JP2004172433A - Electronic parts and its manufacturing method - Google Patents

Electronic parts and its manufacturing method Download PDF

Info

Publication number
JP2004172433A
JP2004172433A JP2002337453A JP2002337453A JP2004172433A JP 2004172433 A JP2004172433 A JP 2004172433A JP 2002337453 A JP2002337453 A JP 2002337453A JP 2002337453 A JP2002337453 A JP 2002337453A JP 2004172433 A JP2004172433 A JP 2004172433A
Authority
JP
Japan
Prior art keywords
bump
melting point
electronic component
shape
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002337453A
Other languages
Japanese (ja)
Inventor
Soichiro Hikita
聡一郎 匹田
Akira Sawada
亮 澤田
Yoshihiro Miyamoto
義博 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002337453A priority Critical patent/JP2004172433A/en
Publication of JP2004172433A publication Critical patent/JP2004172433A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/14Structure, shape, material or disposition of the bump connectors prior to the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors

Landscapes

  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control a distance between electronic parts by adopting very simple and easy means, and shape a solder ball intervened between the electronic parts into the shape of a hand drum with respect to the electronic parts, and to provide its manufacturing method. <P>SOLUTION: In the electronic parts, a substrate 11 and a substrate 12 are restricted in their distance owing to the height of a bump 13B comprising a material having a predetermined melting point T2 and are opposed, and are further electrically connected through a bump 13A comprising a material having a lower melting point T1 compared with the predetermined melting point T2 and being configured into the hand drum. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体チップ、パッケージ、プリント板などの間を電気接続するのに好適な接続構造を備えた電子部品及びその製造方法に関する。
【0002】
【従来の技術】
例えば、イメージ・センサなど、多数のセンサ素子を集積したハイブリッド半導体装置に於いては、各センサ素子の電気的接続数は著しく増加しつつある。
【0003】
従来、前記電気的接続はワイヤ・ボンディングなどに依存していたが、接続数の増加などの問題から導電体バンプを用いて行うようになってきた。
【0004】
図5は導電体バンプを用いる接続構造を説明する為の電子部品を表す要部切断側面図であり、図に於いて、1は第1の基板、2は金属部分、3は第2の基板、4は金属部分、5は金属部分2と金属部分4とを結合するハンダ・ボール(導電体バンプ)をそれぞれ示している。
【0005】
図5に見られるような導電体バンプを用いた接続構造を採った場合、ハンダ・ボール5の形状は表面張力で決定される為、任意の形状にはならないばかりか、応力集中を回避できる形状は得られない。
【0006】
図6はハンダ・ボールに於ける応力の集中及び分散について説明する為の電子部品を表す要部切断側面図であり、図5に於いて用いた記号と同記号は同部分を表すか或いは同じ意味を持つものとする。
【0007】
図6(A)に矢印A及びBで指示してあるような熱歪みに依る応力が加わった場合、その応力は、矢印Cで指示してある位置、即ち、ハンダ・ボール5の根元の部分に集中する。
【0008】
前記説明したようなハンダ・ボールの根元に応力が集中することを回避するには、ハンダ・ボールの形状を鼓型にすると良いことが知られている(例えば、非特許文献1参照。)。
