JP2004172342A - Manufacturing method of ceramic layered board - Google Patents

Manufacturing method of ceramic layered board Download PDF

Info

Publication number
JP2004172342A
JP2004172342A JP2002336119A JP2002336119A JP2004172342A JP 2004172342 A JP2004172342 A JP 2004172342A JP 2002336119 A JP2002336119 A JP 2002336119A JP 2002336119 A JP2002336119 A JP 2002336119A JP 2004172342 A JP2004172342 A JP 2004172342A
Authority
JP
Japan
Prior art keywords
ceramic
laminated substrate
deformation
powder
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002336119A
Other languages
Japanese (ja)
Other versions
JP4134693B2 (en
Inventor
Kazuhiro Kusaka
和宏 日下
Mitsuhiro Azumaguchi
光博 東口
Takeshi Fukuda
毅 福田
Hiroyuki Ito
博之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002336119A priority Critical patent/JP4134693B2/en
Publication of JP2004172342A publication Critical patent/JP2004172342A/en
Application granted granted Critical
Publication of JP4134693B2 publication Critical patent/JP4134693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a ceramic layered board whereby deformation of the ceramic layered board having complicated electrode patterns can be suppressed. <P>SOLUTION: The manufacturing method of the ceramic layered board includes the steps of using conductor paste to print an electrode pattern on a green sheet manufactured by using ceramic powder and glass for major components and adding a plasticizer and a solvent to them; layering a plurality of the green sheets with the electrode pattern formed thereon to obtain a layered board body; printing a plurality of insulation paste materials made of a mixture of major components of ceramic powder and glass with a solvent and an organic vehicle blended to them, and having different porosities after baking on at least one of major sides of the layered body; and baking the layered body on which the insulating paste materials are printed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【産業上の利用分野】
本発明は面実装タイプの高周波電子部品の製造方法に関し、特にそのセラミック積層基板の焼成時における変形抑止に関するものである。
【0002】
【従来の技術】
従来からプラスチックやセラミックスなどからなる回路基板の表面に、トランジスタ、FET、ダイオード、IC等の半導体素子や抵抗素子、コンデンサ素子、インダクタ素子などの電子部品を搭載した回路基板が知られている。この様な回路基板は、半導体素子や電子部品の機械的応力からの保護、電気的特性の向上、熱的な保護が要求される。最近になり、半導体素子の動作時発熱が大きくなって来ているが、この発熱は半導体素子自身及び、他の電子部品の動作に影響を及ぼすことから、前記発熱を効率的に放熱することが重要となっている。上述したような回路基板においては、放熱性、電気的特性、信頼性等をはじめとして総合的に優れたセラミックスが、回路基板材料として多用される。この様なセラミックスとして主にAlが用いられて来た。
一方、携帯電話などの移動体通信分野においては、用いられる回路部品を小型化する要求が強く、コンデンサ素子、インダクタ素子などをLTCC(low temperature co−fireable ceramics used)技術により回路基板に内蔵させたLCフィルタ等が広く用いられる様になってきている。
【0003】
このような回路部品は、例えば1000℃以下で焼結可能な低温焼結セラミックス材料を用いて、ドクターブレード等によりキャリアフィルムに塗こう形成(キャスティング)してセラミックスグリーンシートとし、所望形状に切断した前記シートに、コンデンサ素子やインダクタンス素子を構成する所望の回路パターン(電極パターン)をAgやCuなどの導体ペーストで形成し、さらに孔開け装置によりシートの上下を貫通するビアホールを形成し、次いで、各シートに形成したビアホールに前記電極パターンを形成した導体パターンと同じAgやCuなどの金属を主成分とする導体ペーストを印刷充填し、そして前記セラミックスグリーンシートを必要枚数重ね、積層、圧着し、その後、必要な寸法に切断し、セラミックスグリーンシートと導体ペーストとの同時焼成を行う事によって得られる。
最近、このようなLTCC技術を前記回路基板に採用し、コンデンサ素子、インダクタ素子の一部を積層内蔵するとともにキャビティーを形成して、このキャビティーにベアチップ状態の半導体素子を実装する回路基板が提案されている。以下このようなLTCC技術を用いて構成した回路基板をセラミック積層基板と呼ぶ。
【0004】
近年、移動体通信機器の小型化、高性能化に対する要求が高まっており、前記セラミック積層基板も様々な回路機能が盛り込まれるように成ってきた。このような高周波電子部品として、例えば携帯電話の高周波回路部を構成するアンテナスイッチ、フィルタ、方向性結合器、高周波増幅器などを前記セラミック積層基板に複合一体化したものがある。このような高周波電子部品にあっては、アンテナスイッチ、フィルタ、方向性結合器、高周波増幅器などを構成する多数の電極パターンが基板内に構成されることになる。
【0005】
このようなセラミック積層基板においては、基板内の電極パターンの構成が、基板変形に大きく影響することが知られている。そこで特に回路基板内に形成された電極パターンが積層方向でアンバランスな状態であっても基板に変形を生じさせない様に、積層基板を構成する主たるセラミック層(グリーンシートが焼結してなる層)の収縮率と異なるセラミック層をセラミック積層基板の主面に形成することで変形を抑制することが行われている(特許文献1)。
【0006】
【特許文献1】特開平11−354376号
【0007】
【発明が解決しようとする課題】
しかしながら、多数の電極パターンが複雑にセラミック積層基板に構成される場合には、従来のように積層方向の電極パターンのアンバランスを考慮し、単に主たるセラミック層と異なる収縮率を有するセラミック層をセラミック積層基板に形成するだけでは、変形を抑制するには不十分な場合があった。
そこで本発明では、セラミック多層基板に占める電極パターンが複雑化しても、セラミック多層基板の変形を抑制することが可能なセラミック多層基板の製造方法を提供することを目的とする。
【0008】
【課題を解決する為の手段】
