JP2004170634A - Heat-shrinkabile cylindrical film - Google Patents

Heat-shrinkabile cylindrical film Download PDF

Info

Publication number
JP2004170634A
JP2004170634A JP2002335447A JP2002335447A JP2004170634A JP 2004170634 A JP2004170634 A JP 2004170634A JP 2002335447 A JP2002335447 A JP 2002335447A JP 2002335447 A JP2002335447 A JP 2002335447A JP 2004170634 A JP2004170634 A JP 2004170634A
Authority
JP
Japan
Prior art keywords
film
heat
shrinkable
perforations
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002335447A
Other languages
Japanese (ja)
Other versions
JP4298268B2 (en
Inventor
Yasuo Ose
泰生 大瀬
Naoko Habu
直子 土生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Seal Inc
Original Assignee
Fuji Seal Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Seal Inc filed Critical Fuji Seal Inc
Priority to JP2002335447A priority Critical patent/JP4298268B2/en
Publication of JP2004170634A publication Critical patent/JP2004170634A/en
Application granted granted Critical
Publication of JP4298268B2 publication Critical patent/JP4298268B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Landscapes

  • Wrappers (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Packages (AREA)
  • Closures For Containers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat-shrinkable cylindrical film which less influences environments and whose perforation part can be prevented from being torn owing to vibration, a shock, etc. <P>SOLUTION: The heat-shrinkable cylindrical film has perforations 5 and is formed of a bioerodible heat-shrinkable film and individual holes forming the perforations 5 are round even before heat shrinkage. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、瓶、缶、ペットボトル等の各種の容器に被せられて熱処理により装着される熱収縮性筒状フィルムに関する。
【0002】
【従来の技術】
一般にペットボトル(ポリエチレンテレフタレート製ボトル)等の容器には各種の熱収縮性筒状フィルムが装着される。例えば、ペットボトルの胴部に装着されるシュリンクラベルや、容器の口部を封緘するためのキャップシール等がある。これらの熱収縮性筒状フィルムには破断用のミシン目を設けることが必要となる。即ち、シュリンクラベルには、リサイクルに際しペットボトルから分離するためのものとして、キャップシールには開封用として、それぞれミシン目が設けられている。
【0003】
これらのミシン目は、例えば刃先が連続した凹凸形状であるトムソン刃等のミシン目形成刃をフィルムに押し付けることにより形成される。そして、該形成刃の刃先の凸部により形成されるミシン目の個々の孔は、ミシン目の形成方向に沿って所定長さを有するようなスリット状に形成される。上述のようにミシン目は通常筒状フィルムの軸線方向に沿って設けられるため、そのスリット状の孔も筒状フィルムの軸線方向に伸びたものとなる。
【0004】
一方、これらの筒状フィルムは、主として周方向に熱収縮するように、横方向一軸延伸のポリエステルフィルム等から構成されている。しかしながら、この種の筒状フィルムは、使用後すぐに廃棄等されるものであるため、環境問題から従来のポリエステルフィルムに代えて生分解性の熱収縮性フィルムを使用することが望まれている。
【0005】
【発明が解決しようとする課題】
ところが、生分解性の熱収縮性フィルムにミシン目を設けて熱収縮させると、そのミシン目の部分でフィルムが破れやすくなるという問題が生じた。生分解性の熱収縮性フィルムは通常の熱収縮性ポリエステルフィルムに比して脆く、特に縦方向にも裂けやすいという特性があってその脆さが熱収縮により強調されたところに、ミシン目のスリット状の孔に対して直交する方向(周方向)に熱収縮による引張力が作用し、該引張力によってスリット状の孔が押し広げられてスリット状の孔の両端部においてフィルムに応力集中が発生する。その結果、特に落下時や運搬時の振動、衝撃によってミシン目部分に亀裂が生じやすくなったと考えられるのである。
【0006】
本発明は、このような生分解性の熱収縮性フィルムをミシン目付きの筒状フィルムに適用した際に生じる問題点に本発明者がいち早く着眼したことにより完成されたものであって、その課題とするところは、環境への影響が少なく、且つ、振動、衝撃によるミシン目部分の破れを防止できる熱収縮性筒状フィルムを提供することにある。
【0007】
【課題を解決するための手段】
本発明は、上記課題を解決すべくなされたものであり、本発明に係る熱収縮性筒状フィルムは、ミシン目を有する熱収縮性筒状フィルムであって、生分解性の熱収縮性フィルムから構成され、ミシン目を構成する個々の孔が熱収縮前において丸形であることを特徴とする。
尚、丸形には、真円のみならず楕円形や長円形も含まれる。
【0008】
該構成の熱収縮性筒状フィルムにあっては、生分解性の熱収縮性フィルムから構成されているため、従来のポリエステルフィルムとは異なり廃棄された後、月日の経過によって微生物によって分解されるため環境への影響が少ないものである。また、生分解性の熱収縮性フィルムは従来のポリエチレンテレフタレート等のポリエステルフィルムに比して硬く脆いものであるが、ミシン目の孔が熱収縮前において丸形であるため、熱収縮によって周方向への引張力が作用しても、従来のようなスリット状の孔に比して、孔の周囲には応力集中が起こりにくく、従って、振動や衝撃によってフィルムに亀裂が生じることが防止される。
尚、ミシン目の孔の形状は、熱収縮によって変形するため、熱収縮前に例えば略真円であったものが熱収縮後においては楕円形等の偏平状となることが一般的である。但し、熱収縮前後における変形度合いは収縮量によって異なる。従って、フィルムの部分によって変形度合いも異なり、収縮量が小さいところでは熱収縮前の形状を略保持する場合もある。
【0009】