【0009】
図6(B)に見られる鼓型ハンダ・ボール6に於いて、熱歪みに依る応力が加わった場合、その応力はハンダ・ボール6の根元に集中することなく、鼓型に於ける弧面の全面に分散されることが知られている。
【0010】
ところで、前記したようにハンダ・ボールを鼓型に整形するには、ハンダ・ボールのサイズ(ハンダの体積)を一定にした上で、接続対象物間の距離を精密に制御しなければならず、そのスルー・プットは著しく悪いものとなっている。
【0011】
バンプに関連する技術については、前記説明した従来の技術の他に種々な公知技術が知られているので、その若干の例を挙げて説明する。
【0012】
融点を異にする二種類のバンプを構成し、融点が低いバンプの表面張力を利用し、x−y平面上で精密なアライメントを行う発明が知られている(例えば、特許文献1参照。)。
【0013】
特許文献1の発明に於いては、バンプ形状を鼓型に決定する為のz方向の制御である接続対象物間のギャップの制御は行っていない。
【0014】
また、予めスペーサに依って接続対象物間のギャップを決定しておき、バンプ材料の融点以上の温度にすることで、バンプを下側対象物の下地金属側に垂れるようにして接続を行う発明が知られ、下地金属の形状、面積を最適にしておくことで、鼓型にすることができる(例えば、特許文献2参照。)。
【0015】
特許文献2の発明に於いては、スペーサで予め固定するので、x−y平面のセルフ・アライメント効果を期待することはできず、そして、接続対象物間のギャップを予め固定した後でバンプを溶解接続するのであるから、バンプ形状についての自由度が減少する。
【0016】
更にまた、放熱フィン−(ハンダ1)−半導体チップ−(ハンダ2)−基板の順に積層し、そして、この場合、ハンダ1の融点がハンダ2の融点に比較し高くなっていて、そのハンダ2で半導体チップと基板との接続を行い、次いで、温度を上昇して、ハンダ1で放熱フィンと半導体チップとを接続するものである。このとき、チップ間にハンダが拡がってギャップを狭めることで、半導体チップを持ち上げ、ハンダ2を鼓型にする。(例えば、特許文献3参照。)。この特許文献3の発明に於いては、放熱フィンなる余分なものが設置される。
【0017】
更にまた、スペーサとしてチップ型部品を使用して接続対象物間のギャップを決定し、フリップ・チップ・ボンディングを行う発明が知られている(例えば、特許文献4参照。)。
【0018】
特許文献4の発明に於いては、スペーサで予め固定するので、x−y平面のセルフ・アライメント効果を期待することができず、そして、接続対象物間のギャップを予め固定した後でバンプを溶解接続するのであるから、バンプ形状についての自由度が減少する。
【0019】
【特許文献1】
特開平6−112463号公報
【特許文献2】
特開平6−177438号公報
【特許文献3】
特開平7−94626号公報
【特許文献4】
特開平9−130031号公報
【非特許文献1】技術情報協会編「ベアチップ実装」株式会社技術情報協会 1990年1月31日発行 第144頁乃至第146頁
【0020】
【発明が解決しようとする課題】
本発明では、極めて簡単且つ容易な手段を採ることで、電子部品間の距離が精密に制御され、且つ、電子部品間に介在するハンダ・ボールが鼓型に整形されるようにする。
【0021】
【課題を解決するための手段】
本発明に依る電子部品及びその製造方法に於いては、第1の電子部品(例えば基板11:図4参照、以下同様)と第2の電子部品(例えば基板12)とが所定融点T2の材料からなる第1のバンプ(融点T2のバンプ13B)の高さで間隔を規定されて対向すると共に該所定融点T2に比較して低い融点T1の材料からなり且つ鼓型を成す第2のバンプ(融点T1のバンプ13A)で電気接続されることが基本になっている。
【0022】
前記手段を採ることに依り、電子部品間の距離が精密に制御され、且つ、電子部品間に介在するハンダ・ボールを鼓型に整形され、従って、熱サイクル、或いは、機械的衝撃などで発生する応力集中は解消されて信頼性が向上する。
【0023】
【発明の実施の形態】
本発明では、融点を異にする材料でそれぞれ構成されたバンプを用いて接続対象物である半導体チップ、パッケージ、プリント板など電子部品の接続を行うようにしている。但し、高融点の材料で構成されたバンプは、接続を主たる目的とするものではなく、電子部品間の間隔を規定し、且つ、その間隔を維持する役割を果たすものである。
【0024】
ここで、融点が低い材料からなるバンプの融点をT1とし、また、融点が高い材料からなるバンプの融点をT2とし、更に、電子部品に於ける融点T2のバンプが位置するであろう箇所の何れか一方の表面はバンプが結合され難い状態、例えば、金属などの下地は設けない構成にしてあるものとする。
【0025】
電子部品の接続を行うには、当初、全てのバンプを融点T2よりも高い温度で溶融して下地を濡らした状態とし、その状態で電子部品の間隔を若干引き離してから、温度T1よりも高く且つ温度T2よりも低い温度に下降させると、融点T2のバンプは表面張力に依って半球状をなして固化し、結合され難い状態にある表面をもつ電子部品から離隔した状態となる。
【0026】
次いで、両電子部品の内の少なくとも一方の保持を解除すると、融点T1のバンプに於ける表面張力に起因して両電子部品は引き付けられるような状態となるが、無制限に引き付けられるわけではなく、既に固化している融点T2のバンプに抑止されて両電子部品間の間隔は一定、即ち、融点T2のバンプの高さに維持され、そして、融点T1のバンプは鼓型の形状になっている。
【0027】
この後、接続された両電子部品の温度を融点T1以下にすることで、融点T1のバンプは鼓型を維持したまま固化し、従って、熱歪に起因する応力はバンプ全体に分散され、その根元にだけ集中することはなくなる。
【0028】
