JP2004169759A - Laminated rubber support device including lead core member - Google Patents

Laminated rubber support device including lead core member Download PDF

Info

Publication number
JP2004169759A
JP2004169759A JP2002333838A JP2002333838A JP2004169759A JP 2004169759 A JP2004169759 A JP 2004169759A JP 2002333838 A JP2002333838 A JP 2002333838A JP 2002333838 A JP2002333838 A JP 2002333838A JP 2004169759 A JP2004169759 A JP 2004169759A
Authority
JP
Japan
Prior art keywords
lead core
core material
laminated rubber
bearing device
device containing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002333838A
Other languages
Japanese (ja)
Inventor
Yasuhiro Miyauchi
康宏 宮内
Junichi Ota
淳一 大田
Kenji Fukui
健二 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP2002333838A priority Critical patent/JP2004169759A/en
Publication of JP2004169759A publication Critical patent/JP2004169759A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To halt progress of breakage from a biting part to significantly improve breaking deformation ability of a whole device and durability, even if a part of a lead core member bites into an adhesive interface by large horizontal deformation force exceeding restraint ability of the lead core member. <P>SOLUTION: A laminated rubber support device 20 is constituted by inserting a cylindrical lead core material 8 into a through hole 7 at a center part of a laminated rubber main body 3. The laminated rubber main body 3 is constituted by alternately laminating a plurality of elastic rubber layers 1 and a thin rigid plates 2, and by bonding thick rigid plates 4 to both ends in a lamination direction. Ring-like steps 9 are formed to the adhesive interface b of the thick rigid plate 4 with the elastic rubber layer 1 and at a peripheral part of the cylindrical lead core member 8 by counter sinking. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば各種建築物の免震構造体あるいは橋梁等の土木構築物の支承体として用いられる鉛芯材入り積層ゴム支承装置に関する。詳しくは、地震等によって加わる振動エネルギーを、弾性ゴム層のせん断変形特性及び鉛の減衰特性を利用して吸収し減衰するように、複数の弾性ゴム層と薄肉剛性板とを交互に積層し、その積層方向の両端に厚肉剛性板を接着配置してなる積層ゴム本体の中央部またはその周辺部に、厚肉剛性板を含めて積層方向に貫通する孔を形成し、この貫通孔に柱状の鉛芯材を挿入して構成される鉛芯材入り積層ゴム支承装置に関するものである。
【0002】
【従来の技術】
この種の鉛芯材入り積層ゴム支承装置においては、地震等によって積層ゴム本体が繰り返して水平変形したとき、この積層ゴム本体を構成する鋼板等の薄肉剛性板が鉛芯材に食い込んで鉛芯材または薄肉剛性板が局部変形したり、鉛芯材が積層ゴム本体の弾性ゴム層に食い込んで弾性ゴム層を損傷したりして、せん断変形特性あるいは減衰特性が損なわれて長期に亘って所期の振動エネルギー吸収・減衰性能を保持することができないという問題がある。
【0003】
かかる問題を解消する手段として、従来、薄肉剛性板間の弾性ゴム層内に柱状鉛芯材の外周辺部を取り囲んで該鉛芯材を拘束するように中間補強プレートをリング状に配置したものが知られている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開2001−355677号公報(図1〜図4)
【0005】
【発明が解決しようとする課題】
上記のような構成の従来の鉛芯材入り積層ゴム支承装置では、せん断変形試験や実設置使用状態での水平変形時に薄肉剛性板が鉛芯材に食い込んだり、鉛芯材が弾性ゴム層に食い込んだりすることをリング状中間補強プレートによって防止して、所期の振動エネルギー吸収・減衰性能の低下を抑制することが可能である。
【0006】
しかしながら、リング状中間補強プレートによる鉛芯材の拘束能力を超えるような大きな水平変形力が加わった場合、図8に明示するように、積層された複数の薄肉剛性板2よりも剛性が大きい積層方向両端の厚肉剛性板4とそれに接する弾性ゴム層1との接着界面bに応力が集中して鉛芯材8の一部分8aが先尖り状態で食い込み、この食い込んだ先尖り鉛部分8aの楔作用によって、その食い込み部が起点となって矢印xで示す装置外側に向けて破断が急速に進行するといった内部破壊が起こりやすく、したがって、装置全体としての破断変形能力が乏しく、強大な水平変形力を繰り返し受ける条件下で設置使用される、この種の装置の耐久性の面で大きな問題が残されていた。
【0007】
本発明は上記実情に鑑みてなされたもので、鉛芯材の拘束能力を超えるような大きな水平変形力が加わって鉛芯材の一部分が接着界面に食い込んだとしても、その食い込み部からの破断の進行を食い止めて全体の破断変形能力、ひいては耐久性の著しい向上を図ることができる鉛芯材入り積層ゴム支承装置を提供することを目的としている。
【0008】
【課題を解決するための手段】
上記目的を達成するために、本発明に係る鉛芯材入り積層ゴム支承装置は、複数の弾性ゴム層と薄肉剛性板とを交互に積層し、その積層方向の両端に厚肉剛性板を接着配置してなる積層ゴム本体の中央部またはその周辺部に、厚肉剛性板を含めて積層方向に貫通する孔が形成され、この貫通孔に柱状の鉛芯材を挿入して構成される鉛芯材入り積層ゴム支承装置であって、上記厚肉剛性板の弾性ゴム層との接着界面で柱状鉛芯材の周辺部に座ぐり加工により環状段差を形成していることを特徴とするものである。