本発明は、セラミック粉末、ガラスを主成分として、可塑剤及び溶剤を添加して作製するグリーンシートに導体ペーストを用いて電極パターンを印刷する工程と、電極パターンが形成されたグリーンシートを複数積層して板状の積層体とする工程と、前記積層体の主面の少なくとも一方に、セラミック粉末、ガラスを主成分とし溶剤、有機ビヒクルを混合した焼成後の空孔率が異なる複数の絶縁ペーストを印刷する工程と、前記絶縁ペーストを印刷した積層体を焼成する工程を有するセラミック積層基板の製造方法である。
前記のようにセラミック積層基板の中に多くの回路を構成して複合化する場合には、積層基板内の電極パターン構成も複雑化する。一般的にセラミック層と電極パターンとの収縮特性は異なるものであり、例えば焼結の際に電極パターン部分が早く収縮を開始し、その後セラミック層が収縮するときには、電極部分が先に焼結を完了するので、セラミック層の均一な収縮を阻害し、積層基板内における電極パターンの構成がアンバランスな場合に著しい変形が生じる。そこで、本発明においては、一平面上に形成された電極パターンの占める割合と、積層方向(厚み方向)に占める電極パターンの割合を勘案し、前記積層基板内に占める電極パターンの疎密に対応する実際のセラミック積層基板の変形に応じて、収縮率の異なる複数の絶縁ペーストを印刷し、焼成後の空孔率が異なる絶縁層をセラミック積層基板の主面に構成することで変形量を適宜調整し、もって変形量の小さなセラミック積層基板を得るようにしている。
【0009】
【発明の実施の形態】
本発明に係るセラミック積層基板の一例を斜視分解図として図1に示す。
このセラミック積層基板は高周波増幅器に用いられるものであって、キャビティー20に半導体素子が収容され、前記半導体素子はキャビティー20の周りに形成された接続端子25(パッド)とワイヤーボンディグされ電気的に接続し、樹脂で封止される。
このセラミック積層基板12は、焼成により多層一体化された複数のセラミックス層と、電極パターンを主構成とするものである。キャビティー20の底面に形成され半導体素子を搭載する電極360、チップインダクタやチップコンデンサ、チップ抵抗などの電子部品を実装するための実装電極55、前記電極360とサーマルビア350を介して接続する接地電極(図示せず)、セラミック層に形成されたコンデンサ素子やインダクタンス素子を構成する内部導体パターン320や、これらを接続する接続線路、ビアホール340が設けられている。
そして、セラミック積層基板12の両主面には、前記端子電極が露出するが他の部分を実質的に全面覆う絶縁層15が形成されている。この絶縁層15は、セラミック積層基板12を主として構成する誘電体粉末を樹脂(エチルセルロース)、可塑剤(ジメチルフタレート)、溶剤(BCA、エタノール、ブタノール)とともに所定量混合してペースト化した絶縁ペーストを焼結してなるものである。そしてセラミック積層基板12の実際の変形に応じて、適宜収縮率を異ならせた(焼結後の空孔率を異ならせた)複数の絶縁ペーストが用いられる。
本発明において、絶縁層15の空孔率を異ならせる方法として、例えば絶縁ペーストに用いるセラミック粉末を、十分に結晶化した粉末と、通常の結晶化していない仮焼粉と所定の割合で混ぜたセラミック粉末としたり、仮焼温度を変えて結晶化の度合いを変えた粉末と、通常の結晶化していない仮焼粉とを混ぜたセラミック粉末としている。また、この絶縁層15は色調を異なるものとすることも可能であり、その場合には例えば前記絶縁ペーストに、Fe、Cu、Co、Ni、Cr等の金属を含有する着色ガラス粉を0.5〜5重量%程度添加すれば良い。
【0010】
以下セラミック積層基板の製造方法について、詳細に説明する。
まず、低温焼成可能なセラミック材料と適量の有機バインダや有機溶剤とを共に混合し、これをキャリアフィルム上にドクターブレート法によってキャスティングして、グリーンシートを成形した。前記キャリアフィルムは、例えばポリエステル、ポリエチレンテレフタレートで出来ており、熱的安定性、機械的強度にすぐれており、柔らかいセラミックグリーンシートを保持するのに適している。セラミックグリーンシートの厚さは、セラミック積層基板内にコンデンサ素子が形成される場合にはセラミック層厚さで25μmとし、他の層には100〜150μmのものを用いた。なお、セラミック層厚さは適宜設定されるものであり、前記厚さに限定されるものではないが、好ましくは10〜150μmの範囲で選択する。
【0011】
低温焼成セラミック材料としては、例えば低誘電率(比誘電率5〜10)のAl−Mg−Si−Gd−O系誘電体材料、MgSOからなる結晶相とSi−Ba−La−B−O系からなるガラス等からなる誘電体材料、Al−Si−Sr−O系誘電体材料、Al−Si−Ba−O系誘電体材料、高誘電率(比誘電率50以上)のBi−Ca−Nb−O系誘電体材料等様々な材料が開発されている。セラミック積層基板には、これらの低温焼成セラミック材料を単独で使用する場合もあるし、インダクタンス素子、コンデンサ素子を構成するセラミック層に応じて低誘電率の材料、高誘電率の材料を選択的に用いる場合もある。
【0012】
次に、キャスティングされたグリーンシートをキャリアフィルムごと切断し、その一部のセラミックグリーンシートにビアホールを形成した。ビアホールは、セラミックグリーンシート側からCOレーザを照射して、その照射面側の孔径がセラミック層としたときに0.05mm〜0.3mmとなる様に形成される。その断面形状は円筒又は略円錐形状となっている。前記ビアホールは、積層配置される回路素子間の接続とともに、キャビティー底部に形成される電極360と接続され、電気的な接続と放熱の為のサーマルビア350に用いられる。
【0013】
次に、グリーンシートに形成されたビアホールに導体ペーストを埋込む。導体ペーストとしては銀,銅等が用いられ、メタルマスク又はメッシュマスクによるスクリーン印刷によってビアホール部に埋込まれる。
次に、セラミックグリーンシートの表面にインダクタンス素子やコンデンサ素子を構成する電極パターン320、インダクタンス素子やコンデンサ素子等を接続する接続電極を形成する。信号配線、及び電源配線の電極パターンを形成する導体ペースト材はビアホール部と同じものを用いても良いし、異なるものを用いても良い。なお、電極パターンの形成と前記ビアホールへの導体ペーストの充填を同時に行ってもよい。
【0014】
以上の様にして、キャリアフィルムを付けたままのグリーンシートを作成した。そして、これを積層用金型に配置するが、前記金型の下側金型には吸着孔が形成されており、これにより最下層となるグリーンシートをキャリアフィルムが付いたまま、かつキャリアフィルムを積層治具側として吸着固定する。
そして、キャリアフィルムを付けたままグリーンシートを、グリーンシートが相対向するようにして積層し、熱圧着させ、キャリアフィルムをとり除く。これを数次繰り返し仮圧着体とし、さらにサーマルビア350を覆うように電極360を印刷形成した。この電極360が形成された面の反対面に端子電極を構成する下地層を形成した。この仮圧着体を金型に配置して本圧着して第1の積層圧着体とした。
【0015】
第1の積層圧着体と同様の製造方法を用いて、表面に半導体素子のランド25、電子部品の実装電極55を成形し、次いで、金型で打ち抜いてキャビティー部を形成して第2の積層圧着体を構成した。その後、第1の積層圧着体と第2の積層圧着体を金型に配置して、50℃、140kg/cmの圧力で圧着して一体化し、セラミックグリーンシート積層体を形成した。さらに、セラミックグリーンシートに用いたものとほぼ同じ低温焼成セラミック材料粉末をペースト化した絶縁ペーストを用いて、絶縁層15を印刷形成するとともに、セラミックグリーンシート積層体の他の主面に焼結後異なる空孔率となる複数の絶縁ペーストを用いて絶縁層を印刷形成した。
【0016】
この空孔率の異なる絶縁層は以下の様に構成した。
まず、セラミック積層基板の主たるセラミック層を構成するAl、Si、Sr、Na、K、Tiの酸化物を混合し、800℃で仮焼し、粉砕したセラミック粉末を準備した。このセラミック粉末は900℃で焼成可能であり、焼成後アルミナと長石族鉱物結晶の混晶状態となる。また、仮焼後の状態は、アルミナとアルミナ以外の成分がガラス化したものが混在する状態になっている。ここで準備したセラミック粉末を通常仮焼粉と呼ぶことにする。
【0017】
そして、前記通常仮焼粉と同組成の材料を900℃で仮焼し、粉砕した仮焼粉(高温仮焼粉と呼ぶこととする)を準備した。この高温仮焼粉は積層化後の焼成温度と同じ温度処理されており、十分に結晶化された材料である。これに前記通常仮焼粉を表1に示すように混合して絶縁ペーストを構成するセラミック粉末とした。これらのセラミック粉末をφ14の円柱状に圧縮成形した後、900℃で焼成して試験片を得て、この試験片から材料特性を評価した結果も表1にあわせて示す。表1中の収縮比率とは、通常仮焼粉の焼成収縮率を100%としたときの焼成収縮率の比率である。表1に示すように、通常仮焼粉と高温仮焼粉の混合比を変えることにより、密度・焼成収縮率、および空孔率を適当な値に設定できる。
【0018】
【表1】