前記説明した融点T2のバンプの最終的な高さは、接続対象物である電子部品の何れか一方に形成されている下地金属のサイズと金属量に依って決定されるので、それを制御することで接続された電子部品間の間隔を予め決定することができる。
【0029】
前記したように、融点T2のバンプに依って、電子部品間の間隔が一定に維持されることから、融点T1のバンプについても、下地金属のサイズと金属量を所望の値に設定しておくことで、バンプを所望の形状にすることが可能である。
【0030】
実施例
本発明は、特に、水銀カドミウムテルルなどの化合物半導体を用いたハイブリッド型赤外線検知器(infrared focal plane array:IRFPA)などに実施して好適である。
【0031】
このハイブリッド型赤外線検知器では、水銀カドミウムテルルなどの化合物半導体を材料にしたフォトダイオード・アレイ及び化合物半導体とは熱膨張率を異にするシリコンを材料とする読み出し用ICをバンプで貼り合わせた構成となっていて、各フォトダイオードに対してバンプが必要であるから、シリコンを用いた読み出し用ICにはバンプを大量且つ稠密に敷き詰めたものとなる。
【0032】
図1乃至図4はIRFPAを組み立てる工程を説明する為の工程要所に於けるIRFPAの要部切断側面図であり、以下、これ等の図を参照しつつ説明する。
【0033】
図1参照
(1)
水銀カドミウムテルルなどを材料にしたフォトダイオード・アレイが作り込まれ、且つ、表面に下地金属膜11Aが形成されてなる基板11と、シリコンを材料にした読み出し用ICが作り込まれ、且つ、表面に下地金属膜12A及び12Bが形成されると共に下地金属膜12Aには融点T1(低温)のInバンプ13Aが、また、下地金属膜12Bには融点T2(高温)のInZnバンプ13Bがそれぞれ接続された基板12とを対向させてアライメントする。
【0034】
ここで、融点T2のInZnバンプ13Bは基板11と基板12との間隔を規定する為のものであり、また、融点T1のInバンプ13Aは基板11と基板12とを電気接続する為のものであることは云うまでもない。尚、Inの融点T1は156〔℃〕、In90〔%〕・Zn10〔%〕のInZn合金の融点T2は約200〔℃〕である。
【0035】
図2参照
(2)
T>T2>T1である温度T、例えばT=210〔℃〕に昇温して基板11と基板12とをボンディングする。
【0036】この場合、Inバンプ13Aに対しては基板11側の表面に下地金属膜11Aが用意されているので電気接続されるが、InZnバンプ13Bに対しては基板11側の表面に下地金属膜が存在せず、金属には馴染み難い材料、例えばSiO膜になっているので、電気接続は行われない。
【0037】
図3参照
(3)
温度Tを210〔℃〕に維持したまま、基板11と基板12との間隔を拡げるとInバンプ13Aは下地金属膜11A及び12A間にボンディング状態に在って鼓型を成しているが、InZnバンプ13Bは基板11側表面から離れてしまい、半球状に復元してしまう。
【0038】
(4)
次いで、温度Tを180〔℃〕、即ち、T2>T>T1とすると、InZnバンプ13Bは固化し、Inバンプ13Aは依然として溶融状態に在る。
【0039】
図4参照
(5)
温度TをT2>T>T1の状態に保ちながら、基板11及び基板12の保持を緩めて間隔を小さくすると既に固化しているInZnバンプ13Bの頂部が基板11に再び当接し、基板11と基板12との間隔を規制するので、それ以上、接近することはなくなり、溶融状態に在るInバンプ13Aは鼓型の形状を維持することができる。
【0040】
(6)
温度TをT2>T1>Tとすると、全てのバンプは固化状態となって、基板11及び12は、所定の間隔を維持し、鼓型のInバンプ13Aに依って電気接続されるので、応力がInバンプ13Aの根元に集中することはなく、剥離
などは生じない。
【0041】
【発明の効果】
本発明に依る電子部品及びその製造方法に於いては、第1の電子部品と第2の電子部品とが所定融点T2の材料からなる第1のバンプの高さで間隔を規定されて対向すると共に該所定融点T2に比較して低い融点T1の材料からなり且つ鼓型を成す第2のバンプで電気接続される。
【0042】
前記構成を採ることに依り、電子部品間の距離が精密に制御され、且つ、電子部品間に介在するハンダ・ボールを鼓型に整形され、従って、熱サイクル、或いは、機械的衝撃などで発生する応力集中は解消されて信頼性が向上する。
【図面の簡単な説明】
【図1】IRFPAを組み立てる工程を説明する為の工程要所に於けるIRFPAの要部切断側面図である。
【図2】IRFPAを組み立てる工程を説明する為の工程要所に於けるIRFPAの要部切断側面図である。
【図3】IRFPAを組み立てる工程を説明する為の工程要所に於けるIRFPAの要部切断側面図である。
【図4】IRFPAを組み立てる工程を説明する為の工程要所に於けるIRFPAの要部切断側面図である。
【図5】導電体バンプを用いる接続構造を説明する為の電子部品を表す要部切断側面図である。
【図6】ハンダ・ボールに於ける応力の集中及び分散について説明する為の電子部品を表す要部切断側面図である。
【符号の説明】
11 基板
11A 下地金属膜
12 基板
12A及び12B 下地金属膜
13A Inバンプ
13B InZnバンプ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electronic component having a connection structure suitable for electrically connecting a semiconductor chip, a package, a printed board, and the like, and a method of manufacturing the electronic component.