【0009】
上記のごとき構成を有する本発明によれば、せん断変形試験や実設置使用状態で鉛芯材の拘束能力を超えるような大きな水平変形力が加わった時、その水平変形に伴い鉛芯材がせん断塑性変形して最も剛性の高い厚肉剛性板とこれに接する弾性ゴム層との接着界面に鉛芯材の一部分が食い込むことになるが、この際、その食い込み鉛部分が環状段差の内周面で受け止められてそれ以上の食い込みが阻止されるとともに、食い込み鉛部分の楔作用による破断の進行方向が接着界面に対して直交する方向に切り替えられることになる。したがって、食い込みに伴う破断が装置外側に向けて急速に進行するといった内部破壊を抑制して装置全体の破断変形能力の向上が図れ、鉛芯材入り積層ゴム支承装置の耐久性を高めて所期の振動エネルギー吸収・減衰性能を長期に亘って安定よく保持することが可能である。
【0010】
本発明に係る鉛芯材入り積層ゴム支承装置における上記環状段差として、その内径が柱状鉛芯材の外径の1.02倍未満で、かつ、深さが薄肉剛性板の厚みの0.1倍未満の場合は、大変形時に接着界面への食い込み鉛部分を十分に受け止めることができず、また、その内径が柱状鉛芯材の外径の1.2倍を超え、かつ、深さが薄肉剛性板の2.0倍を超える場合は、食い込みに伴って界面に沿って急速に進行する破断力を止めることができない。かかる観点からみて上記環状段差としては、その内径が柱状鉛芯材の外径の1.02〜1.2倍、深さが薄肉剛性板の厚みの0.1〜2.0倍の大きさに設定されていることが好ましい。
【0011】
また、本発明に係る鉛芯材入り積層ゴム支承装置において、請求項3に記載のように、上記柱状鉛芯材の外周面と貫通孔の内周面との間の環状空間部内に、積層ゴム本体のせん断変形時に鉛芯材を拘束する筒形の拘束部材が介在され、この筒形拘束部材の周辺部に上記環状段差が形成された構成とすることが望ましい。この場合は、大きな水平変形力が加わって鉛芯材がせん断塑性変形するとき、その鉛芯材の全外周面が筒形拘束部材で常時拘束されたままであるため、複数の薄肉剛性板が鉛芯材に食い込んだり、鉛芯材が複数の弾性ゴム層に食い込んだりすることを防止できるのはもとより、厚肉剛性板とこれに接する弾性ゴム層との接着界面に鉛芯材の一部分及びその部分を覆う拘束部材の一部分が食い込むことがあってもそれ以上の食い込み及び食い込み部分の楔作用による破断の進行を環状段差で防止でき、これら食い込み防止作用と接着界面での破断の進行防止作用との相乗によって、装置の破断変形能力、ひいては、耐久性を一段と向上することができる。
【0012】
特に、上記の筒形拘束部材が介在されている鉛芯材入り積層ゴム支承装置における筒形拘束部材として、請求項4に記載のように、互いに密に隣接させて螺旋状に巻き付けたスチールコードとこの螺旋状のスチールコードの内外周面に配置され該スチールコードに加硫接着により一体化された内外周ゴム層とから構成されたものを用いることによって、螺旋状スチールコードが有する水平方向への大きな変形能力により履歴復元特性を良好に維持しつつ、破断せん断ひずみ及び破断水平変位を大きく確保することができるとともに、大きな水平変形時における鉛芯材の拘束性を十分に発揮させることができて、振動エネルギー吸収・減衰性能の一層の安定保持性を高めることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施例を図面にもとづいて説明する。
図1は本発明に係る鉛芯材入り積層ゴム支承装置の第1実施例を示す全体縦断面図、図2は図1のX−X線に沿った横断面図であり、この第1実施例の鉛芯材入り積層ゴム支承装置20は、複数の弾性ゴム層1…と薄鋼板からなる複数枚の薄肉剛性板2…及び上下の厚肉剛性板(フランジ)4,4とを上下交互に配置して積層し、かつ、それら積層物(弾性ゴム層1…、薄肉剛性板2…及び厚肉剛性板4,4)の全外周に被覆ゴム1Aを配置し、これらを加硫接着により一体化してなる積層ゴム本体3の上下厚肉剛性板4,4の外面に、上部構造物A及び下部構造物BにアンカーC,C等を介して固定支持可能な取付板5,5がせん断キー6,6により固定接合されて構成されている。
【0014】
上記積層ゴム本体3の中央部には、上下の厚肉剛性板4,4を含めて積層方向に貫通する貫通孔7が形成されており、この貫通孔7内の全域に円柱状の鉛芯材8が挿入されているとともに、この円柱状鉛芯材8の上下両端の外周面が厚肉剛性板4,4の貫通孔7部分の内周面に接着固定されている。
【0015】
上記構成の鉛芯材入り積層ゴム支承装置20において、上記厚肉剛性板4,4のそれらに接する上下端の弾性ゴム層1,1との接着界面bで柱状鉛芯材8の外周辺部には、図3及び図4に明示するように、座ぐり加工によって環状段差9,9が形成されており、この環状段差9,9内には、上下端の弾性ゴム層1,1の一部1a,1aを入り込ませて接着している。また、各環状段差9,9は、その内径d1が柱状鉛芯材8の外径dの1.02〜1.2倍で、かつ、その深さt1が薄肉剛性板2…の厚みtの0.1〜2.0倍の範囲内の大きさに設定されている。なお、図3及び図4は積層方向の一端側のみを示しており、以下の説明ではその一端側についてのみ記述するが、両端共に同様な構成を有し、同様に変形動作するものである。
【0016】
上記のように構成された鉛芯材入り積層ゴム支承装置20は、図1に示すように、上部構造物Aと下部構造物Bの間に介在された状態で設置使用され、この実設置使用状態で、地震の発生等によって下部構造体Bに振動力が入力されると、上部構造体Aが相対的に水平方向に変位し、これに伴って、積層ゴム本体3が弾性せん断変形することで振動エネルギーを吸収して上部構造物Aに伝達するといったような免震作用を発揮する。一方、積層ゴム本体3のせん断変形に伴って鉛芯材8もせん断塑性変形し、その塑性変形によって振動エネルギーが減衰されることになる。
【0017】
このような振動エネルギー吸収・減衰機能を発揮する鉛芯材入り積層ゴム支承装置20において、通常時、つまり、非変形時には、図3に示すように、厚肉剛性板4に形成されている環状段差9内にその厚肉剛性板4に接する弾性ゴム層1の一部1aが入り込んでおり、鉛芯材8は複数の弾性ゴム層1…により拘束されている。そして、製品(鉛芯材入り積層ゴム支承装置20)のせん断変形試験や実設置使用状態で鉛芯材8の拘束能力を超えるような大きな水平変形力が加わり、これに伴い鉛芯材8が大きくせん断塑性変形した時には、図4に示すように、厚肉剛性板4とこれに接する弾性ゴム層1との接着界面bに鉛芯材8の一部分8aが食い込むことになる。
【0018】
この場合、上記接着界面bへの食い込み鉛部分8aは環状段差9の内周面で受け止められてそれ以上の食い込みが防止されるとともに、食い込み鉛部分8aの楔作用による破断の進行方向が図4の矢印yで示すごとく接着界面bに対して直交する方向に切り替えられることになる。したがって、大きな水平変形力に伴って鉛芯材8の一部分8aが接着界面bに食い込んだとしても、それ以上の食い込み及び破断が装置外側に向けて急速に進行することに起因する内部破壊が抑制されることになり、装置全体の破断変形能力の向上により鉛芯材入り積層ゴム支承装置20の耐久性を高めて所期の振動エネルギー吸収・減衰性能を長期に亘って安定よく保持することができる。
【0019】
図5は本発明に係る鉛芯材入り積層ゴム支承装置の第2実施例を示す全体縦断面図である。この第2実施例の鉛芯材入り積層ゴム支承装置20は、積層ゴム本体3の中央部に上下の厚肉剛性板4,4を含めて積層方向に貫通形成した貫通孔7の内周面とこの貫通孔7内の全域に挿入した柱状鉛芯材8の外周面との間の環状空間10内に、積層ゴム本体3が地震等によって水平力を受けてせん断変形する時に鉛芯材8を拘束して該鉛芯材8が弾性ゴム層1…に食い込んだり、薄肉剛性板2…が鉛芯材8に食い込んだりすることを防止するための筒形拘束部材11を介在させ、この筒形拘束部材11の外周辺部に上記第1実施例と同様に、座ぐり加工によって環状段差9,9を形成したものであり、その他の構成は第1実施例と同一であるため、該当部材及び該当部位に同一の符号を付してそれらの説明を省略する。