Figure 2004172342
【0019】
このセラミックグリーンシート積層体に分割溝を鋼刃で刻設形成した後、セッタ等の焼成治具上に配置して大気中900℃で焼成した。なお導体ペーストとしてCuを用いる場合には、所定のガス雰囲気中(還元雰囲気)で焼成する。そしてNiめっき、Auめっきの電界又は無電界めっき処理を行い、セラミック積層基板を複数備えた集合基板1とし(図2)、しかる後、前記分割溝に添って個片に分割して本発明のセラミック積層基板12とした。
【0020】
【実施例】
セラミック積層基板の構成する低温焼成セラミック材料として、重量%でAl:49、SiO:34、SrO:8.2、TiO:3、Bi:2.5、NaO:2、KO:0.5、CuO:0.3、Mn:0.5に換算される誘電体材料を使用した。
前記、組成の材料を作製するため、Al、SiO、TiO、Bi、CuO、MnおよびSrCO、NaCO、KCOの原料粉を秤量し、純水と一緒に、ボールミルで混合し、混合スラリーを得た。前記スラリーにPVAをスラリー重量に対して1wt%添加した後、スプレードライヤーにて乾燥し、平均粒径が約0.1mmの顆粒状の乾燥粉を得た。前記顆粒粉を、連続炉にて最高温度800℃にて仮焼し、目的とする組成である仮焼粉を得た。
次に、仮焼粉を、エタノール中に分散させてボールミルで平均粒径1.2μmまで粉砕し、更に、シート成形用のバインダーであるPVB(ポリビニルブチラール)を仮焼粉重量に対して12wt%、および可塑剤であるBPBG(ブチルフタリルブチルグリコレート)7.5wt%を添加し、同一のボールミルにて、溶解・分散を行い、シート成形用のスラリーを得た。前期スラリーを減圧下で、脱泡および一部の溶剤の蒸発を行い、約10000mPa・sの粘度になるように調整した。粘度調整後、ドクターブレードにて、シート成形を行い、乾燥後約100μmの厚さのセラミックグリーンシートを得た。後工程のハンドリングのため、所定の大きさに裁断した。
【0021】
以下の製造工程は、発明の実施の形態の欄に開示した製造工程と実質的に同じとしているので、その説明を省く。そして、焼結後に無電解めっきにてニッケルめっきおよび金めっきを行い、絶縁層を形成しないセラミック積層基板とした。
【0022】
このセラミック積層基板のキャビティー側主面の変形量をレーザ式の3次元測定器で測定した。その結果を図3に示すが、変形状態は下に凸となり変形量が約190μmと著しく大きなものであった。
次に、キャビティー側の主面に絶縁層を形成した以外は前記セラミック積層基板と実質的に同一な絶縁層つきのセラミック積層基板を準備した。前記絶縁層は、前記したセラミック粉B、Cに溶剤、有機ビヒクル等を混合してペースト状にしたものを用いている。
図4は一面上にセラミック粉Cを用いた絶縁ペーストで絶縁層15cを形成したセラミック積層基板の変形状態である。この場合においては、絶縁層15cを設けないセラミック積層基板と逆の上に凸となる変形状態を示し、その変形量も約230μmと著しく大きなものであった。また図5は一面上にセラミック粉Bを用いた絶縁ペーストで絶縁層15bを形成したセラミック積層基板の変形状態である。この場合においては、変形量は約100μmと改善されているものの実用的な変形量ではない。そして、その変形状態は波状であった。
【0023】
本発明者等は、セラミック粉Bを用いた絶縁ペーストで絶縁層を形成したセラミック積層基板の変形状態をもとに、変形状態が上に凸となる部分(A部)には空孔率がより小さいセラミック粉Aを絶縁ペーストで絶縁層15aを形成し、変形状態が下に凸となる部分(B部)には空孔率がより大きなセラミック粉Cを絶縁ペーストで絶縁層15cを形成してセラミック積層基板とした。その結果、セラミック積層基板の変形量は約30μmとなり著しく改善され、変形状態も平坦化することが出来た。
【0024】
本実施例においては、セラミック積層基板の一主面上にのみ絶縁層を形成したが、変形に応じてもう一方の主面に絶縁層を形成しても良い。また絶縁ペーストの選定は、実際の変形に応じて適宜なされるものであり、本実施例に限定されないことは言うまでもない。
【0025】
【発明の効果】
本発明によれば、セラミック多層基板に占める電極パターンが複雑化しても、セラミック多層基板の変形を抑制することが可能なセラミック多層基板の製造方法を提供することが出来る。
【図面の簡単な説明】
【図1】本発明の一実施例に係るセラミック積層基板の分解斜視図である。
【図2】本発明の一実施例に係るセラミック積層基板を備え集合基板の斜視図である。
【図3】従来の製造方法によるセラミック積層基板の変形状態及び変形量を示す図である。
【図4】従来の製造方法による他のセラミック積層基板の変形状態及び変形量を示す図である。
【図5】従来の製造方法による他のセラミック積層基板の変形状態及び変形量を示す図である。
【図6】本発明に係る製造方法によるセラミック積層基板の変形状態及び変形量を示す図である。
【符号の説明】
12 セラミック積層基板
15、15a、15b、15c 絶縁層
20 キャビティー
25 接続端子(パッド)
55 実装電極
320 内部導体パターン
340 ビアホール
350 サーマルビア
360 電極[0001]
[Industrial applications]
The present invention relates to a method for manufacturing a high frequency electronic component of a surface mount type, and more particularly to a method for suppressing deformation of a ceramic laminated substrate during firing.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a circuit board on which a semiconductor element such as a transistor, an FET, a diode, and an IC, and electronic components such as a resistor, a capacitor, and an inductor are mounted on a surface of a circuit board made of plastic, ceramics, or the like. Such a circuit board is required to protect semiconductor elements and electronic components from mechanical stress, to improve electrical characteristics, and to thermally protect them. Recently, heat generation during operation of a semiconductor element has been increasing. However, since this heat affects the operation of the semiconductor element itself and other electronic components, the heat can be efficiently radiated. It is important. In the circuit board as described above, ceramics which are comprehensively excellent in heat dissipation, electrical characteristics, reliability and the like are often used as circuit board materials. Al 2 O 3 has been mainly used as such ceramics.
On the other hand, in the field of mobile communications such as mobile phones, there is a strong demand for miniaturization of circuit components used, and capacitor elements, inductor elements, and the like are built in circuit boards using low temperature co-fireable ceramics (LTCC) technology. LC filters and the like have been widely used.
[0003]
Such a circuit component is formed, for example, from a low-temperature sintered ceramic material that can be sintered at a temperature of 1000 ° C. or less by a doctor blade or the like to form a ceramic green sheet by casting on a carrier film, and cut into a desired shape. On the sheet, a desired circuit pattern (electrode pattern) constituting a capacitor element or an inductance element is formed with a conductive paste such as Ag or Cu, and further, a via hole is formed through a top and a bottom of the sheet by a punching device. The via holes formed in each sheet are printed and filled with a conductive paste containing a metal such as Ag or Cu as the main component as the conductive pattern on which the electrode pattern is formed, and the required number of the ceramic green sheets are stacked, laminated, and pressed. Then, cut to the required dimensions and It is obtained by simultaneous firing of the bets and the conductor paste.
Recently, such a circuit board adopting the LTCC technology for the circuit board, a part of a capacitor element and an inductor element is laminated and formed, and a cavity is formed, and a semiconductor element in a bare chip state is mounted in the cavity. Proposed. Hereinafter, a circuit board formed using such LTCC technology is referred to as a ceramic laminated board.
[0004]
In recent years, there has been an increasing demand for miniaturization and high performance of mobile communication devices, and the ceramic laminated substrate has come to incorporate various circuit functions. As such a high-frequency electronic component, for example, there is a component in which an antenna switch, a filter, a directional coupler, a high-frequency amplifier, and the like that constitute a high-frequency circuit section of a mobile phone are integrated with the ceramic laminated substrate. In such a high-frequency electronic component, a large number of electrode patterns constituting an antenna switch, a filter, a directional coupler, a high-frequency amplifier and the like are formed in a substrate.
[0005]
In such a ceramic laminated substrate, it is known that the configuration of the electrode pattern in the substrate greatly affects the deformation of the substrate. Therefore, even if the electrode pattern formed in the circuit board is unbalanced in the stacking direction, the main ceramic layer (the layer formed by sintering the green sheet) constituting the multilayer board is prevented from deforming the board. The deformation is suppressed by forming a ceramic layer having a different shrinkage rate on the main surface of the ceramic laminated substrate (Patent Document 1).