[0002]
[Prior art]
For example, in a hybrid semiconductor device in which a large number of sensor elements are integrated, such as an image sensor, the number of electrical connections of each sensor element is increasing remarkably.
[0003]
Conventionally, the electrical connection has relied on wire bonding or the like. However, due to a problem such as an increase in the number of connections, the electrical connection has been made using a conductive bump.
[0004]
FIG. 5 is a cutaway side view of an essential part showing an electronic component for explaining a connection structure using a conductor bump. In FIG. 5, 1 is a first substrate, 2 is a metal portion, and 3 is a second substrate. Reference numeral 4 denotes a metal part, and reference numeral 5 denotes a solder ball (conductor bump) connecting the metal part 2 and the metal part 4.
[0005]
When a connection structure using conductor bumps as shown in FIG. 5 is adopted, the shape of the solder ball 5 is determined by the surface tension, so that not only an arbitrary shape but also a shape that can avoid stress concentration is obtained. Cannot be obtained.
[0006]
FIG. 6 is a cutaway side view of an essential part showing an electronic component for explaining the concentration and dispersion of stress in a solder ball. The same symbols as those used in FIG. It has meaning.
[0007]
When a stress due to thermal strain is applied as indicated by arrows A and B in FIG. 6A, the stress is applied to a position indicated by arrow C, that is, a portion at the root of the solder ball 5. Focus on
[0008]
It is known that in order to avoid concentration of stress at the base of the solder ball as described above, it is better to make the shape of the solder ball into a drum shape (for example, see Non-Patent Document 1).
[0009]
When a stress due to thermal strain is applied to the drum-shaped solder ball 6 shown in FIG. 6 (B), the stress is not concentrated at the root of the solder ball 6 and the arc surface in the drum-shaped Is known to be dispersed over the entire surface.
[0010]
By the way, in order to shape the solder ball into a drum shape as described above, it is necessary to precisely control the distance between the objects to be connected while keeping the size of the solder ball (volume of the solder) constant. , Its through put is significantly worse.
[0011]
As for the technology related to bumps, various known technologies are known in addition to the above-described conventional technology, and therefore, some examples will be described.