【0020】
この第2実施例で用いる筒形拘束部材11としては、図7に明示するように、ゴム12でトッピングされた二束の撚線13,13を単位構成幅2Wとするスチールコード14を積層ゴム本体3の内外方向で互いに密接させて二列に配置(二プライ)した上、内外二列のスチールコード14i,14oのそれぞれを、図6に示すように、互いに隙間なく密に隣接させて螺旋状に巻き付け、そのうち内側列の螺旋状スチールコード14iの内周面に、鉛芯材8の外径と等しい内径を有する内周ゴム層15を、かつ、外側列の螺旋状スチールコード14oの外周面に、貫通孔7の内径と等しい外径を有する外周ゴム層16をそれぞれ配置するとともに、これら内周ゴム層15及び外周ゴム層16を螺旋状スチールコード14i,14oのトッピングゴム12に加硫接着することにより、それら内,外ゴム層15,16と螺旋状スチールコード14i,14oとを一体化して作製されている。また、このように作製された筒形拘束部材11は、上記環状空間10内に挿入してその外周ゴム層16を積層ゴム本体3の弾性ゴム層1…に加硫接着している。なお、各螺旋状スチールコード14(14i,14o)の単位構成となる撚線13は、直径が約0.15mm程度の数十本の金属細線13a…を撚ったものである。
【0021】
上記のように構成された第2実施例の鉛芯材入り積層ゴム支承装置20も、上記第1実施例と同様に、上部構造物Aと下部構造物Bの間に介在された状態で設置使用され、積層ゴム本体3の弾性せん断変形による振動エネルギーの吸収機能及び鉛芯材8のせん断塑性変形による振動エネルギーの減衰機能を発揮する。
【0022】
このとき、大きな水平変形力が加わって鉛芯材8がせん断塑性変形した場合もその鉛芯材8の全外周面が筒形拘束部材11で常時拘束されたままであるため、複数の薄肉剛性板2…が鉛芯材8に食い込んだり、鉛芯材8が複数の弾性ゴム層1…に食い込んだりすることを防止できるだけでなく、厚肉剛性板4とこれに接する弾性ゴム層1との接着界面bに鉛芯材8の一部分8a及びその部分8aを覆う筒形拘束部材11の一部分11aが食い込むことがあってもそれ以上の食い込み及び食い込み部分の楔作用による破断の進行も防止できるのであり、それらの相乗によって、装置の破断変形能力、ひいては、耐久性を一段と向上することができる。
【0023】
特に、筒形拘束部材11として、互いに密に隣接させて螺旋状に巻き付けたスチールコード14i,14oとそれら螺旋状スチールコード14i,14oの内外周面にゴム層15,16を加硫接着により一体化したものを使用することによって、螺旋状スチチールコード14が有する水平方向への大きな変形能力により履歴復元特性を良好に維持しつつ、破断せん断ひずみ及び破断水平変位を大きく確保することができるとともに、大きな水平変形時における鉛芯材8の拘束性を十分に発揮させることができ、振動エネルギー吸収・減衰性能を一層安定保持することができる。
【0024】
なお、上記第2実施例では、筒形拘束部材11として、積層ゴム本体3の内外方向で互いに密接させて二列に配置した内外のスチールコード14i,14oをそれぞれ互いに隙間なく密に隣接させて螺旋状に巻き付けてなる二プライ構成のものを用いたが、ゴム12でトッピングされた二束の撚線13,13を単位構成幅2Wとする一列のスチールコード14のみを互いに隙間なく密に隣接させて螺旋状に巻き付け、この螺旋状スチールコード14の内外周面に内,外ゴム層15,16を加硫接着してなる一プライ構成のものであってもよい。
【0025】
また、上記の第1,第2実施例では、柱状の鉛芯材8を挿入するための貫通孔7が積層ゴム本体3の中央部に形成されたもので説明したが、積層ゴム本体3の全体を四角柱形状とし、この積層ゴム本体3の中央部の周辺に円周方向に等間隔で複数の貫通孔7を形成し、これら貫通孔7内にそれぞれ鉛芯材8を挿入するとともに、各鉛芯材8の外周辺部に対応する厚肉剛性板4の複数箇所にそれぞれ環状段差9を形成したものであってもよい。
【0026】
【発明の効果】
以上のように、本発明によれば、積層ゴム本体の積層方向両端に接着配置される厚肉剛性板のこれに接する弾性ゴム層との接着界面で柱状鉛芯材の周辺部に座ぐり加工によって環状段差を形成するといった簡単な構造改良を施すだけで、せん断変形試験や実設置使用状態で鉛芯材の拘束能力を超えるような大きな水平変形力が加わって鉛芯材の一部分が剛性の高い厚肉剛性板とこれに接する弾性ゴム層との接着界面に食い込んだ際、その食い込み鉛部分を環状段差の内周面で受け止めてそれ以上の食い込み並びにその食い込み鉛部分の楔作用による装置外側に向けての急速な破断進行を防止して内部破壊を極力回避することが可能であり、これによって、装置全体の破断変形能力の著しい向上が図れ、鉛芯材入り積層ゴム支承装置全体の耐久性を高めて所期の振動エネルギー吸収・減衰性能を長期に亘って安定よく保持することができるという効果を奏する。
【0027】
特に、請求項3に記載の構成を併用することによって、大きな水平変形時における薄肉剛性板の鉛芯材への食い込み及び鉛芯材の弾性ゴム層への食い込み防止機能と、環状段差による接着界面での破断防止機能との相乗によって、装置全体の破断変形能力、ひいては、耐久性の一段の向上を図ることができる。
【0028】
また、食い込み防止に用いる筒形拘束部材として、請求項4に記載のような構成を採用することによって、螺旋状スチチールコードが有する水平方向への大きな変形能力により履歴復元特性を良好に維持しつつ、破断せん断ひずみ及び破断水平変位を大きく確保することができるとともに、大きな水平変形時における鉛芯材の拘束性を十分に発揮させることができて、振動エネルギー吸収・減衰性能の一層の安定保持性を高めることができる。
【図面の簡単な説明】
【図1】本発明に係る鉛芯材入り積層ゴム支承装置の第1実施例を示す全体縦断面図である。
【図2】図1のX−X線に沿った横断面図である。
【図3】同上第1実施例の鉛芯材入り積層ゴム支承装置の非変形時における要部の拡大縦断面図である。
【図4】同上第1実施例の鉛芯材入り積層ゴム支承装置の水平変形時における要部の拡大縦断面図である。
【図5】本発明に係る鉛芯材入り積層ゴム支承装置の第2実施例を示す全体縦断面図である。
【図6】同上第2実施例の鉛芯材入り積層ゴム支承装置の主要部である筒形拘束部材の拡大縦断面図である。
【図7】同上筒形拘束部材を構成するスチールコード単位体の拡大断面図である。
【図8】従来の鉛芯材入り積層ゴム支承装置の水平変形時における問題点を説明する要部の拡大縦断面図である。
【符号の説明】
1 弾性ゴム層
2 薄肉剛性板
3 積層ゴム本体
4 厚肉剛性板
7 貫通孔
8 円柱状鉛芯材
9 環状段差
10 環状空間
11 筒形拘束部材
11 トッピングゴム
14,14i,14o 螺旋状スチールコード
15 内周ゴム層
16 外周ゴム層
20 鉛芯材入り積層ゴム支承装置