[0006]
[Patent Document 1] JP-A-11-354376
[Problems to be solved by the invention]
However, when a large number of electrode patterns are formed on a ceramic laminated substrate in a complicated manner, a ceramic layer having a contraction rate different from that of the main ceramic layer is simply used in consideration of the imbalance of the electrode patterns in the laminating direction as in the related art. There is a case where the formation on the laminated substrate is not enough to suppress the deformation.
Therefore, an object of the present invention is to provide a method of manufacturing a ceramic multilayer substrate that can suppress deformation of the ceramic multilayer substrate even when an electrode pattern occupying the ceramic multilayer substrate becomes complicated.
[0008]
[Means for solving the problem]
The present invention provides a process of printing an electrode pattern using a conductive paste on a green sheet prepared by adding a plasticizer and a solvent, using ceramic powder and glass as main components, and laminating a plurality of green sheets on which the electrode pattern is formed. A step of forming a plate-like laminate, and at least one of the main surfaces of the laminate, a mixture of a ceramic powder, glass as a main component, a solvent, an organic vehicle, and a plurality of insulating pastes having different porosity after firing. And a step of firing the laminate on which the insulating paste has been printed.
As described above, when many circuits are formed in a ceramic laminated substrate to form a composite, the electrode pattern configuration in the laminated substrate also becomes complicated. Generally, the shrinkage characteristics of the ceramic layer and the electrode pattern are different.For example, the electrode pattern portion starts shrinking quickly during sintering, and when the ceramic layer shrinks thereafter, the electrode portion first sinters. Since the completion, the uniform shrinkage of the ceramic layer is impeded, and significant deformation occurs when the configuration of the electrode pattern in the laminated substrate is unbalanced. Therefore, in the present invention, the density of the electrode patterns occupied in the laminated substrate is taken into account in consideration of the proportion of the electrode patterns formed on one plane and the proportion of the electrode patterns in the lamination direction (thickness direction). Depending on the actual deformation of the ceramic laminated substrate, multiple insulating pastes with different shrinkage rates are printed, and the insulating layer with different porosity after firing is configured on the main surface of the ceramic laminated substrate to adjust the amount of deformation appropriately Thus, a ceramic laminated substrate having a small deformation amount is obtained.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
One example of a ceramic laminated substrate according to the present invention is shown in FIG. 1 as a perspective exploded view.
This ceramic laminated substrate is used for a high-frequency amplifier, and a semiconductor element is housed in a cavity 20, and the semiconductor element is wire-bonded to connection terminals 25 (pads) formed around the cavity 20 to be electrically bonded. And are sealed with resin.
The ceramic laminated substrate 12 mainly has a plurality of ceramic layers integrated by firing and an electrode pattern. An electrode 360 formed on the bottom surface of the cavity 20 for mounting a semiconductor element, a mounting electrode 55 for mounting electronic components such as a chip inductor, a chip capacitor, and a chip resistor, and a ground connected to the electrode 360 via a thermal via 350. An electrode (not shown), an internal conductor pattern 320 constituting a capacitor element and an inductance element formed in a ceramic layer, a connection line connecting these, and a via hole 340 are provided.
On both main surfaces of the ceramic laminated substrate 12, an insulating layer 15 is formed on which the terminal electrodes are exposed, but covers substantially all other portions. The insulating layer 15 is formed by mixing a predetermined amount of dielectric powder, which mainly forms the ceramic laminated substrate 12, with a resin (ethyl cellulose), a plasticizer (dimethyl phthalate), and a solvent (BCA, ethanol, butanol) to form an insulating paste. It is made by sintering. In accordance with the actual deformation of the ceramic laminated substrate 12, a plurality of insulating pastes having different shrinkage ratios (sintered porosity differences) are used.
In the present invention, as a method for changing the porosity of the insulating layer 15, for example, a ceramic powder used for an insulating paste is mixed with a sufficiently crystallized powder and a normal non-crystallized calcined powder at a predetermined ratio. The ceramic powder is obtained by mixing ceramic powder or powder obtained by changing the degree of crystallization by changing the calcination temperature and ordinary non-crystallized calcination powder. The insulating layer 15 may have a different color tone. In this case, for example, the insulating paste may contain a colored glass powder containing a metal such as Fe, Cu, Co, Ni, or Cr. What is necessary is just to add about 5-5 weight%.
[0010]
Hereinafter, a method for manufacturing a ceramic laminated substrate will be described in detail.
First, a low-temperature sinterable ceramic material and an appropriate amount of an organic binder or an organic solvent were mixed together, and the mixture was cast on a carrier film by a doctor blade method to form a green sheet. The carrier film is made of, for example, polyester or polyethylene terephthalate, has excellent thermal stability and mechanical strength, and is suitable for holding a soft ceramic green sheet. The thickness of the ceramic green sheet was 25 μm in the thickness of the ceramic layer when the capacitor element was formed in the ceramic laminated substrate, and the thickness of the other layers was 100 to 150 μm. The thickness of the ceramic layer is appropriately set and is not limited to the above-mentioned thickness, but is preferably selected in the range of 10 to 150 μm.
[0011]
Examples of the low-temperature fired ceramic material include an Al—Mg—Si—Gd—O-based dielectric material having a low dielectric constant (relative dielectric constant of 5 to 10), a crystal phase made of Mg 2 SO 4, and Si—Ba—La—B. -O-based dielectric material such as glass, Al-Si-Sr-O-based dielectric material, Al-Si-Ba-O-based dielectric material, high dielectric constant (relative dielectric constant of 50 or more) Bi- Various materials such as Ca-Nb-O-based dielectric materials have been developed. These low-temperature fired ceramic materials may be used alone for the ceramic laminated substrate, or a material with a low dielectric constant or a material with a high dielectric constant may be selectively used according to the ceramic layers constituting the inductance element and the capacitor element. Sometimes used.
[0012]
Next, the cast green sheet was cut together with the carrier film, and a via hole was formed in a part of the ceramic green sheet. The via hole is formed such that a CO 2 laser is irradiated from the ceramic green sheet side and the hole diameter on the irradiation surface side becomes 0.05 mm to 0.3 mm when the ceramic layer is formed as a ceramic layer. Its cross-sectional shape is cylindrical or substantially conical. The via hole is connected to the electrode 360 formed at the bottom of the cavity together with the connection between the circuit elements arranged in a stack, and is used for the thermal via 350 for electrical connection and heat radiation.
[0013]
Next, the conductive paste is embedded in the via holes formed in the green sheet. Silver, copper, or the like is used as the conductive paste, and is embedded in the via hole by screen printing using a metal mask or a mesh mask.
Next, on the surface of the ceramic green sheet, an electrode pattern 320 constituting an inductance element and a capacitor element, and connection electrodes for connecting the inductance element and the capacitor element are formed. The conductor paste material for forming the electrode patterns of the signal wiring and the power supply wiring may be the same as or different from the via hole. The formation of the electrode pattern and the filling of the via hole with the conductive paste may be performed simultaneously.
[0014]
As described above, a green sheet with a carrier film attached was prepared. Then, this is arranged in a lamination mold, and a suction hole is formed in the lower mold of the mold, whereby the lowermost green sheet is attached to the carrier film and the carrier film is attached. To the stacking jig side and fix it by suction.
Then, the green sheets are laminated with the carrier film attached so that the green sheets are opposed to each other, and thermocompression-bonded to remove the carrier film. This was repeated several times to form a temporary press-bonded body, and an electrode 360 was formed by printing so as to cover the thermal via 350. An underlayer constituting a terminal electrode was formed on the surface opposite to the surface on which the electrode 360 was formed. This temporary press-bonded body was placed in a mold and subjected to main press-bonding to form a first laminated press-bonded body.
[0015]
The lands 25 of the semiconductor element and the mounting electrodes 55 of the electronic component are formed on the surface by using the same manufacturing method as the first laminated pressure-bonded body. A laminated pressure-bonded body was formed. After that, the first laminated pressure-bonded body and the second laminated pressure-bonded body were placed in a mold, pressed and integrated at 50 ° C. and a pressure of 140 kg / cm 2 to form a ceramic green sheet laminated body. Further, the insulating layer 15 is printed and formed using an insulating paste obtained by forming a paste of the same low-temperature fired ceramic material powder as that used for the ceramic green sheet, and is sintered on the other main surface of the ceramic green sheet laminate. An insulating layer was formed by printing using a plurality of insulating pastes having different porosity.
[0016]
The insulating layers having different porosity were constituted as follows.
First, oxides of Al, Si, Sr, Na, K, and Ti constituting a main ceramic layer of a ceramic laminated substrate were mixed, calcined at 800 ° C., and pulverized ceramic powder was prepared. This ceramic powder can be fired at 900 ° C., and after firing, becomes a mixed crystal state of alumina and feldspar group mineral crystals. In addition, the state after the calcination is a state in which alumina and a vitrified component other than alumina are mixed. The ceramic powder prepared here is usually called calcined powder.
[0017]
Then, a material having the same composition as that of the normal calcined powder was calcined at 900 ° C. to prepare a calcined powder pulverized (referred to as a high-temperature calcined powder). This high-temperature calcined powder has been subjected to the same temperature treatment as the firing temperature after lamination, and is a sufficiently crystallized material. The normal calcined powder was mixed with the mixture as shown in Table 1 to obtain a ceramic powder constituting an insulating paste. These ceramic powders were compression-molded into a cylindrical shape of φ14, and then fired at 900 ° C. to obtain test specimens. The results of evaluating the material properties from the test specimens are also shown in Table 1. The shrinkage ratio in Table 1 is the ratio of the firing shrinkage ratio when the firing shrinkage ratio of the normally calcined powder is 100%. As shown in Table 1, the density, firing shrinkage, and porosity can be set to appropriate values by changing the mixing ratio of the normal calcined powder and the high-temperature calcined powder.
[0018]
[Table 1]
Figure 2004172342
[0019]