[0012]
There is known an invention in which two types of bumps having different melting points are formed, and precise alignment is performed on an xy plane by using the surface tension of the bump having a lower melting point (for example, see Patent Document 1). .
[0013]
In the invention of Patent Literature 1, the control of the gap between the objects to be connected, which is the control in the z direction for determining the bump shape to be a drum shape, is not performed.
[0014]
In addition, an invention is provided in which a gap between connection objects is determined in advance by a spacer, and the temperature is set to a temperature equal to or higher than the melting point of the bump material, so that the bumps hang down on the underlying metal side of the lower object to perform connection. The shape of the base metal and the area can be optimized to form a drum shape (for example, see Patent Document 2).
[0015]
In the invention of Patent Document 2, since the spacers are fixed in advance, the self-alignment effect in the xy plane cannot be expected, and the bumps are fixed after the gap between the connection objects is fixed in advance. Because of the fusion connection, the degree of freedom regarding the bump shape is reduced.
[0016]
Furthermore, the heat radiation fin- (solder 1) -semiconductor chip- (solder 2) -substrate are laminated in this order, and in this case, the melting point of the solder 1 is higher than the melting point of the solder 2; The connection between the semiconductor chip and the substrate is carried out by means of, and then the temperature is increased, and the radiation fins and the semiconductor chip are connected by means of the solder 1. At this time, the solder spreads between the chips to narrow the gap, thereby lifting the semiconductor chip and making the solder 2 into a drum shape. (See, for example, Patent Document 3). In the invention of Patent Document 3, an extra radiating fin is provided.
[0017]
Furthermore, there is known an invention in which a chip-type component is used as a spacer to determine a gap between objects to be connected to perform flip chip bonding (for example, see Patent Document 4).
[0018]
In the invention of Patent Document 4, since the spacer is fixed in advance, a self-alignment effect on the xy plane cannot be expected, and the bumps are fixed after the gap between the connection objects is fixed in advance. Because of the fusion connection, the degree of freedom regarding the bump shape is reduced.
[0019]
[Patent Document 1]
JP-A-6-112463 [Patent Document 2]
JP-A-6-177438 [Patent Document 3]
JP-A-7-94626 [Patent Document 4]
Japanese Patent Application Laid-Open No. 9-130031 [Non-Patent Document 1] "Bear Chip Mounting" edited by Technical Information Association, Technical Information Association, Ltd., published on January 31, 1990, pages 144 to 146.
[Problems to be solved by the invention]
In the present invention, the distance between the electronic components is precisely controlled and the solder balls interposed between the electronic components are shaped like a drum by employing extremely simple and easy means.
[0021]
[Means for Solving the Problems]
In the electronic component and the method of manufacturing the same according to the present invention, the first electronic component (for example, the substrate 11; see FIG. 4, the same applies hereinafter) and the second electronic component (for example, the substrate 12) are made of a material having a predetermined melting point T2. The first bumps (bumps 13B having a melting point T2) made of a material having a melting point T1 lower than the predetermined melting point T2 and having an interval defined by the height of the first bumps (bumps 13B having the melting point T2) Basically, electrical connection is made with the bump 13A) having the melting point T1.
[0022]
By taking the above measures, the distance between the electronic components is precisely controlled, and the solder balls interposed between the electronic components are shaped like a drum, so that they are generated by thermal cycling or mechanical shock. Stress concentration is eliminated and reliability is improved.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, electronic components such as a semiconductor chip, a package, and a printed board, which are objects to be connected, are connected by using bumps each formed of a material having a different melting point. However, the bump made of a material having a high melting point does not have a main purpose of connection, but plays a role of defining a space between electronic components and maintaining the space.
[0024]
Here, the melting point of a bump made of a material having a low melting point is denoted by T1, the melting point of a bump made of a material having a high melting point is denoted by T2, and the melting point of a bump having a melting point T2 in an electronic component is determined. It is assumed that one of the surfaces has a configuration in which bumps are not easily bonded, for example, a configuration in which a base such as metal is not provided.