【発明の実施の形態】
以下、本発明の熱収縮性筒状フィルムの一実施形態について図面を参酌しつつ説明する。
図1には、本実施形態における熱収縮性筒状フィルムとして、容器(ボトル)の口部に装着されるキャップシール1の一例が示されている。該キャップシール1は、横一軸延伸フィルムをその横方向が周方向となるようにして筒状に形成されたものである。尚、横一軸延伸フィルムとは、実質上横一軸に延伸されたものであればよく、若干縦方向に延伸されているものでもよい。キャップシール1は、その上端部2が内側に折曲されると共に、下方に向けて径が広がったテーパー状に予備成形されたものである。但し、予備成形せずに、偏平に折り畳んだ筒状(チューブ状)のものを直接容器に装着してもよい。
【0010】
また、キャップシール1の下端部3の所定位置には、下方に向けて摘み部4が突設されている。そして、摘み部4の付け根部分から2条のミシン目5がキャップシール1の軸線方向全長に亘って略平行に形成されている。
【0011】
かかるキャップシール1は、容器10の口部11に被嵌された後に熱収縮されて、図2に示すように口部11の形状に沿って容器10に密着状態で装着される。容器10の口部11には栓体12が設けられているが、この栓体12の外周部をキャップシール1の上端部2が上方から覆って栓体12の口部11からの抜けを防止する。
そして、図3に示す如く摘み部4を上方に引っ張ることによって容易に開封できる。即ち、2条のミシン目5間のフィルムが他の部分からテープ状に切離され、よって容易に筒状のキャップシール1を縦方向に破断させて開封することができる。
【0012】
ここで、キャップシール1を構成するフィルムには、生分解性の熱収縮性フィルムが使用されている。生分解性の熱収縮性フィルムとしては、例えば、ポリ乳酸を用いたものが使用される。このポリ乳酸は、土中・水中で自然に加水分解され、微生物により分解される。詳細には、ポリ乳酸系重合体を主成分とする横一軸延伸フィルムである。乳酸には、2種類の光学異性体のL−乳酸とD−乳酸がある。従って、ポリ乳酸系重合体は、乳酸の構造単位がL−乳酸であるポリ(L−乳酸)、構造単位がD−乳酸であるポリ(D−乳酸)、構造単位がL−乳酸及びD−乳酸であるポリ(DL−乳酸)や、これらの混合体を主成分としたものである。D−乳酸とL−乳酸の構成比は、重量比で100:0〜85:15の範囲内、又は、0:100〜15:85の範囲内にあることが好ましい。ここで構成比は、D−乳酸とL−乳酸が混合されている場合には、それぞれの重量比を、DL−乳酸の場合は共重合体中のD−乳酸成分とL−乳酸成分の重量比を、これらが混合されている場合には、D−乳酸の合計重量とL−乳酸の合計重量の比をいう。
【0013】
更に、ヒドロキシカルボン酸や脂肪族ジオール、脂肪族ジカルボン酸との共重合体であってもよい。
ヒドロキシカルボン酸としては、乳酸の光学異性体(L−乳酸に対してはD−乳酸、D−乳酸に対してはL−乳酸)、グリコール酸、3−ヒドロキシ酪酸、4−ヒドロキシ酪酸、2−ヒドロキシ−n−酪酸、2−ヒドロキシ−3,3−ジメチル酪酸、2−ヒドロキシ−3−メチル酪酸、2−メチル乳酸、2−ヒドロキシカプロン酸等の2官能脂肪族ヒドロキシカルボン酸や、カプロラクトン、ブチロラクトン、バレロラクトン等のラクトン類がある。
脂肪族ジオールとしては、エチレングリコール、1,4−ブタンジオール,1,4−シクロヘキサンジメタノール等がある。
脂肪族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等がある。
ただし、これらとの共重合体とする場合には、ポリ乳酸系重合体を50重量%以上含むようにしてポリ乳酸の性質を損なわないようにする。
【0014】
また、少量の共重合成分としてテレフタル酸のような非脂肪族ジカルボン酸やビスフェノールAのエチレンオキサイド付加物のような非脂肪族ジオール等を使用して耐熱性を向上させたり、ジイソシアネート化合物、エポキシ化合物、酸無水物等の鎖延長剤を少量使用して分子量を増大させたりしてもよく、また、熱安定剤、光吸収剤、滑り剤、可塑剤、無機充填剤、着色剤、顔料等を添加してもよい。尚、重量平均分子量は5万〜40万の範囲が好ましい。
【0015】
尚、延伸条件とポリ乳酸の結晶性を適宜選択することによって、フィルムの収縮開始温度を50〜63℃の範囲に設定し、65℃の温水に10秒間浸漬した際の横方向の収縮率が10%以上となるように設定することができる。このように設定した場合には、収縮開始温度が低く自然収縮率の小さいフィルムとなる。また、好ましい熱収縮率は、90℃の温水10秒間浸漬時に60〜70%程度である。
【0016】
このように、キャップシール1を生分解性の熱収縮性フィルムから構成しているため、従来のようなポリエステルフィルム等に比して環境への影響が小さい。特に、この種のキャップシール1は、開封によって容器10から分離されて直ちに廃棄されるものであるため、環境への影響が小さい生分解性の熱収縮性フィルムを使用することの効果が大きい。
【0017】
その一方、生分解性の熱収縮性フィルムの場合には硬く脆いものであって、熱収縮によって更に硬さ脆さが増大する。そのために、ミシン目5を構成する個々の孔5aの形状を工夫している。即ち、従来のようにスリット状とするのではなく、図1、図3及び図4のように丸形としている。かかるミシン目5の孔5aは貫通孔であるが、完全に貫通していない場合であってもよい。
【0018】
また、ミシン目5の孔5aの大きさは、例えば0.05〜2mmであり、ピッチ(隣り合う孔5aと孔5aの間隔)は0.1〜5mmである。一例を挙げれば、フィルムの厚みが50μmである場合、ミシン目5の孔5aは、直径0.4mm、ピッチは1mmである。
【0019】
このようなミシン目5をフィルムに形成する方法としては、主として、レーザーを使用するものと、断面が丸形の針を使用するものとがある。
まず、前者のレーザーを使用する場合であるが、炭酸ガスレーザービームやアルゴンレーザービームやYAGレーザービーム等のレーザービーム照射装置を用いてフィルムにレーザービームを照射する。例えば、筒状に形成するためのセンターシール工程等において、連続移送中の長尺フィルムにレーザービームを照射する。フィルムにビームを照射すると、照射された微小領域は瞬時に溶融し蒸発等する。また、フィルムの延伸方向に対して交叉(直交)する向き(縦方向)に沿ってビームをON−OFFさせながら走査するとビームが断続的に照射され、丸形の孔5aが一定間隔毎に形成されると共に、その孔5aの周囲には、厚み方向に盛り上がった厚肉部5b(図4に二点鎖線にて示す)が形成される。尚、ビーム出力、ビーム焦点の深浅、ビームの走査速度、ビームのON−OFF周期等のビームの照射条件を制御することにより、孔5aの直径やピッチ、あるいは厚肉部5bの形状、厚み等を設定することができる。このようにビーム照射の場合には、ミシン目5形成時にフィルムにミクロのクラックが生じないため好ましい。また、孔5aの周囲に厚肉部5bが形成されるため、その孔5aの周囲を起点としたクラックが特に生じにくい。
【0020】
一方、後者の針を使用する場合、例えば、その針を外周部に多数突設した円盤が使用される。移送されるフィルムに回転する円盤を押し付けることにより、外周部の針でフィルムに一定間隔毎に丸形の孔5aを連続的に形成していくことができる。このように、断面が丸形の針を用いてミシン目5を形成する場合には装置が簡易であるため、製造コストも抑制することができる利点がある。尚、針を使用してミシン目5を形成する場合、形成されるミシン目5の孔5aの周囲には、レーザーの場合のような厚肉部5bは形成されない。
また、孔5aの形状も針を抜いた後、孔5aを閉じる方向に変形するため、楕円形や長円形となる。尚、孔5aの径が1〜2mm程度の場合は、針に代えて、円形の抜き刃等で孔5aを形成することもできる。この場合は、略真円に近い孔5aの形成が可能である。
【0021】