After dividing grooves were formed in the ceramic green sheet laminate with a steel blade, they were arranged on a firing jig such as a setter and fired at 900 ° C. in the atmosphere. When Cu is used as the conductor paste, firing is performed in a predetermined gas atmosphere (reducing atmosphere). Then, an electric or non-electrolytic plating process of Ni plating or Au plating is performed to obtain an aggregate substrate 1 having a plurality of ceramic laminated substrates (FIG. 2). This was a ceramic laminated substrate 12.
[0020]
【Example】
As the low-temperature fired ceramic material constituting the ceramic laminated substrate, Al 2 O 3 : 49, SiO 2 : 34, SrO: 8.2, TiO 2 : 3, Bi 2 O 3 : 2.5, Na 2 O by weight%. : 2, K 2 O: 0.5 , CuO: 0.3, Mn 3 O 4: using dielectric materials to be converted into 0.5.
In order to produce a material having the above composition, Al 2 O 3 , SiO 2 , TiO 2 , Bi 2 O 3 , CuO, Mn 3 O 4 and raw material powders of SrCO 3 , Na 2 CO 3 , and K 2 CO 3 are weighed. Then, the resultant was mixed with pure water by a ball mill to obtain a mixed slurry. After adding 1 wt% of PVA to the slurry based on the weight of the slurry, the slurry was dried with a spray drier to obtain a granular dry powder having an average particle size of about 0.1 mm. The granulated powder was calcined at a maximum temperature of 800 ° C. in a continuous furnace to obtain a calcined powder having a desired composition.
Next, the calcined powder is dispersed in ethanol and pulverized by a ball mill to an average particle size of 1.2 μm. Further, PVB (polyvinyl butyral), which is a binder for sheet molding, is 12 wt% based on the calcined powder weight. And BPBG (butyl phthalyl butyl glycolate) 7.5 wt% as a plasticizer were added and dissolved and dispersed in the same ball mill to obtain a sheet forming slurry. The slurry was defoamed and a part of the solvent was evaporated under reduced pressure to adjust the viscosity to about 10,000 mPa · s. After adjusting the viscosity, a sheet was formed with a doctor blade, and after drying, a ceramic green sheet having a thickness of about 100 μm was obtained. It was cut to a predetermined size for handling in a later step.
[0021]
The following manufacturing process is substantially the same as the manufacturing process disclosed in the section of the embodiment of the invention, and therefore, description thereof will be omitted. After sintering, nickel plating and gold plating were performed by electroless plating to obtain a ceramic laminated substrate on which no insulating layer was formed.
[0022]
The amount of deformation of the cavity-side main surface of the ceramic laminated substrate was measured with a laser type three-dimensional measuring device. The result is shown in FIG. 3, and the deformed state was convex downward and the amount of deformation was about 190 μm, which was extremely large.
Next, a ceramic laminated substrate having an insulating layer substantially the same as the ceramic laminated substrate except that an insulating layer was formed on the main surface on the cavity side was prepared. As the insulating layer, a paste obtained by mixing a solvent, an organic vehicle, and the like with the ceramic powders B and C described above is used.
FIG. 4 shows a deformed state of a ceramic laminated substrate in which an insulating layer 15c is formed on one surface with an insulating paste using ceramic powder C. In this case, an upwardly convex deformation state opposite to that of the ceramic laminated substrate without the insulating layer 15c was shown, and the amount of deformation was as large as about 230 μm. FIG. 5 shows a deformed state of a ceramic laminated substrate in which an insulating layer 15b is formed on one surface with an insulating paste using ceramic powder B. In this case, although the deformation amount is improved to about 100 μm, it is not a practical deformation amount. And the deformation state was wavy.
[0023]
The present inventors have found that based on the deformed state of the ceramic laminated substrate in which the insulating layer is formed with the insulating paste using the ceramic powder B, the porosity is increased in a portion (A portion) where the deformed state is upwardly convex. An insulating layer 15a is formed using a smaller ceramic powder A with an insulating paste, and an insulating layer 15c is formed using a ceramic powder C having a larger porosity with an insulating paste at a portion (B) where the deformed state is convex downward. To obtain a ceramic laminated substrate. As a result, the amount of deformation of the ceramic laminated substrate was remarkably improved to about 30 μm, and the deformed state could be flattened.
[0024]
In this embodiment, the insulating layer is formed only on one main surface of the ceramic laminated substrate. However, an insulating layer may be formed on the other main surface according to deformation. The selection of the insulating paste is appropriately made according to the actual deformation, and it goes without saying that the present invention is not limited to this embodiment.
[0025]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, even if the electrode pattern which occupies in a ceramic multilayer substrate becomes complicated, the manufacturing method of the ceramic multilayer substrate which can suppress deformation of a ceramic multilayer substrate can be provided.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a ceramic laminated substrate according to one embodiment of the present invention.
FIG. 2 is a perspective view of a collective substrate including a ceramic laminated substrate according to one embodiment of the present invention.
FIG. 3 is a diagram showing a deformation state and a deformation amount of a ceramic laminated substrate according to a conventional manufacturing method.
FIG. 4 is a diagram showing a deformation state and a deformation amount of another ceramic laminated substrate according to a conventional manufacturing method.
FIG. 5 is a view showing a deformation state and a deformation amount of another ceramic laminated substrate according to a conventional manufacturing method.
FIG. 6 is a view showing a deformation state and a deformation amount of the ceramic laminated substrate by the manufacturing method according to the present invention.
[Explanation of symbols]
12 Ceramic laminated substrate 15, 15a, 15b, 15c Insulating layer 20 Cavity 25 Connection terminal (pad)
55 Mounting electrode 320 Internal conductor pattern 340 Via hole 350 Thermal via 360 Electrode