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laminated rubber bearing device containing a lead core material, which is used as a bearing member of civil engineering structures such as seismic isolation structures of various buildings or bridges. Specifically, a plurality of elastic rubber layers and thin rigid plates are alternately laminated so that vibration energy applied by an earthquake or the like is absorbed and attenuated using the shear deformation characteristics of the elastic rubber layers and the damping characteristics of lead, At the center or at the periphery of the laminated rubber body, a thick rigid plate is adhered and arranged at both ends in the laminating direction, a hole is formed in the laminating direction including the thick rigid plate, and a columnar shape is formed in this through hole. The present invention relates to a laminated rubber bearing device containing a lead core material formed by inserting a lead core material.
[0002]
[Prior art]
In this type of laminated rubber bearing device containing a lead core, when the laminated rubber main body is repeatedly and horizontally deformed due to an earthquake or the like, a thin rigid plate such as a steel plate constituting the laminated rubber main body cuts into the lead core material and the lead core is formed. The material or the thin rigid plate is locally deformed, or the lead core material cuts into the elastic rubber layer of the laminated rubber body and damages the elastic rubber layer, resulting in deterioration of the shear deformation characteristics or damping characteristics, resulting in long-term failure. However, there is a problem that the vibration energy absorption / damping performance of the period cannot be maintained.
[0003]
As means for solving such a problem, conventionally, an intermediate reinforcing plate is arranged in a ring shape so as to surround an outer peripheral portion of a columnar lead core material in an elastic rubber layer between thin rigid plates and restrain the lead core material. Is known (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP 2001-355677 A (FIGS. 1 to 4)
[0005]
[Problems to be solved by the invention]
In the conventional lead-core-containing laminated rubber bearing device with the above configuration, the thin rigid plate digs into the lead core during the horizontal deformation in the shear deformation test or actual installation condition, or the lead core becomes the elastic rubber layer. It is possible to prevent digging in by the ring-shaped intermediate reinforcing plate and to suppress the expected decrease in vibration energy absorption / damping performance.
[0006]
However, when a large horizontal deformation force exceeding the binding capacity of the lead core material by the ring-shaped intermediate reinforcing plate is applied, as shown in FIG. 8, as shown in FIG. Stress concentrates on the adhesive interface b between the thick rigid plate 4 at both ends in the direction and the elastic rubber layer 1 in contact therewith, and a portion 8a of the lead core material 8 bites in a pointed state, and the wedge of the biting lead portion 8a is cut. By the action, internal destruction such that the biting portion becomes a starting point and the rupture rapidly progresses toward the outside of the device indicated by the arrow x is likely to occur, and therefore, the rupture deformation capability of the entire device is poor, and a strong horizontal deformation force A major problem remains in terms of the durability of this type of device installed and used under conditions that are repeatedly subjected to the following.