何れにしても、ミシン目5を構成する個々の孔5aを従来のようにスリット状とはせずに丸形としているため、硬く脆い生分解性の熱収縮性フィルムを使用していても、孔5aの周囲に亀裂が生じにくくなる。従って、熱収縮後において、容器10を運搬したり落下したりした場合にその容器10に振動や衝撃を受けても、ミシン目5部分のフィルムの破れが防止されるのである。
しかも、手で破断する際には、生分解性フィルムの脆さ(特に横一軸延伸でありながら縦方向にも裂ける性質を有する)によって、前記のように形成された縦方向のミシン目5であってもスムーズに破断することができる。特に、レーザービーム照射により形成された周囲に厚肉部5bが形成された孔5aであっても、破断できるため好ましい。
【0022】
尚、以上では、キャップシール1を例にして説明したが、シュリンクラベルの場合も同様である。
【0023】
また、ミシン目5は2条には限定されず、1条のもの等であってもよい。更に、ミシン目5は筒状フィルムの軸線方向に沿ったものの他にも、周方向に形成されたものや、斜め方向に形成されたものであってもよい。
【0024】
【発明の効果】
以上のように、本発明に係る熱収縮性筒状フィルムにあっては、生分解性の熱収縮性フィルムを使用することで環境への影響を小さくでき、ミシン目を構成する個々の孔を丸形としたので、比較的脆い生分解性の熱収縮性フィルムであっても、振動や衝撃等によってミシン目部分が破れることを防止できる。
更に、横一軸延伸フィルムであっても、縦方向の引き裂き性を有するフィルムであるため、丸形の孔からなるミシン目をスムーズに破断できる。
【図面の簡単な説明】
【図1】本発明の一実施形態の熱収縮性筒状フィルムを適用したキャップシールを示す斜視図。
【図2】同キャップシールを容器に装着した状態を示す断面図。
【図3】同容器からキャップシールを開封する際の状態を示す斜視図。
【図4】同キャップシールのミシン目部分の拡大図。
【符号の説明】
1…キャップシール(熱収縮性筒状フィルム)、2…上端部、3…下端部、4…摘み部、5…ミシン目、5a…孔、5b…厚肉部、10…容器、11…口部、12…栓体
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a heat-shrinkable tubular film that is put on various containers such as bottles, cans, and PET bottles and is attached by heat treatment.
[0002]
[Prior art]
Generally, various heat-shrinkable tubular films are attached to containers such as PET bottles (bottles made of polyethylene terephthalate). For example, there are a shrink label attached to the body of a plastic bottle, a cap seal for sealing the mouth of the container, and the like. In these heat-shrinkable tubular films, it is necessary to provide perforations for breaking. That is, the shrink label is provided with perforations for separating it from the plastic bottle during recycling, and the cap seal is provided with perforations for opening.
[0003]
These perforations are formed, for example, by pressing a perforation forming blade such as a Thomson blade having a continuous concave and convex shape against the film. Each of the perforations formed by the protrusions of the cutting edge of the forming blade is formed in a slit shape having a predetermined length along the perforation forming direction. As described above, since the perforations are usually provided along the axial direction of the tubular film, the slit-shaped holes also extend in the axial direction of the tubular film.
[0004]
On the other hand, these tubular films are made of a uniaxially stretched polyester film or the like so as to be mainly thermally contracted in the circumferential direction. However, since this kind of tubular film is discarded immediately after use, it is desired to use a biodegradable heat-shrinkable film instead of the conventional polyester film from an environmental problem. .
[0005]
[Problems to be solved by the invention]
However, when a biodegradable heat-shrinkable film is provided with perforations and heat-shrinked, there is a problem that the film is easily broken at the perforations. The biodegradable heat-shrinkable film is brittle as compared to a normal heat-shrinkable polyester film, and has a property of being easily torn in the longitudinal direction. A tensile force due to heat shrinkage acts in a direction (circumferential direction) orthogonal to the slit-shaped hole, and the slit-shaped hole is pushed and expanded by the tensile force, so that stress concentration occurs on the film at both ends of the slit-shaped hole. appear. As a result, it is considered that cracks tend to occur at the perforations due to vibrations and impacts, particularly when dropped or transported.