[0025]
In order to connect the electronic components, first, all the bumps are melted at a temperature higher than the melting point T2 to wet the base, and in this state, the gap between the electronic components is slightly separated, and then the temperature is raised above the temperature T1. Further, when the temperature is lowered to a temperature lower than the temperature T2, the bump having the melting point T2 solidifies in a hemispherical shape due to the surface tension, and is separated from the electronic component having a surface which is hardly bonded.
[0026]
Next, when the holding of at least one of the two electronic components is released, the two electronic components are attracted due to the surface tension at the bump having the melting point T1, but are not attracted without limitation. Suppressed by the already solidified melting point T2 bump, the interval between the two electronic components is kept constant, that is, the height of the melting point T2 bump is maintained, and the melting point T1 bump is shaped like a drum. .
[0027]
Thereafter, by lowering the temperature of the two connected electronic components to the melting point T1 or lower, the bump having the melting point T1 is solidified while maintaining the hourglass shape. Therefore, the stress due to the thermal strain is dispersed throughout the bump, and You no longer concentrate on the root.
[0028]
The final height of the above-mentioned bump having the melting point T2 is determined by the size and the amount of the base metal formed on one of the electronic components to be connected, and thus is controlled. Thus, the interval between the connected electronic components can be determined in advance.
[0029]
As described above, since the gap between the electronic components is maintained constant by the bump having the melting point T2, the size of the base metal and the amount of the metal are set to desired values also for the bump having the melting point T1. This allows the bump to have a desired shape.
[0030]
EXAMPLES The present invention is particularly suitable for being applied to a hybrid infrared detector (IRFPA) using a compound semiconductor such as mercury cadmium telluride.
[0031]
In this hybrid infrared detector, a photodiode array made of a compound semiconductor such as mercury cadmium tellurium and a readout IC made of silicon, which has a different coefficient of thermal expansion from the compound semiconductor, are attached by bumps. Since bumps are required for each photodiode, a large number of bumps are densely spread on a readout IC using silicon.
[0032]
FIGS. 1 to 4 are cutaway side views of a main part of the IRFPA at key process steps for explaining a process of assembling the IRFPA. The following description will be made with reference to these drawings.
[0033]
Refer to FIG. 1 (1)
A photodiode array made of mercury cadmium tellurium or the like is formed, and a substrate 11 having a base metal film 11A formed on the surface thereof, a readout IC made of silicon as a material are formed, and Underlayer metal films 12A and 12B are formed at the same time, an In bump 13A having a melting point T1 (low temperature) is connected to the underlying metal film 12A, and an InZn bump 13B having a melting point T2 (high temperature) is connected to the underlying metal film 12B. The substrate 12 is aligned so as to face it.
[0034]
Here, the InZn bump 13B having a melting point T2 is for defining the distance between the substrate 11 and the substrate 12, and the In bump 13A having a melting point T1 is for electrically connecting the substrate 11 and the substrate 12. Needless to say, there is. The melting point T1 of In is 156 [° C.], and the melting point T2 of the InZn alloy of In 90 [%] · Zn 10 [%] is about 200 [° C.].
[0035]
Refer to FIG. 2 (2)
The temperature is raised to a temperature T satisfying T>T2> T1, for example, T = 210 ° C., and the substrate 11 and the substrate 12 are bonded.
In this case, the base metal film 11A is prepared on the surface on the substrate 11 side for the In bump 13A, so that it is electrically connected to the In bump 13B. Since there is no film and the material is not easily compatible with metal, for example, a SiO 2 film, no electrical connection is made.
[0037]
Refer to FIG. 3 (3)
When the distance between the substrate 11 and the substrate 12 is increased while maintaining the temperature T at 210 ° C., the In bump 13A is in a bonding state between the base metal films 11A and 12A and forms a drum shape. The InZn bump 13B separates from the surface on the substrate 11 side and is restored to a hemispherical shape.
[0038]
(4)
Next, when the temperature T is 180 ° C., that is, T2>T> T1, the InZn bump 13B is solidified, and the In bump 13A is still in a molten state.
[0039]
Refer to FIG. 4 (5)
When the temperature T is maintained in the state of T2>T> T1, the holding of the substrate 11 and the substrate 12 is loosened and the interval is reduced, so that the top portion of the solidified InZn bump 13B again comes into contact with the substrate 11, and the substrate 11 and the substrate Since the distance between the In bump 13 and the In bump 13A is restricted, the In bump 13A in the molten state can maintain the shape of a drum.