Claims (1)

セラミック粉末、ガラスを主成分として、可塑剤及び溶剤を添加して作製するグリーンシートに導体ペーストを用いて電極パターンを印刷する工程と、電極パターンが形成されたグリーンシートを複数積層して板状の積層体とする工程と、前記積層体の主面の少なくとも一方に、セラミック粉末、ガラスを主成分とし溶剤、有機ビヒクルを混合した焼成後の空孔率が異なる複数の絶縁ペーストを印刷する工程と、前記絶縁ペーストを印刷した積層体を焼成する工程を有することを特徴とするセラミック積層基板の製造方法。A step of printing an electrode pattern using a conductive paste on a green sheet prepared by adding a plasticizer and a solvent with ceramic powder and glass as main components; And a step of printing, on at least one of the main surfaces of the laminate, a plurality of insulating pastes having different porosity after firing by mixing ceramic powder, glass as a main component, and a solvent and an organic vehicle. And a step of firing the laminated body on which the insulating paste is printed.
JP2002336119A 2002-11-20 2002-11-20 Manufacturing method of ceramic laminated substrate Expired - Lifetime JP4134693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336119A JP4134693B2 (en) 2002-11-20 2002-11-20 Manufacturing method of ceramic laminated substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336119A JP4134693B2 (en) 2002-11-20 2002-11-20 Manufacturing method of ceramic laminated substrate