[0006]
The present invention has been completed by the inventor of the present invention as early as possible to address the problems that occur when such a biodegradable heat-shrinkable film is applied to a perforated tubular film. An object of the present invention is to provide a heat-shrinkable tubular film which has little effect on the environment and can prevent tearing of a perforated portion due to vibration and impact.
[0007]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and the heat-shrinkable tubular film according to the present invention is a heat-shrinkable tubular film having perforations, and a biodegradable heat-shrinkable film , And the individual holes constituting the perforations are round before heat shrinkage.
Note that the round shape includes not only a perfect circle but also an elliptical shape and an oblong shape.
[0008]
In the heat-shrinkable tubular film having the above structure, since it is constituted by a biodegradable heat-shrinkable film, unlike a conventional polyester film, after being discarded, it is decomposed by microorganisms over time. Therefore, the impact on the environment is small. In addition, the biodegradable heat-shrinkable film is hard and brittle as compared with a conventional polyester film such as polyethylene terephthalate. Even when a tensile force acts on the film, stress concentration is less likely to occur around the hole compared to a conventional slit-shaped hole, and therefore, cracking of the film due to vibration or impact is prevented. .
In addition, since the shape of the perforated hole is deformed by heat shrinkage, for example, a substantially circular shape before heat shrinkage generally becomes a flat shape such as an oval shape after heat shrinkage. However, the degree of deformation before and after thermal contraction differs depending on the amount of contraction. Therefore, the degree of deformation varies depending on the film portion, and the shape before heat shrinkage may be substantially maintained in a place where the amount of shrinkage is small.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the heat-shrinkable tubular film of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of a cap seal 1 attached to the mouth of a container (bottle) as a heat-shrinkable tubular film in the present embodiment. The cap seal 1 is formed by forming a horizontal uniaxially stretched film into a cylindrical shape so that the lateral direction is the circumferential direction. The horizontal uniaxially stretched film may be any film that is substantially uniaxially stretched, and may be slightly stretched in the vertical direction. The cap seal 1 is preformed in a tapered shape in which the upper end 2 is bent inward and the diameter increases downward. However, a flat (tube-shaped) one folded flat may be directly mounted on the container without being preformed.
[0010]
At a predetermined position on the lower end 3 of the cap seal 1, a knob 4 is provided so as to project downward. Further, two perforations 5 are formed substantially parallel to the entire length of the cap seal 1 in the axial direction from the base of the knob portion 4.
[0011]
The cap seal 1 is heat-shrinked after being fitted to the opening 11 of the container 10, and is tightly attached to the container 10 along the shape of the opening 11 as shown in FIG. 2. A stopper 12 is provided at the mouth 11 of the container 10, and the outer periphery of the stopper 12 is covered by the upper end 2 of the cap seal 1 from above to prevent the stopper 12 from falling out of the mouth 11. I do.