[0007]
The present invention has been made in view of the above circumstances, and even if a part of the lead core material digs into the bonding interface by applying a large horizontal deformation force exceeding the restraining ability of the lead core material, breakage from the bite portion It is an object of the present invention to provide a laminated rubber bearing device containing a lead core material, which can prevent the progress of cracking and can significantly improve the entire breaking deformation capability and, consequently, the durability.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a laminated rubber bearing device containing a lead core material according to the present invention is configured by alternately laminating a plurality of elastic rubber layers and thin rigid plates, and bonding thick rigid plates to both ends in the laminating direction. A hole is formed in the central portion or the peripheral portion of the laminated rubber body that is disposed and penetrates in the laminating direction including the thick rigid plate, and a lead formed by inserting a columnar lead core material into the through hole. A laminated rubber bearing device containing a core material, wherein an annular step is formed in the peripheral portion of the columnar lead core material at a bonding interface with the elastic rubber layer of the thick rigid plate by counterbore processing. It is.
[0009]
According to the present invention having the above-described configuration, when a large horizontal deformation force that exceeds the restraining capacity of the lead core material is applied in a shear deformation test or actual installation use state, the lead core material is sheared due to the horizontal deformation. A part of the lead core material will bite into the adhesive interface between the thickest rigid plate, which is the most rigid due to plastic deformation, and the elastic rubber layer in contact with the thick plate, and the biting lead portion will be the inner peripheral surface of the annular step. And the further biting is prevented, and the direction of progress of the break due to the wedge action of the biting lead portion is switched to a direction orthogonal to the bonding interface. Therefore, it is possible to suppress the internal destruction such that the rupture accompanying the bite proceeds rapidly toward the outside of the device, improve the rupture deformation capacity of the entire device, and improve the durability of the laminated rubber bearing device containing lead core material. It is possible to stably maintain the vibration energy absorption / damping performance of the device over a long period of time.
[0010]
As the annular step in the laminated rubber bearing device containing a lead core material according to the present invention, the inner diameter is less than 1.02 times the outer diameter of the columnar lead core material, and the depth is 0.1% of the thickness of the thin rigid plate. If it is less than twice, it is not possible to sufficiently receive the lead portion digging into the bonding interface during large deformation, and its inner diameter exceeds 1.2 times the outer diameter of the columnar lead core material, and its depth is If the thickness exceeds 2.0 times that of the thin rigid plate, the breaking force that rapidly progresses along the interface with the bite cannot be stopped. From this viewpoint, the annular step has an inner diameter of 1.02 to 1.2 times the outer diameter of the columnar lead core material and a depth of 0.1 to 2.0 times the thickness of the thin rigid plate. Is preferably set to.
[0011]
Further, in the laminated rubber bearing device containing a lead core material according to the present invention, as described in claim 3, the laminated rubber bearing device is provided in an annular space between the outer peripheral surface of the columnar lead core material and the inner peripheral surface of the through hole. It is preferable that a cylindrical restraining member that restrains the lead core material be interposed when the rubber body is sheared and deformed, and the annular step be formed around the cylindrical restraining member. In this case, when a large horizontal deformation force is applied and the lead core material undergoes shear plastic deformation, the entire outer peripheral surface of the lead core material is always restrained by the cylindrical restraining member. In addition to being able to prevent the core material from digging into the core material and the lead core material from digging into the plurality of elastic rubber layers, a part of the lead core material and its Even if a part of the restraining member that covers the part may bite, further digging and the progress of rupture due to the wedge action of the digging part can be prevented by the annular step, and these digging prevention action and the rupture progression preventing action at the adhesive interface By synergistically, the breaking deformation capability of the device and, consequently, the durability can be further improved.
[0012]
In particular, as a cylindrical restraining member in a laminated rubber bearing device containing a lead core material in which the above-described cylindrical restraining member is interposed, a steel cord spirally wound closely adjacent to each other as described in claim 4. And the inner and outer peripheral rubber layers which are arranged on the inner and outer peripheral surfaces of the spiral steel cord and are integrated with the steel cord by vulcanization bonding, thereby allowing the spiral steel cord to have a horizontal direction. While maintaining the hysteresis restoration characteristics satisfactorily due to the large deformation capacity, it is possible to secure large breaking shear strain and breaking horizontal displacement, and to fully exert the restraint of the lead core material during large horizontal deformation. As a result, the stability of vibration energy absorption / damping performance can be further improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is an overall longitudinal sectional view showing a first embodiment of a laminated rubber bearing device containing a lead core material according to the present invention, and FIG. 2 is a transverse sectional view taken along line XX of FIG. In the example of the laminated rubber bearing device 20 containing a lead core, a plurality of elastic rubber layers 1, a plurality of thin rigid plates 2 made of a thin steel plate, and upper and lower thick rigid plates (flanges) 4, 4 are alternately arranged vertically. And the laminated rubber (elastic rubber layers 1, thin rigid plates 2, and thick rigid plates 4, 4) is covered with a coating rubber 1 </ b> A on the entire periphery thereof, and these are vulcanized and adhered. On the outer surfaces of the upper and lower thick rigid plates 4 and 4 of the integrated laminated rubber main body 3, mounting plates 5 and 5 which can be fixedly supported on the upper structure A and the lower structure B via anchors C and C are sheared. The keys 6 and 6 are fixedly joined.
[0014]
A through hole 7 is formed in the center of the laminated rubber body 3 including the upper and lower thick rigid plates 4 and 4 in the laminating direction, and a cylindrical lead core is formed in the entire area of the through hole 7. The material 8 is inserted, and the outer peripheral surfaces of the upper and lower ends of the columnar lead core material 8 are bonded and fixed to the inner peripheral surfaces of the through holes 7 of the thick rigid plates 4, 4.
[0015]
In the laminated rubber bearing device 20 including the lead core material having the above-described configuration, the outer peripheral portion of the columnar lead core material 8 at the adhesive interface b between the thick rigid plates 4 and 4 and the upper and lower elastic rubber layers 1 and 1 in contact with them. As shown in FIGS. 3 and 4, annular steps 9, 9 are formed by counterbore processing. In the annular steps 9, one of the upper and lower elastic rubber layers 1, 1 is formed. The parts 1a, 1a are inserted and bonded. Each of the annular steps 9, 9 has an inner diameter d1 of 1.02 to 1.2 times the outer diameter d of the columnar lead core material 8 and a depth t1 of the thickness t of the thin rigid plate 2. The size is set within a range of 0.1 to 2.0 times. 3 and 4 show only one end side in the stacking direction. In the following description, only the one end side will be described. However, both ends have the same configuration and similarly deform.
[0016]
As shown in FIG. 1, the lead-core-containing laminated rubber bearing device 20 configured as described above is installed and used while being interposed between the upper structure A and the lower structure B. In this state, when a vibration force is input to the lower structure B due to an earthquake or the like, the upper structure A is relatively displaced in the horizontal direction, and accordingly, the laminated rubber body 3 is elastically sheared. Thus, a seismic isolation action such as absorbing vibration energy and transmitting the vibration energy to the upper structure A is exhibited. On the other hand, with the shear deformation of the laminated rubber main body 3, the lead core material 8 also undergoes shear plastic deformation, and vibration energy is attenuated by the plastic deformation.
[0017]
In the case of the laminated rubber bearing device 20 containing a lead core material exhibiting such vibration energy absorbing and damping functions, at normal times, that is, at the time of non-deformation, as shown in FIG. A part 1a of the elastic rubber layer 1 which is in contact with the thick rigid plate 4 enters the step 9, and the lead core 8 is restrained by the plurality of elastic rubber layers 1. Then, a large horizontal deformation force exceeding the restraining ability of the lead core material 8 is applied in the shear deformation test of the product (the laminated rubber bearing device 20 containing the lead core material) or in actual installation and use, and the lead core material 8 When a large shear plastic deformation occurs, as shown in FIG. 4, a portion 8a of the lead core material 8 bites into the bonding interface b between the thick rigid plate 4 and the elastic rubber layer 1 in contact therewith.
[0018]
In this case, the lead portion 8a biting into the bonding interface b is received by the inner peripheral surface of the annular step 9 so that further biting is prevented, and the direction in which the lead portion 8a breaks due to the wedge action is shown in FIG. Is switched in a direction orthogonal to the bonding interface b as shown by the arrow y. Therefore, even if a part 8a of the lead core material 8 bites into the bonding interface b due to a large horizontal deformation force, the internal destruction caused by the further biting and rupture progressing rapidly toward the outside of the device is suppressed. As a result, the durability of the laminated rubber bearing device 20 containing a lead core is enhanced by improving the breaking deformation capability of the entire device, and the expected vibration energy absorption / damping performance can be stably maintained over a long period of time. it can.
[0019]
FIG. 5 is an overall vertical sectional view showing a second embodiment of the laminated rubber bearing device containing a lead core material according to the present invention. In the laminated rubber bearing device 20 containing a lead core material of the second embodiment, the inner peripheral surface of a through hole 7 formed in the center of the laminated rubber body 3 including the upper and lower thick rigid plates 4 and 4 in the laminating direction. When the laminated rubber main body 3 undergoes a horizontal force due to an earthquake or the like and undergoes shear deformation in an annular space 10 between the lead core material 8 and the outer peripheral surface of the columnar lead core material 8 inserted into the entire area of the through hole 7, And a cylindrical restraining member 11 for preventing the lead core material 8 from biting into the elastic rubber layer 1 and the thin rigid plate 2 from biting into the lead core material 8 is interposed. As in the first embodiment, the annular steps 9, 9 are formed in the outer peripheral portion of the shape-restraining member 11 by counterbore processing, and the other configurations are the same as those in the first embodiment. The same reference numerals are given to the corresponding parts and the description thereof is omitted.
[0020]
As shown in FIG. 7, as the cylindrical restraining member 11 used in the second embodiment, a steel cord 14 having two bundles of twisted wires 13, 13 topped with rubber 12 and having a unit configuration width of 2 W is a laminated rubber. After being arranged in two rows (two plies) in close contact with each other in the inner and outer directions of the main body 3, the steel cords 14i and 14o in the two inner and outer rows are spirally arranged closely adjacent to each other as shown in FIG. The inner circumferential rubber layer 15 having an inner diameter equal to the outer diameter of the lead core material 8 is provided on the inner circumferential surface of the spiral steel cords 14i in the inner row, and the outer circumference of the spiral steel cords 14o in the outer row. Outer rubber layers 16 each having an outer diameter equal to the inner diameter of the through-hole 7 are arranged on the surface, and the inner rubber layer 15 and the outer rubber layer 16 are topped by spiral steel cords 14i and 14o. By vulcanization bonded to arm 12, in those, the outer rubber layers 15, 16 and the spiral steel cord 14i, have been produced by integrating the 14o. The cylindrical restraining member 11 thus manufactured is inserted into the annular space 10 and the outer peripheral rubber layer 16 is vulcanized and bonded to the elastic rubber layers 1 of the laminated rubber body 3. The stranded wire 13 as a unit configuration of each spiral steel cord 14 (14i, 14o) is formed by twisting several tens of fine metal wires 13a having a diameter of about 0.15 mm.
[0021]
The laminated rubber bearing device 20 containing a lead core material of the second embodiment configured as described above is also installed in a state interposed between the upper structure A and the lower structure B, similarly to the first embodiment. It is used and exhibits a function of absorbing vibration energy due to elastic shear deformation of the laminated rubber body 3 and a function of attenuating vibration energy due to shear plastic deformation of the lead core material 8.
[0022]
At this time, even when a large horizontal deformation force is applied and the lead core material 8 undergoes shear plastic deformation, the entire outer peripheral surface of the lead core material 8 is always restrained by the cylindrical restraining member 11, so that a plurality of thin rigid plates are provided. Can prevent the lead core material 8 from digging into the lead core material 8 and the lead core material 8 from digging into the plurality of elastic rubber layers 1, as well as the adhesion between the thick rigid plate 4 and the elastic rubber layer 1 in contact therewith. Even if the portion 8a of the lead core material 8 and the portion 11a of the cylindrical restraint member 11 covering the portion 8a bite into the interface b, further biting and breakage of the biting portion due to wedge action can be prevented. The synergistic combination thereof can further improve the breaking deformation capability of the device and, consequently, the durability.
[0023]
In particular, as the cylindrical restraining member 11, the steel cords 14i, 14o spirally wound closely adjacent to each other and the rubber layers 15, 16 integrally formed on the inner and outer peripheral surfaces of the spiral steel cords 14i, 14o by vulcanization bonding. By using the reinforced steel cord, it is possible to secure large breaking shear strain and breaking horizontal displacement while maintaining good hysteresis restoration characteristics by a large deformation capability in the horizontal direction of the spiral steel cord 14. In addition, the restraint of the lead core material 8 at the time of large horizontal deformation can be sufficiently exhibited, and the vibration energy absorption / damping performance can be more stably maintained.
[0024]
In the second embodiment, as the cylindrical restraining member 11, inner and outer steel cords 14i and 14o arranged in two rows in close contact with each other in the inner and outer directions of the laminated rubber body 3 are closely adjacent to each other without any gap. Although a two-ply structure wound spirally was used, only a single line of steel cords 14 having a unit configuration width of two bundles of stranded wires 13 and 13 topped with rubber 12 was closely adjacent to each other without gaps. Then, the helical steel cord 14 may be spirally wound, and the inner and outer rubber layers 15 and 16 may be vulcanized and adhered to the inner and outer peripheral surfaces of the helical steel cord 14 to form a single ply.
[0025]
In the first and second embodiments, the through hole 7 for inserting the columnar lead core material 8 is described as being formed in the central portion of the laminated rubber main body 3. The whole is in the shape of a quadrangular prism, and a plurality of through holes 7 are formed at equal intervals in the circumferential direction around the center of the laminated rubber body 3, and a lead core material 8 is inserted into each of the through holes 7, An annular step 9 may be formed at a plurality of locations on the thick rigid plate 4 corresponding to the outer peripheral portion of each lead core 8.
[0026]
【The invention's effect】
As described above, according to the present invention, the peripheral portion of the columnar lead core material is counterbored at the bonding interface between the thick rigid plate adhered to both ends of the laminated rubber body in the laminating direction and the elastic rubber layer in contact with the thick rigid plate. A simple structural improvement such as the formation of an annular step is applied, and a large horizontal deformation force that exceeds the restraining capacity of the lead core material in a shear deformation test or actual installation condition is applied, and a part of the lead core material becomes rigid. When biting into the adhesive interface between the high-thick rigid plate and the elastic rubber layer in contact with it, the biting lead portion is received by the inner peripheral surface of the annular step and further biting, and the outside of the device due to the wedge action of the biting lead portion It is possible to prevent the internal fracture as much as possible by preventing rapid rupture progression toward, and thereby remarkably improve the rupture deformation capacity of the entire device and the durability of the entire laminated rubber bearing device containing lead core material. Expected vibration energy absorption and damping performance to enhance the over long advantageously possible to stably well maintained.
[0027]
In particular, by using the configuration according to claim 3 together, the function of preventing the thin rigid plate from biting into the lead core material and the lead core material from biting into the elastic rubber layer at the time of large horizontal deformation, and the bonding interface due to the annular step In combination with the rupture prevention function described above, the rupture deformation capability of the entire device, and furthermore, the durability can be further improved.
[0028]
In addition, by adopting a configuration as described in claim 4 as the cylindrical restraining member used for preventing biting, the history restoring characteristic is favorably maintained due to the large horizontal deformation capability of the spiral steel cord. In addition, the breaking shear strain and the breaking horizontal displacement can be secured large, and the restraint of the lead core material at the time of large horizontal deformation can be sufficiently exhibited, and the vibration energy absorption and damping performance can be more stably maintained. Can be enhanced.
[Brief description of the drawings]
FIG. 1 is an overall vertical sectional view showing a first embodiment of a laminated rubber bearing device containing a lead core material according to the present invention.
FIG. 2 is a cross-sectional view taken along line XX of FIG.
FIG. 3 is an enlarged longitudinal sectional view of a main part of the laminated rubber bearing device containing a lead core material of the first embodiment when it is not deformed.
FIG. 4 is an enlarged vertical sectional view of a main part of the laminated rubber bearing device containing a lead core material of the first embodiment during horizontal deformation.
FIG. 5 is an overall vertical sectional view showing a second embodiment of a laminated rubber bearing device containing a lead core material according to the present invention.
FIG. 6 is an enlarged vertical sectional view of a cylindrical restraining member which is a main part of the laminated rubber bearing device containing a lead core material of the second embodiment.
FIG. 7 is an enlarged cross-sectional view of a steel cord unit constituting the above cylindrical restraining member.
FIG. 8 is an enlarged vertical sectional view of a main part for explaining a problem at the time of horizontal deformation of a conventional laminated rubber bearing device containing a lead core material.
[Explanation of symbols]
Reference Signs List 1 elastic rubber layer 2 thin rigid plate 3 laminated rubber main body 4 thick rigid plate 7 through hole 8 cylindrical lead core material 9 annular step 10 annular space 11 cylindrical restraining member 11 topping rubber 14, 14i, 14o spiral steel cord 15 Inner circumference rubber layer 16 Outer circumference rubber layer 20 Laminated rubber bearing device containing lead core material

Claims (4)

複数の弾性ゴム層と薄肉剛性板とを交互に積層し、その積層方向の両端に厚肉剛性板を接着配置してなる積層ゴム本体の中央部またはその周辺部に、厚肉剛性板を含めて積層方向に貫通する孔が形成され、この貫通孔に柱状の鉛芯材を挿入して構成される鉛芯材入り積層ゴム支承装置であって、
上記厚肉剛性板の弾性ゴム層との接着界面で柱状鉛芯材の周辺部に座ぐり加工により環状段差を形成していることを特徴とする鉛芯材入り積層ゴム支承装置。
A plurality of elastic rubber layers and thin rigid plates are alternately laminated, and a thick rigid plate is attached to both ends in the laminating direction. A hole that penetrates in the laminating direction is formed, and a laminated rubber bearing device containing a lead core material formed by inserting a columnar lead core material into the through hole,
A laminated rubber bearing device containing a lead core material, wherein an annular step is formed in the peripheral portion of the columnar lead core material at the bonding interface with the elastic rubber layer of the thick rigid plate by counterbore processing.
上記環状段差は、その内径が柱状鉛芯材の外径の1.02〜1.2倍、深さが薄肉剛性板の厚みの0.1〜2.0倍の大きさに設定されている請求項1に記載の鉛芯材入り積層ゴム支承装置。The annular step has an inner diameter set to 1.02 to 1.2 times the outer diameter of the columnar lead core material and a depth set to a size of 0.1 to 2.0 times the thickness of the thin rigid plate. The laminated rubber bearing device containing a lead core material according to claim 1. 上記柱状鉛芯材の外周面と貫通孔の内周面との間の環状空間部内には、積層ゴム本体のせん断変形時に鉛芯材を拘束する筒形の拘束部材が介在され、この筒形拘束部材の周辺部に上記環状段差が形成されている請求項1または2に記載の鉛芯材入り積層ゴム支承装置。In the annular space between the outer peripheral surface of the columnar lead core material and the inner peripheral surface of the through hole, a cylindrical restraining member for restraining the lead core material during shear deformation of the laminated rubber body is interposed. The laminated rubber bearing device containing a lead core material according to claim 1 or 2, wherein the annular step is formed in a peripheral portion of the restraining member. 上記筒形拘束部材が、互いに密に隣接させて螺旋状に巻き付けたスチールコードとこの螺旋状のスチールコードの内外周面に配置され該スチールコードに加硫接着により一体化された内外周ゴム層とから構成されている請求項3に記載の鉛芯材入り積層ゴム支承装置。The cylindrical restraining member is a steel cord wound spirally closely adjacent to each other, and an inner and outer peripheral rubber layer disposed on inner and outer peripheral surfaces of the spiral steel cord and integrated with the steel cord by vulcanization bonding. The laminated rubber bearing device containing a lead core material according to claim 3, which is constituted by:
JP2002333838A 2002-11-18 2002-11-18 Laminated rubber support device including lead core member Withdrawn JP2004169759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002333838A JP2004169759A (en) 2002-11-18 2002-11-18 Laminated rubber support device including lead core member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002333838A JP2004169759A (en) 2002-11-18 2002-11-18 Laminated rubber support device including lead core member

Publications (1)

Publication Number Publication Date
JP2004169759A true JP2004169759A (en) 2004-06-17

Family

ID=32698436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002333838A Withdrawn JP2004169759A (en) 2002-11-18 2002-11-18 Laminated rubber support device including lead core member

Country Status (1)

Country Link
JP (1) JP2004169759A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241815A (en) * 2005-03-03 2006-09-14 Oriental Construction Co Ltd Sliding bearing with added geometric stiffness, and structure for arranging the bearing
JP2010096290A (en) * 2008-10-17 2010-04-30 Oiles Ind Co Ltd Laminated rubber bearing body
CN104455197A (en) * 2014-12-02 2015-03-25 国家电网公司 Bulb type turbine generator support
CN109339271A (en) * 2018-10-15 2019-02-15 东南大学 Assembled viscoplasticity vibration damping/shake device and its vibration damping/shake method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241815A (en) * 2005-03-03 2006-09-14 Oriental Construction Co Ltd Sliding bearing with added geometric stiffness, and structure for arranging the bearing
JP2010096290A (en) * 2008-10-17 2010-04-30 Oiles Ind Co Ltd Laminated rubber bearing body
CN104455197A (en) * 2014-12-02 2015-03-25 国家电网公司 Bulb type turbine generator support
CN109339271A (en) * 2018-10-15 2019-02-15 东南大学 Assembled viscoplasticity vibration damping/shake device and its vibration damping/shake method

Similar Documents

Publication Publication Date Title
JP2007113696A (en) Laminated rubber support device
JP2004169759A (en) Laminated rubber support device including lead core member
JP2006275212A (en) Energy absorbing device
JP3124502B2 (en) Structure of leaded rubber bearing
JP5984012B2 (en) Laminated rubber support
JP2009228851A (en) Lamination layer rubber for seismic isolation
JPH10159897A (en) Layered rubber support containing lead plug
KR101007694B1 (en) Lead rubber bearing
JP2004251000A (en) Lead core-containing laminated rubber bearing device
JP2004285822A (en) Laminated rubber bearing device
JP2019127994A (en) Aseismic base isolation support device
JP4868435B2 (en) Laminated rubber body with lead plug
JP4181470B2 (en) Laminated rubber bearing with lead plug
JP2005146680A (en) Laminated rubber bearing device including lead core material
JP3008954B2 (en) Seismic isolation bearing
JP2001003360A (en) Ground anchor having buffer action
JP5136622B2 (en) Laminated rubber body with lead plug
WO2018016402A1 (en) Earthquake-proof support device
JP3503712B2 (en) Lead encapsulated laminated rubber
JP2000145884A (en) Laminated rubber support
JP2002188687A (en) Base-isolation device
JP2013221576A (en) Laminated rubber bearing
JP2001124151A (en) Connecting body
TWI704303B (en) Base isolation supporting device
JPH08326814A (en) Layered rubber support body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070802