Publications (2)

Publication Number Publication Date
JP2004172342A true JP2004172342A (en) 2004-06-17
JP4134693B2 JP4134693B2 (en) 2008-08-20

Family

ID=32700048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336119A Expired - Lifetime JP4134693B2 (en) 2002-11-20 2002-11-20 Manufacturing method of ceramic laminated substrate

Country Status (1)

Country Link
JP (1) JP4134693B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049205A (en) * 2007-08-20 2009-03-05 Murata Mfg Co Ltd Ceramic multilayered substrate, and its manufacturing method
US8466368B2 (en) 2010-11-19 2013-06-18 Kabushiki Kaisha Toshiba High-frequency device
JP2013197440A (en) * 2012-03-22 2013-09-30 Ngk Insulators Ltd Multilayer sintered ceramic printed wiring board, and semiconductor package including the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009049205A (en) * 2007-08-20 2009-03-05 Murata Mfg Co Ltd Ceramic multilayered substrate, and its manufacturing method
US8466368B2 (en) 2010-11-19 2013-06-18 Kabushiki Kaisha Toshiba High-frequency device
JP2013197440A (en) * 2012-03-22 2013-09-30 Ngk Insulators Ltd Multilayer sintered ceramic printed wiring board, and semiconductor package including the same

Also Published As

Publication number Publication date
JP4134693B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
US6938332B2 (en) Method for manufacturing multilayer ceramic substrates
KR100862537B1 (en) Method for manufacturing ceramic substrate and non-fired ceramic substrate
JP3407716B2 (en) Composite laminated electronic components
KR100383378B1 (en) Monolithic ceramic substrate, manufacturing and designing methods therefor, and electronic device
JP4809264B2 (en) Coil built-in board
WO2010110201A1 (en) Dielectric ceramic composition, multilayer dielectric substrate, electronic component, and method for producing dielectric ceramic composition
KR20060112591A (en) Multi-layer ceramic substrate, method for manufacturing the same and electronic device using the same
JP4277275B2 (en) Ceramic multilayer substrate and high frequency electronic components
JP2006140537A (en) Wiring substrate and method of producing the same
JP4809262B2 (en) Coil built-in board
US6776862B2 (en) Multilayered ceramic board, method for fabricating the same, and electronic device using multilayered ceramic board
JP4565383B2 (en) Multilayer ceramic substrate with cavity and method for manufacturing the same
JP4134693B2 (en) Manufacturing method of ceramic laminated substrate
JP2006108483A (en) Multilayered ceramic board having cavity and its manufacturing method
JP4114148B2 (en) Ceramic multilayer substrate and high frequency electronic components
JP4077625B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP3793557B2 (en) Glass ceramic sintered body and multilayer wiring board using the same
KR100663177B1 (en) Method for macturing ltcc with the antener
JP2004247699A (en) Wiring board
KR102642710B1 (en) Multilayer ceramic substrate, and method for manufacturing the same
JPH0795630B2 (en) Composite monolithic ceramic parts
JP2002368421A (en) Multilayer ceramic board and method for manufacturing the same
JPH10158032A (en) Glass-ceramic sintered body and multilayer wiring substrate using the same
KR100899647B1 (en) Ceramic substrate and method for manufacturing the same
JP4129384B2 (en) Dielectric porcelain and multilayer wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

R150 Certificate of patent or registration of utility model

Ref document number: 4134693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

EXPY Cancellation because of completion of term