Then, as shown in FIG. 3, the knob 4 can be easily opened by pulling the knob 4 upward. That is, the film between the two perforations 5 is cut off from the other portion in a tape shape, so that the tubular cap seal 1 can be easily broken in the longitudinal direction and opened.
[0012]
Here, a biodegradable heat-shrinkable film is used as a film constituting the cap seal 1. As the biodegradable heat-shrinkable film, for example, a film using polylactic acid is used. This polylactic acid is naturally hydrolyzed in soil and water and decomposed by microorganisms. In detail, it is a transverse uniaxially stretched film containing a polylactic acid-based polymer as a main component. Lactic acid includes two kinds of optical isomers, L-lactic acid and D-lactic acid. Therefore, the polylactic acid-based polymer includes poly (L-lactic acid) whose structural unit is L-lactic acid, poly (D-lactic acid) whose structural unit is D-lactic acid, and L-lactic acid and D-lactic acid whose structural units are L-lactic acid. Poly (DL-lactic acid), which is lactic acid, or a mixture thereof is used as a main component. The composition ratio of D-lactic acid and L-lactic acid is preferably in the range of 100: 0 to 85:15 by weight, or in the range of 0: 100 to 15:85. Here, the composition ratio is, when D-lactic acid and L-lactic acid are mixed, the weight ratio of each, and in the case of DL-lactic acid, the weight of the D-lactic acid component and the L-lactic acid component in the copolymer. The ratio refers to the ratio of the total weight of D-lactic acid to the total weight of L-lactic acid when they are mixed.
[0013]
Further, a copolymer with a hydroxycarboxylic acid, an aliphatic diol, or an aliphatic dicarboxylic acid may be used.
Examples of hydroxycarboxylic acids include optical isomers of lactic acid (D-lactic acid for L-lactic acid, L-lactic acid for D-lactic acid), glycolic acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, Bifunctional aliphatic hydroxycarboxylic acids such as hydroxy-n-butyric acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-methyllactic acid, 2-hydroxycaproic acid, caprolactone, and butyrolactone And lactones such as valerolactone.
Examples of the aliphatic diol include ethylene glycol, 1,4-butanediol, and 1,4-cyclohexanedimethanol.
Examples of the aliphatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecandioic acid and the like.
However, when a copolymer with these is used, the polylactic acid-based polymer is contained in an amount of 50% by weight or more so as not to impair the properties of the polylactic acid.
[0014]
In addition, as a small amount of a copolymer component, a non-aliphatic dicarboxylic acid such as terephthalic acid or a non-aliphatic diol such as an ethylene oxide adduct of bisphenol A is used to improve heat resistance, or a diisocyanate compound or an epoxy compound. , A molecular weight may be increased by using a small amount of a chain extender such as an acid anhydride, and a heat stabilizer, a light absorber, a slipping agent, a plasticizer, an inorganic filler, a colorant, a pigment, etc. It may be added. The weight average molecular weight is preferably in the range of 50,000 to 400,000.
[0015]
