で粉末を製造するケースが増えている。
【0005】
このアトマイズ法は、一般に、容器内で調製した軟磁性合金の溶湯を容器のノズルから噴霧し、その微小液滴を冷却・凝固する方法であるが、用いる冷媒との関係からガスアトマイズ法と水アトマイズ法に大別される。
そして、ガスアトマイズ法の場合は、通常、粉末形状が丸みを帯びており、他方、水アトマイズ法の場合は、粉末形状が異形になりやすくまたその表面が凹凸に富んでいる。前者の粉末で圧粉磁心を製造すると、その相対密度は高くなるものの反磁界係数は大きくなり、結局、高透磁率の圧粉磁心を得にくいという問題がある。
【0006】
後者の粉末を用いると、得られる圧粉磁心の透磁率も高くなるが、相対密度が低くなり、高い重畳特性が得られないという問題がある。また、異形状であるため絶縁性が低下し、渦電流増大の虞がある。このような水アトマイズ法による軟磁性粉末の製造に関しては、粉末を2次元的に観察したときの長軸と短軸の比(アスペクト比)を1.1〜2.5に調整した軟磁性粉末が知られている(例えば、特許文献1を参照)。
【0007】
【特許文献1】
特開平11−152504号公報
【0008】
【発明が解決しようとする課題】
ところで、前記したような電源などに対する高効率化駆動の要求に対応して、それに用いる圧粉磁心に対しては、低コアロス化への要求がますます強まっている。この低コアロス化を実現するためには、圧粉磁心のヒステリシス損と渦電流損を低減することが必要になる。
【0009】
しかしながら、前記した特許文献1に記載の製造方法の場合、その製造環境は大気中であるため、液滴が溶融状態から凝固状態に移行する過程で表面に酸化物などが薄層状に生成し、これがいまだ溶融状態にある液滴内部に巻き込まれ、固化に伴って粉末内部に残留するという問題が起こる。すなわち、粉末における酸素濃度が上昇する。このような酸化物を内包して酸素濃度が高い粉末は、それを用いて製造した圧粉磁心の保磁力が大きくなり、ヒステリシス損の増大を招き、結局、低コアロスの圧粉磁心の原料としては不適切になる。
【0010】
本発明は、水アトマイズ法で製造した軟磁性粉末における上記した問題を解決し、従来の水アトマイズ法による粉末に比べて酸素濃度が1桁以上低く、また同時に微細であるため、これを用いて製造した圧粉磁心のヒステリシス損が小さく、、また同時に渦電流損も小さく、総合してコアロスの低減を可能にする軟磁性粉末とその製造方法の提供を目的とする。
【0011】
【課題を解決するための手段】
上記した目的を達成するために、本発明においては、D50値が5〜60μm、アスペクト比が1.1〜2.5であり、かつ含有酸素の濃度が0.01〜0.15質量%であることを特徴とする軟磁性粉末、好ましくは、その組成が、Si:7〜11質量%、Al:4〜8質量%、残部が実質的にFeである軟磁性粉末が提供される。
【0012】
また、本発明においては、軟磁性粉末を水アトマイズ法で製造する際に、軟磁性合金の溶湯の周囲を非酸化性雰囲気とし、かつ、少なくとも水を用いて製造することを特徴とする軟磁性粉末の製造方法が提供される。
【0013】
【発明の実施の形態】
本発明の軟磁性粉末は、後述する態様の水アトマイズ法で製造された粉末であり、次のような特徴を備えている。
まず第1の特徴は、D50値が5〜60μmの範囲内にある微細粉末であるということである。このD50値は、製造する圧粉磁心の特性面では渦電流損の大小を規定する因子である。
【0014】
D50値が60μmより大きい場合は、粉末は全体として粗大化していて圧粉磁心の渦電流損を高めてコアロスの増大を招くとともに、圧粉磁心の相対密度が低下するので高透磁率化が困難になる。
D50値が5μmより小さい場合には、粉末は微細でありすぎるため、成形時に多くのバインダ成分が必要となり、その結果、相対密度の低下、低透磁率を招くようになる。また実際には、このように微細な粉末を水アトマイズ法で製造することは困難である。
【0015】
なお、ここでいうD50値とは、粉末の重量を小粒径のものから積算し、その積算重量が粉末全体の50%になったときにおける粒径で定義される粒径のことをいう。
第2の特徴は、アスペクト比が1.1〜2.5の範囲内にある異形粉末であることである。
【0016】
このアスペクト比が1.1より小さい場合、その粉末は球体に近似してくるので、成形時にグリーンの相対密度を高めたとしても、その反磁界係数は大きく、得られた圧粉磁心はそもそも初透磁率が低くなり、実用性の乏しいものになってしまう。
逆にアスペクト比が2.5より大きい場合は、圧粉磁心の高透磁率化に資するとはいえ、密度が低いため、印加磁界が強くなるにつれて透磁率が著減して直流重畳特性は劣化する。また、絶縁性が低下し、渦電流損が増大する。
【0017】
なお、ここでいうアスペクト比とは、粉末を2次元的に投影した投影像において、最長軸の長さをL1、その長軸と直行する最短軸の長さをL2としたとき、L1/L2で計算される値と定義される。
第3の特徴は、粉末内部に残置する酸化物、表面の酸化物など酸化物形態で粉末に含有されている酸素の濃度が0.01〜0.15質量%の範囲内にあることである。
【0018】
この酸素濃度は、圧粉磁心のヒステリシス損の大小を規定する因子である。酸素濃度が0.15質量%より高くなると、ヒステリシス損は増大し、コアロスも増大する。また、酸素濃度はゼロ%であることが最適であるが、後述する水アトマイズ法による製造過程では、溶湯から粉末に移行するいずれかの段階で酸素と不可避に接触することになるため、酸素濃度をゼロ%にすることは工業的にはできない。
【0019】
このような特徴を有する本発明の軟磁性粉末は次のようにして製造される。
まず、容器内で軟磁性合金の溶湯を製造する。用いる軟磁性合金としては、従来から圧粉磁心の原料として用いられているものであれば何であってもよく、例えば、Fe−Si−Al系、Fe−Si系、Fe−Al系、Fe−Ni系などをあげることができる。
【0020】
これらのうち、低廉であり、また低コアロスが得られるという点でFe−Si−Al系が好適である。具体的には、Si:7〜11質量%、Al:4〜8質量%、残部が実質的にFeであるものが好適である。
なお、本発明においては、上記合金を溶製し、溶湯の周囲を非酸化性雰囲気に維持する。
【0021】
ついで、溶湯を容器ノズルから噴霧する。同時に液滴に対して高圧水を噴射したのち、冷却水中に落下させて冷却・凝固する。これら噴霧時の周囲環境を非酸化性雰囲気にして酸素との接触を遮断する。
この一連の過程で、溶湯温度を選定して溶湯の粘度調整を行い、また噴霧ノズルの角度、更には水などの圧力などを適宜に選定することにより、得られる粉末の粒径、アスペクト比が調整される。
【0022】
【実施例】
Si量、Al量が異なる各種のFe−Si−Al系合金を非酸化性雰囲気中で溶製した。ついで、溶湯をノズルから噴射し、同時にその噴射流に高圧水を噴射した。得られた粉末の化学分析を行い、またD50値を測定した。
ついで、各粉末100質量部に対し、水ガラス1質量部を均一に混合したのち、その混合物を温度70℃で1時間乾燥した。その後、混合物を金型に充填し、1700MPaの圧力でプレス成形して、外径28mm、内径20mm、厚み5mmのリングコアにした。
【0023】
ついで、Ar雰囲気中において、温度650℃で1時間の磁気焼鈍を行って圧粉磁心にした。
これら圧粉磁心の1次側に40ターン、2次側に20ターンの巻線を施し、交流B−Hアナライザーを用いて、磁束密度0.1T、周波数100kHz印加時におけるコアロスを測定した。
【0024】
なお、このときに、コアロス測定値を周波数で除算し、得られた値の周波数特性曲線で周波数ゼロ(f=0)から算出される切片をヒステリシス損失係数として求め、このヒステリシス損失係数に測定時の周波数を乗算し、得られた値をヒステリシス損とした。また、コアロスからヒステリシス損を減算して渦電流損を求めた。
【0025】
以上の結果を一括して表1に示した。
【0026】
【表1】
【0027】
表1から明らかなように、酸素濃度が本発明で測定した範囲から大きく外れている比較例1,2,6は、いずれもそのD50値は本発明で規定する範囲内にあるとはいえ、コアロスは大幅に低減している。
【0028】
【発明の効果】
以上の説明で明らかなように、本発明の軟磁性粉末を用いて製造した圧粉磁心は、従来の圧粉磁心に比べてコアロスが大幅に低減している。これは、水を用いるアトマイズ法で粉末を製造する際に、溶湯(液滴)と酸素との接触を遮断して酸素濃度を低下させたことによる効果である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a soft magnetic powder, and more specifically, a soft magnetic powder capable of reducing the core loss of the dust core when used as a raw material of the dust core, and water atomizing the same. The present invention relates to a method of manufacturing by a method.
[0002]
[Prior art]
Dust cores can be manufactured with a high yield even if the target product is small and has a complicated shape, and is currently widely used as a switching power supply for control of OA equipment and automotive parts, and as a choke coil for DC-DC converters. ing. Also, they are often used as cores for noise filters, battery charging transformers, and the like.
[0003]
This dust core is generally manufactured as follows.