[0040]
(6)
Assuming that the temperature T is T2>T1> T, all the bumps are in a solidified state, and the substrates 11 and 12 maintain a predetermined interval and are electrically connected by the drum-shaped In bump 13A. Does not concentrate at the root of the In bump 13A, and peeling does not occur.
[0041]
【The invention's effect】
In the electronic component and the method of manufacturing the same according to the present invention, the first electronic component and the second electronic component face each other with a distance defined by the height of the first bump made of a material having a predetermined melting point T2. At the same time, it is made of a material having a melting point T1 lower than the predetermined melting point T2, and is electrically connected by a second bump forming a drum shape.
[0042]
By adopting the above configuration, the distance between the electronic components is precisely controlled, and the solder balls interposed between the electronic components are shaped like a drum, so that they are generated by thermal cycling or mechanical shock. Stress concentration is eliminated and reliability is improved.
[Brief description of the drawings]
FIG. 1 is a cutaway side view of a main part of an IRFPA at an important point in a process for explaining a process of assembling the IRFPA.
FIG. 2 is a cross-sectional side view of a main part of the IRFPA at a key step for explaining a step of assembling the IRFPA.
FIG. 3 is a cutaway side view of a main part of the IRFPA at a key step for explaining a step of assembling the IRFPA.
FIG. 4 is a side cutaway view of a main part of the IRFPA at an important point in the process for explaining the step of assembling the IRFPA;
FIG. 5 is a fragmentary side view showing an electronic component for explaining a connection structure using conductor bumps.
FIG. 6 is a cutaway side view of an essential part showing an electronic component for describing concentration and dispersion of stress in a solder ball.
[Explanation of symbols]
11 Substrate 11A Underlying metal film 12 Substrates 12A and 12B Underlying metal film 13A In bump 13B InZn bump

Claims (4)

第1の電子部品と第2の電子部品とが所定融点T2の材料からなる第1のバンプの高さで間隔を規定されて対向すると共に該所定融点T2に比較して低い融点T1の材料からなり且つ鼓型を成す第2のバンプで電気接続されてなること
を特徴とする電子部品。
The first electronic component and the second electronic component oppose each other at a distance defined by the height of a first bump made of a material having a predetermined melting point T2, and a material having a melting point T1 lower than the predetermined melting point T2. An electronic component characterized by being electrically connected by a second bump forming a drum shape.
表面に電気接続されるべき下地金属膜が形成され且つ電子部品間の間隔を規定する第1のバンプが当接するべき領域をもつ第1の電子部品及び表面に電気接続されない下地金属膜と電気接続されるべき下地金属膜とが形成され且つ電気接続されない下地金属膜上には融点がT2(T2>T1)の材料からなる第1のバンプが形成されると共に電気接続されるべき下地金属膜上には融点がT1(T1<T2)の材料からなる第2のバンプが形成されてなる第2の電子部品を対向させてアライメントする工程と、
温度T(T>T2>T1)を上昇して第1の電子部品と第2の電子部品のボンディングを行う工程と、
第1の電子部品及び第2の電子部品の間隔を開いて融点がT1の第2のバンプを鼓型にしてから温度T(T2>T>T1)を下降して融点T2の第1のバンプを略当初の形状に復元して固化する工程と、
第1の電子部品及び第2の電子部品の間隔を小さくして融点T2の第1のバンプで該間隔を規定してから温度T(T2>T1>T)を更に下降して融点T1の第2のバンプを鼓型の形状のまま固化しボンディングを完成する工程と
が含まれてなることを特徴とする電子部品の製造方法。
A first electronic component having a region on which a base metal film to be electrically connected to the surface is formed and a first bump for defining a space between the electronic components to contact, and a base metal film not electrically connected to the surface; A first bump made of a material having a melting point of T2 (T2> T1) is formed on the base metal film on which the base metal film to be formed is formed and not electrically connected, and on the base metal film to be electrically connected. A step of aligning and facing a second electronic component having a second bump formed of a material having a melting point of T1 (T1 <T2).