Incidentally, by appropriately selecting the stretching conditions and the crystallinity of polylactic acid, the shrinkage starting temperature of the film is set in the range of 50 to 63 ° C., and the shrinkage in the transverse direction when immersed in hot water of 65 ° C. for 10 seconds is reduced. It can be set to be 10% or more. When set in this manner, a film having a low shrinkage start temperature and a small natural shrinkage ratio is obtained. The preferable heat shrinkage is about 60 to 70% when immersed in 90 ° C. hot water for 10 seconds.
[0016]
Since the cap seal 1 is made of a biodegradable heat-shrinkable film, the influence on the environment is smaller than that of a conventional polyester film or the like. In particular, since this type of cap seal 1 is separated from the container 10 by opening and immediately discarded, the effect of using a biodegradable heat-shrinkable film having a small effect on the environment is great.
[0017]
On the other hand, in the case of a biodegradable heat-shrinkable film, the film is hard and brittle, and the heat shrinkage further increases the hardness and brittleness. For this purpose, the shape of each hole 5a constituting the perforation 5 is devised. That is, instead of the slit shape as in the related art, the shape is a round shape as shown in FIGS. 1, 3 and 4. The hole 5a of the perforation 5 is a through hole, but may not be completely penetrated.
[0018]
The size of the hole 5a of the perforation 5 is, for example, 0.05 to 2 mm, and the pitch (the interval between the adjacent holes 5a) is 0.1 to 5 mm. For example, when the thickness of the film is 50 μm, the hole 5a of the perforation 5 has a diameter of 0.4 mm and a pitch of 1 mm.
[0019]
As a method for forming such perforations 5 in a film, there are mainly a method using a laser and a method using a needle having a round cross section.
First, in the case where the former laser is used, the film is irradiated with a laser beam using a laser beam irradiation device such as a carbon dioxide laser beam, an argon laser beam, or a YAG laser beam. For example, in a center sealing step or the like for forming a cylinder, a long film being continuously transferred is irradiated with a laser beam. When the film is irradiated with a beam, the irradiated minute area instantaneously melts and evaporates. When the beam is scanned while being turned on and off along a direction (longitudinal direction) crossing (orthogonal to) the stretching direction of the film, the beam is intermittently irradiated, and round holes 5a are formed at regular intervals. At the same time, a thick portion 5b (shown by a two-dot chain line in FIG. 4) that rises in the thickness direction is formed around the hole 5a. By controlling the beam irradiation conditions such as the beam output, the depth of the beam focus, the beam scanning speed, and the ON / OFF cycle of the beam, the diameter and pitch of the hole 5a, the shape and thickness of the thick portion 5b, etc. Can be set. In the case of beam irradiation as described above, micro-cracks do not occur in the film when the perforations 5 are formed, and therefore, it is preferable. Further, since the thick portion 5b is formed around the hole 5a, cracks starting from the periphery of the hole 5a are particularly unlikely to occur.
[0020]