First, a soft magnetic alloy having a predetermined composition is applied to a soft magnetic alloy having a desired shape and particle size by applying a mechanical grinding method, an atomizing method, or the like.
Next, a predetermined amount of an insulating material and a binder component are uniformly mixed with the soft magnetic powder, and the surface of the soft magnetic powder is covered with an insulating film.
[0004]
The obtained mixture is filled into a mold having a predetermined shape, and then press-molded at a predetermined pressure to obtain a green powder core.
Finally, the green is subjected to a heat treatment at a predetermined temperature to release the molding strain accumulated during press molding to obtain a target dust core.
In the above-described series of manufacturing steps, a mechanical pulverization method has conventionally been widely used for the production of soft magnetic powder, but recently, the number of cases of producing a powder by an atomization method has been increasing.
[0005]
This atomization method is generally a method in which a melt of a soft magnetic alloy prepared in a container is sprayed from a nozzle of the container and the minute droplets are cooled and solidified. The law is roughly divided.
In the case of the gas atomization method, the powder shape is usually rounded, while in the case of the water atomization method, the powder shape tends to be irregular and the surface is rich in irregularities. When a dust core is manufactured from the former powder, the relative density is increased, but the demagnetizing coefficient is increased. As a result, there is a problem that it is difficult to obtain a dust core having a high magnetic permeability.
[0006]
When the latter powder is used, the magnetic permeability of the obtained dust core is increased, but there is a problem that the relative density is reduced and high superimposition characteristics cannot be obtained. In addition, because of the irregular shape, insulation properties are reduced, and there is a possibility that eddy current may increase. Regarding the production of a soft magnetic powder by such a water atomizing method, a soft magnetic powder in which the ratio (aspect ratio) of the major axis to the minor axis when the powder is observed two-dimensionally is adjusted to 1.1 to 2.5. Is known (for example, see Patent Document 1).
[0007]
[Patent Document 1]
JP-A-11-152504 [0008]
[Problems to be solved by the invention]
By the way, in response to the above-mentioned demands for high-efficiency drive for power supplies and the like, there is an increasing demand for dust cores to be used therefor, to reduce core loss. In order to realize the low core loss, it is necessary to reduce the hysteresis loss and the eddy current loss of the dust core.
[0009]
However, in the case of the manufacturing method described in Patent Document 1 described above, since the manufacturing environment is in the air, oxides and the like are generated in a thin layer on the surface during the process in which the droplets transition from the molten state to the solidified state, There is a problem that this is caught in the droplet which is still in a molten state and remains inside the powder as it solidifies. That is, the oxygen concentration in the powder increases. Powder containing such an oxide and having a high oxygen concentration increases the coercive force of a dust core manufactured using the same, causing an increase in hysteresis loss, and as a result, as a raw material of a dust core having a low core loss. Becomes inappropriate.
[0010]
The present invention solves the above-mentioned problem in the soft magnetic powder produced by the water atomizing method, and has an oxygen concentration lower by one digit or more than that of the powder produced by the conventional water atomizing method, and is simultaneously fine. It is an object of the present invention to provide a soft magnetic powder which has a small hysteresis loss and a small eddy current loss at the same time, and which can reduce the core loss as a whole, and a method of manufacturing the same.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, in the present invention, the D50 value is 5 to 60 μm, the aspect ratio is 1.1 to 2.5, and the concentration of the contained oxygen is 0.01 to 0.15% by mass. A soft magnetic powder, preferably a soft magnetic powder having a composition of 7 to 11% by mass of Si, 4 to 8% by mass of Al, and the balance being substantially Fe.
[0012]
Further, in the present invention, when the soft magnetic powder is produced by the water atomizing method, the surroundings of the melt of the soft magnetic alloy are made to be in a non-oxidizing atmosphere, and at least water is used to produce the soft magnetic alloy. A method for producing a powder is provided.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
The soft magnetic powder of the present invention is a powder produced by a water atomizing method in an embodiment described later, and has the following features.
The first characteristic is that it is a fine powder having a D50 value in the range of 5 to 60 μm. The D 50 value is a factor that defines the magnitude of the eddy current loss by the characteristic surface of the dust core to be manufactured.
[0014]
If D 50 value is greater than 60μm, as well as powder leads to have coarsening increase in core loss by increasing the eddy current loss of the dust core as a whole, high permeability reduction is the relative density of the dust core is reduced It becomes difficult.
If D 50 value is 5μm less, since the powder is too a fine, many binder component during molding is required, resulting in reduction of the relative density, so leading to low permeability. Further, in practice, it is difficult to produce such fine powder by a water atomizing method.
[0015]
Here, the terms D 50 value refers, the weight of the powder was accumulated from those having a small particle diameter refers to a particle size defined by a particle size at the time when the accumulated weight becomes 50% of the total powder .
The second feature is that it is an irregularly shaped powder having an aspect ratio in the range of 1.1 to 2.5.
[0016]
If the aspect ratio is smaller than 1.1, the powder becomes close to a sphere, so even if the relative density of the green is increased during molding, the demagnetizing coefficient is large, and the resulting dust core is the first to be obtained. The magnetic permeability becomes low, resulting in poor practicality.
Conversely, when the aspect ratio is greater than 2.5, although it contributes to increase the magnetic permeability of the dust core, since the density is low, the magnetic permeability decreases significantly as the applied magnetic field increases, and the DC bias characteristics deteriorate. I do. In addition, the insulation property decreases, and the eddy current loss increases.
[0017]
The term “aspect ratio” as used herein means that the length of the longest axis is L 1 and the length of the shortest axis perpendicular to the long axis is L 2 in a projected image obtained by projecting the powder two-dimensionally. It is defined as the value calculated by 1 / L 2.
A third feature is that the concentration of oxygen contained in the powder in the form of an oxide such as an oxide remaining inside the powder and a surface oxide is in the range of 0.01 to 0.15% by mass. .
[0018]
This oxygen concentration is a factor that determines the magnitude of the hysteresis loss of the dust core. When the oxygen concentration is higher than 0.15% by mass, the hysteresis loss increases and the core loss also increases. Although the oxygen concentration is optimally 0%, it is inevitable to come into contact with oxygen at any stage during the transition from molten metal to powder in the production process by the water atomization method described below. Can not be made industrially zero.
[0019]
The soft magnetic powder of the present invention having such characteristics is manufactured as follows.
First, a melt of a soft magnetic alloy is manufactured in a container. Any soft magnetic alloy may be used as long as it has been conventionally used as a raw material of a dust core. For example, Fe-Si-Al-based, Fe-Si-based, Fe-Al-based, Fe- Ni-based or the like can be given.
[0020]
Among these, the Fe-Si-Al-based material is preferable in that it is inexpensive and low core loss can be obtained. Specifically, it is preferable that Si: 7 to 11% by mass, Al: 4 to 8% by mass, and the balance being substantially Fe.
In the present invention, the above alloy is melted and the periphery of the molten metal is maintained in a non-oxidizing atmosphere.
[0021]
Next, the molten metal is sprayed from a container nozzle. At the same time, high-pressure water is sprayed on the droplets, and then dropped into cooling water to cool and solidify. The surrounding environment at the time of spraying is set to a non-oxidizing atmosphere to block contact with oxygen.
In this series of processes, the viscosity of the molten metal is adjusted by selecting the temperature of the molten metal, and the particle size and aspect ratio of the obtained powder can be adjusted by appropriately selecting the angle of the spray nozzle, and the pressure of water and the like. Adjusted.
[0022]
【Example】
Various Fe-Si-Al alloys having different amounts of Si and Al were melted in a non-oxidizing atmosphere. Next, the molten metal was injected from a nozzle, and simultaneously, high-pressure water was injected into the injection flow. The obtained powder was subjected to chemical analysis, and the D50 value was measured.
Then, 1 part by mass of water glass was uniformly mixed with 100 parts by mass of each powder, and the mixture was dried at a temperature of 70 ° C. for 1 hour. Thereafter, the mixture was filled in a mold and press-molded at a pressure of 1700 MPa to form a ring core having an outer diameter of 28 mm, an inner diameter of 20 mm, and a thickness of 5 mm.
[0023]
Then, in a Ar atmosphere, magnetic annealing was performed at a temperature of 650 ° C. for 1 hour to obtain a dust core.
Winding was performed for 40 turns on the primary side and 20 turns on the secondary side of these dust cores, and a core loss was measured using an AC B-H analyzer when a magnetic flux density of 0.1 T and a frequency of 100 kHz were applied.
[0024]
At this time, the core loss measurement value is divided by the frequency, and the intercept calculated from the frequency zero (f = 0) in the frequency characteristic curve of the obtained value is obtained as a hysteresis loss coefficient. And the obtained value was regarded as a hysteresis loss. The eddy current loss was obtained by subtracting the hysteresis loss from the core loss.
[0025]
The above results are collectively shown in Table 1.
[0026]
[Table 1]
[0027]
As apparent from Table 1, Comparative Example the oxygen concentration is far out of range measured in the present invention 1, 2 and 6, although the eventually also the D 50 value in the range defined in the present invention , Core loss is greatly reduced.
[0028]
【The invention's effect】
As is clear from the above description, the dust core manufactured using the soft magnetic powder of the present invention has significantly reduced core loss as compared with the conventional dust core. This is the effect of reducing the oxygen concentration by cutting off the contact between the molten metal (droplets) and oxygen when producing the powder by the atomizing method using water.