Raising the temperature T (T>T2> T1) to perform bonding between the first electronic component and the second electronic component;
The distance between the first electronic component and the second electronic component is increased to form a second bump having a melting point of T1 in the shape of a drum, and then the temperature T (T2>T> T1) is decreased to obtain a first bump having a melting point of T2. A process of restoring to approximately the original shape and solidifying,
The distance between the first electronic component and the second electronic component is reduced, the distance is defined by the first bump having the melting point T2, and then the temperature T (T2>T1> T) is further lowered to reduce the temperature between the first and second electronic components. A step of solidifying the second bump in a drum-shaped shape to complete the bonding.
第1のバンプ及び第2のバンプの形状をバンプの径、高さ、融点を調整して制御すること
を特徴とする請求項2記載の電子部品の製造方法。
3. The method according to claim 2, wherein the shapes of the first and second bumps are controlled by adjusting the diameter, height, and melting point of the bumps.
第1のバンプの高さを下地金属膜の面積と金属量で調整すること
を特徴とする請求項2記載の電子部品の製造方法。
3. The method for manufacturing an electronic component according to claim 2, wherein the height of the first bump is adjusted by an area of the base metal film and a metal amount.
JP2002337453A 2002-11-21 2002-11-21 Electronic parts and its manufacturing method Withdrawn JP2004172433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002337453A JP2004172433A (en) 2002-11-21 2002-11-21 Electronic parts and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002337453A JP2004172433A (en) 2002-11-21 2002-11-21 Electronic parts and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004172433A true JP2004172433A (en) 2004-06-17

Family

ID=32700961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002337453A Withdrawn JP2004172433A (en) 2002-11-21 2002-11-21 Electronic parts and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004172433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100479142C (en) * 2007-08-22 2009-04-15 中国科学院上海技术物理研究所 Process for producing composite indium column for infrared focal plane device
CN100524710C (en) * 2004-12-01 2009-08-05 中国科学院上海技术物理研究所 Focal plane device with lowered indium pin pad stress

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100524710C (en) * 2004-12-01 2009-08-05 中国科学院上海技术物理研究所 Focal plane device with lowered indium pin pad stress
CN100479142C (en) * 2007-08-22 2009-04-15 中国科学院上海技术物理研究所 Process for producing composite indium column for infrared focal plane device

Similar Documents

Publication Publication Date Title
US11450785B2 (en) Transfer carrier for micro light-emitting element
US5616520A (en) Semiconductor integrated circuit device and fabrication method thereof
US7091619B2 (en) Semiconductor device, semiconductor package, electronic device, electronic apparatus, and manufacturing methods of semiconductor device and electronic device
TWI355048B (en) Heat-dissipation semiconductor package and heat-di
US8298871B2 (en) Method and leadframe for packaging integrated circuits
US20060076665A1 (en) Package stack and manufacturing method thereof
JP2002359345A (en) Semiconductor device and its manufacturing method
TWI559474B (en) Low cte interposer without tsv structure and method
TWI306381B (en) Printed circuit board with improved thermal dissipating structure and electronic device with the same
JP2004531080A (en) Extension of fatigue life of C4 solder balls on board
JP2004172433A (en) Electronic parts and its manufacturing method
JP6409575B2 (en) Multilayer semiconductor device
KR102039791B1 (en) Mounting method of semiconductor chip and semiconductor chip package
JP5685807B2 (en) Electronic equipment
JP2009266972A (en) Laminated semiconductor module and method of manufacturing the same
JP3168987B2 (en) Mounting structure of surface mount type semiconductor device
JP3271631B2 (en) Substrate for mounting semiconductor devices
JPH09293755A (en) Semiconductor device and its manufacturing and mounting method
JP2005064118A (en) Semiconductor device and its manufacturing method
WO2022172673A1 (en) Semiconductor device and electronic device
JPH06181303A (en) Semiconductor device and manufacture thereof
JP3265544B2 (en) Semiconductor chip mounting structure
JPH1079403A (en) Semiconductor device and manufacturing thereof
JP3934011B2 (en) Semiconductor device and manufacturing method thereof
JP2006024656A (en) Semiconductor device and its manufacturing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207