On the other hand, when the latter needle is used, for example, a disk having a large number of the needles protruding from the outer peripheral portion is used. By pressing the rotating disk against the film to be conveyed, it is possible to continuously form the circular holes 5a at regular intervals in the film with the needle at the outer periphery. As described above, when the perforation 5 is formed using a needle having a round cross section, the apparatus is simple, and therefore, there is an advantage that the manufacturing cost can be suppressed. When the perforation 5 is formed using a needle, the thick portion 5b is not formed around the hole 5a of the perforation 5 to be formed as in the case of laser.
In addition, the shape of the hole 5a becomes elliptical or oblong because the hole 5a is deformed in a direction to close the hole 5a after the needle is removed. When the diameter of the hole 5a is about 1 to 2 mm, the hole 5a can be formed by a circular punching blade or the like instead of the needle. In this case, it is possible to form the hole 5a which is almost a perfect circle.
[0021]
In any case, since the individual holes 5a constituting the perforations 5 are formed in a round shape instead of a slit shape as in the related art, even if a hard and brittle biodegradable heat-shrinkable film is used, Cracks hardly occur around the hole 5a. Therefore, even if the container 10 is transported or dropped after the heat shrinkage, even if the container 10 is subjected to vibration or impact, the film at the perforation 5 can be prevented from breaking.
Moreover, when the biodegradable film is broken by hand, the biodegradable film is fragile (especially, it has a property of tearing in the longitudinal direction while being uniaxially stretched in the transverse direction). Even if there is, it can be broken smoothly. In particular, even a hole 5a having a thick portion 5b formed around it by laser beam irradiation is preferable because it can be broken.
[0022]
Although the cap seal 1 has been described above as an example, the same applies to a shrink label.
[0023]
The number of perforations 5 is not limited to two, but may be one. Further, the perforation 5 may be formed in the circumferential direction or obliquely, in addition to the one along the axial direction of the tubular film.
[0024]
【The invention's effect】
As described above, in the heat-shrinkable tubular film according to the present invention, the influence on the environment can be reduced by using the biodegradable heat-shrinkable film, and individual holes constituting perforations can be formed. The round shape can prevent the perforated portion from being broken by vibration, impact, or the like, even with a relatively fragile biodegradable heat-shrinkable film.
Furthermore, even if it is a horizontal uniaxially stretched film, since it is a film having a tearing property in the vertical direction, perforations formed of round holes can be smoothly broken.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a cap seal to which a heat-shrinkable tubular film of one embodiment of the present invention is applied.
FIG. 2 is a cross-sectional view showing a state where the cap seal is attached to a container.
FIG. 3 is a perspective view showing a state when the cap seal is opened from the container.
FIG. 4 is an enlarged view of a perforated portion of the cap seal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Cap seal (heat-shrinkable cylindrical film), 2 ... Upper end part, 3 ... Lower end part, 4 ... Knob part, 5 ... Perforation, 5a ... Hole, 5b ... Thick part, 10 ... Container, 11 ... Port Part, 12 ... plug

Claims (1)

ミシン目を有する熱収縮性筒状フィルムであって、生分解性の熱収縮性フィルムから構成され、ミシン目を構成する個々の孔が熱収縮前において丸形であることを特徴とする熱収縮性筒状フィルム。A heat-shrinkable tubular film having perforations, comprising a biodegradable heat-shrinkable film, wherein individual holes constituting the perforations are round before heat-shrinkage. Tubular film.
JP2002335447A 2002-11-19 2002-11-19 Heat shrinkable tubular film Expired - Fee Related JP4298268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002335447A JP4298268B2 (en) 2002-11-19 2002-11-19 Heat shrinkable tubular film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335447A JP4298268B2 (en) 2002-11-19 2002-11-19 Heat shrinkable tubular film

Publications (2)

Publication Number Publication Date
JP2004170634A true JP2004170634A (en) 2004-06-17
JP4298268B2 JP4298268B2 (en) 2009-07-15

Family

ID=32699576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335447A Expired - Fee Related JP4298268B2 (en) 2002-11-19 2002-11-19 Heat shrinkable tubular film

Country Status (1)

Country Link
JP (1) JP4298268B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204113A (en) * 2006-02-01 2007-08-16 Fuji Seal International Inc Heat-shrinkable cylindrical label, and method for processing heat-shrinkable film
JP2008222302A (en) * 2007-03-16 2008-09-25 Marui Hoso Shizai:Kk Opening means for film package
JP2009073133A (en) * 2007-09-24 2009-04-09 Pilot Ink Co Ltd Ink tank interchange type writing utensil
US8104617B2 (en) 2004-07-06 2012-01-31 Kabushiki Kaisha Yakult Honsha Overwrap packed body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8104617B2 (en) 2004-07-06 2012-01-31 Kabushiki Kaisha Yakult Honsha Overwrap packed body
JP2007204113A (en) * 2006-02-01 2007-08-16 Fuji Seal International Inc Heat-shrinkable cylindrical label, and method for processing heat-shrinkable film
JP2008222302A (en) * 2007-03-16 2008-09-25 Marui Hoso Shizai:Kk Opening means for film package
JP2009073133A (en) * 2007-09-24 2009-04-09 Pilot Ink Co Ltd Ink tank interchange type writing utensil

Also Published As

Publication number Publication date
JP4298268B2 (en) 2009-07-15

Similar Documents

Publication Publication Date Title
US7195822B2 (en) Heat-shrinkable film of polylactic acid film
KR100752976B1 (en) Biodegradable wrap film
EP1359184A1 (en) Heat shrinkable polyester film
JP4298268B2 (en) Heat shrinkable tubular film
JP3655619B2 (en) Heat-shrinkable polylactic acid film
JP2003181919A (en) Biodegradable heat-shrinkable film and shrink package using the same
JP2004268372A (en) Heat-shrinkable polylactic acid laminated film
JP2019151415A (en) Heat shrinkable polyester-based tubular label roll, and method for producing the same
JP2004058586A (en) Polylactic acid heat-shrinkable film
US6513656B2 (en) Shrink-wrapped package
JP2006063134A (en) Heat-shrinkable packaging film
JP3662141B2 (en) Polylactic acid-based shrinkable sheet material, and packaging material or shrinkable label material using the same
JP3664969B2 (en) Heat-shrinkable polylactic acid polymer film
JP4971553B2 (en) Heat shrinkable film with tear line and method for forming tear line
JP2002234117A (en) Heat-shrinkable film-like article
JP4947892B2 (en) Heat shrinkable film
JP4418647B2 (en) Cap seal
JP2006058647A (en) Biodegradable shrinkable label, and container with the label
JP4080420B2 (en) Bag
JP2006027113A (en) Lactic acid shrinkable packaging film
JP2005186945A (en) Bag body
JP2006181754A (en) Heat-shrinkable biodegradable film
JP2001192019A (en) Creased sheet and plastic case using the same
JP2004090306A (en) Biodegradable heat-shrinkable polyester film
JP4979936B2 (en) Cap seal with top plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090415

R150 Certificate of patent or registration of utility model

Ref document number: 4298268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120424

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130424

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140424

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees