JP2004169151A - 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 - Google Patents
高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 Download PDFInfo
- Publication number
- JP2004169151A JP2004169151A JP2002338143A JP2002338143A JP2004169151A JP 2004169151 A JP2004169151 A JP 2004169151A JP 2002338143 A JP2002338143 A JP 2002338143A JP 2002338143 A JP2002338143 A JP 2002338143A JP 2004169151 A JP2004169151 A JP 2004169151A
- Authority
- JP
- Japan
- Prior art keywords
- nitrogen
- oxygen
- content
- cutting
- cutting tool
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
Abstract
【解決手段】アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から偏心して切削工具を自転自在に装着し、前記回転テーブルを挟んで、一方側の蒸発源に相対的にAl含有量の高いAl−Ti合金、他方側の蒸発源に相対的にTi含有量の高いTi−Al合金を対向配置し、前記両蒸発源と各蒸発源のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、前記切削工具が上記の一方側の相対的にAl含有量の高い蒸発源に最も接近した時点での上記装置内の反応雰囲気を酸素系ガス雰囲気とし、また前記切削工具が上記の他方側の相対的にTi含有量の高い蒸発源に最も接近した時点での同装置内の反応雰囲気を窒素系ガス雰囲気とする硬質被覆層の形成方法。
【選択図】 なし
Description
【発明の属する技術分野】
この発明は、高強度を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼や鋳鉄などの高速切削加工を、高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法に関するものである。
【0002】
【従来の技術】
一般に、切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
また、切削工具として、例えば図2に概略縦断面図で示される通り、中央部にステンレス鋼製の反応ガス吹き出し管が立設され、前記反応ガス吹き出し管には、黒鉛製の切削工具支持パレットが串刺し積層嵌着され、かつこれらがステンレス鋼製のカバーを介してヒーターで加熱される構造を有する化学蒸着装置を用い、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットからなる切削工具を前記切削工具支持パレットの底面に形成された多数の反応ガス通過穴位置に載置した状態で前記化学蒸着装置に装入し、ヒータで装置内を、例えば800〜1100℃の範囲内の所定の温度に加熱した後、酸化アルミニウム(以下、Al2O3で示す)層形成には、反応ガスとして、容量%で(以下、反応ガスの%は容量%を示す)、
AlCl3:2〜7%、
CO2:2〜10%、
HCl:3〜7%、
H2:残り、
からなる組成を有する反応ガスを用い、また、窒化チタン(以下、TiNで示す)層形成には、
TiCl4:1〜3%、
N2:40〜60%、
H2:残り、
からなる組成を有する反応ガスを用い、これらの反応ガスを予め真空排気された装置内に前記反応ガス吹き出し管を通して、装置内の反応ガス圧力を7〜40kPaの範囲内の所定の圧力に保持しながら、交互に導入することにより個々の層厚が1μm以下のAl2O3層とTiN層とを交互積層して、5〜25μmの全体平均層厚で蒸着してなる被覆切削工具が提案され、前記硬質被覆層を構成するAl2O3−TiN交互積層が、Al2O3層による高温硬さおよび耐熱性と、TiN層による強度を具備することから、かかる被覆切削工具を各種の鋼や鋳鉄などの連続切削や断続切削加工に用いた場合にすぐれた切削性能を発揮することも知られている(例えば、特許文献1参照)。
【0004】
【特許文献1】
特開昭52−105396号公報
【0005】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、高切り込みや高送りなどの重切削条件での切削加工でもすぐれた切削性能を発揮する切削工具が強く求められているが、上記の従来被覆切削工具においては、これを通常の高速切削加工条件で用いた場合には問題はないが、高速切削加工を高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合には、特にAl2O3−TiN交互積層からなる硬質被覆層のAl2O3層はすぐれた高温硬さおよび耐熱性を有するものの強度が不十分であるために、高速重切削ではこれが破壊の起点となることから、チッピング(微小割れ)発生の原因となり、また同じくTiN層は高強度を有するものの高温硬さおよび耐熱性の低いものであることから、高速重切削では摩耗進行が急速に促進されるようになり、この結果比較的短時間で使用寿命に至るのが現状である。
【0006】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に被覆切削工具の硬質被覆層に着目し、高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を開発すべく、研究を行った結果、
(a)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の物理蒸着装置に属するアークイオンプレーティング装置、すなわち装置中央部に切削工具装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高いAl−Ti合金、他方側に相対的にTi含有量の高いTi−Al合金をいずれもカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して前記切削工具を装着し、この状態で装置内の反応雰囲気を前記回転テーブル上の切削工具の位置に対応して交互に変化、すなわち、前記切削工具が上記の一方側の相対的にAl含有量の高いAl−Ti合金のカソード電極(蒸発源)に最も接近した時点での上記アークイオンプレーティング装置内の反応雰囲気を酸素系ガス雰囲気、望ましくは酸素の含有割合が90〜97容量%で、残りが窒素からなる酸素系ガス雰囲気とし、また前記切削工具が上記の他方側の相対的にTi含有量の高いTi−Al合金のカソード電極に最も接近した時点での同装置内の反応雰囲気を窒素系ガス雰囲気、望ましくは窒素の含有割合が90〜97容量%で、残りが酸素からなる窒素系ガス雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で切削工具自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させる条件で、上記の従来被覆切削工具の硬質被覆層の構成成分であるAl2O3とTiNの複合化合物、すなわちTiとAlの複合窒酸化物(以下、Ti−Al窒酸化物という)層を形成すると、前記切削工具の表面には、回転テーブル上の中心軸から半径方向に離れた位置に偏心して配置された前記切削工具が上記の一方側の相対的にAl含有量の高いAl−Ti合金のカソード電極(蒸発源)に最も接近した時点で層中にAlおよび酸素の最高含有点が形成され、また前記前記切削工具が上記の他方側の相対的にTi含有量の高いTi−Al合金のカソード電極に最も接近した時点で層中にTiおよび窒素の最高含有点が形成されることから、上記回転テーブルの回転によって層中には厚さ方向にそって前記Alおよび酸素の最高含有点とTiおよび窒素の最高含有点が所定間隔をもって交互に繰り返し現れると共に、前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造をもったTi−Al窒酸化物層からなる硬質被覆層が形成されるようになること。
【0007】
(b)上記(a)の繰り返し連続変化成分濃度分布構造のTi−Al窒酸化物層の形成に際して、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成、並びに装置内に交互に形成される反応雰囲気の組成、すなわち酸素系ガスであれば酸素と窒素の割合、窒素系ガスであれば窒素と酸素の割合を調製すると共に、切削工具が装着されている回転テーブルの回転速度を制御して、
上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と窒素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+窒素)が、それぞれ原子比で、
Al/(Al+Ti):0.70〜0.95、
酸素/(酸素+窒素):0.80〜0.98、
上記Tiおよび窒素の最高含有点におけるTiとAlおよび窒素と酸素の相互含有割合を示すTi/(Ti+Al)および窒素/(窒素+酸素)が、それぞれ原子比で、
Ti/(Ti+Al):0.35〜0.60 窒素/(窒素+酸素):0.80〜0.98、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔を、0.01〜0.1μmとすると、
上記Alおよび酸素の最高含有点部分では、Al2O3のもつ高温硬さと耐熱性に相当するすぐれた高温硬さと耐熱性を示し、一方上記Tiおよび窒素の最高含有点部分では、TiNのもつ強度に相当する高強度が確保され、かつこれらAlおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温硬さと耐熱性、および高強度を具備するようになり、さらに前記両点間でAlと酸素およびTiと窒素の含有量がそれぞれ連続的に変化(成分濃度分布構造)することにより、破壊の起点が存在しないことになり、したがって、硬質被覆層がかかる構成のTi−Al窒酸化物層を硬質被覆層として形成してなる被覆切削工具は、特に各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0008】
この発明は、上記の研究結果に基づいてなされたものであって、
(a)アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して炭化タングステン基超硬合金および/または炭窒化チタン系サーメットからなる切削工具を自転自在に装着し、
(b)また、上記回転テーブルを挟んで、一方側のカソード電極(蒸発源)として、相対的にAl含有量の高いAl−Ti合金、他方側のカソード電極(蒸発源)として、相対的にTi含有量の高いTi−Al合金を対向配置し、
(c)上記回転テーブルを挟んで対向配置した上記Al−Ti合金のカソード電極およびTi−Al合金のカソード電極と、これらカソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
(d)前記切削工具が上記の一方側の相対的にAl含有量の高いAl−Ti合金のカソード電極(蒸発源)に最も接近した時点での上記アークイオンプレーティング装置内の反応雰囲気を酸素系ガス雰囲気とし、また前記切削工具が上記の他方側の相対的にTi含有量の高いTi−Al合金のカソード電極に最も接近した時点での同装置内の反応雰囲気を窒素系ガス雰囲気とし、
(e)もって、上記回転テーブル上で自転しながら偏心回転する上記切削工具の表面に、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と窒素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+窒素)が、それぞれ原子比で、
Al/(Al+Ti):0.70〜0.95、
酸素/(酸素+窒素):0.90〜0.98、
上記Tiおよび窒素の最高含有点におけるTiとAlおよび窒素と酸素の相互含有割合を示すTi/(Ti+Al)および窒素/(窒素+酸素)が、それぞれ原子比で、
Ti/(Ti+Al):0.35〜0.60、
窒素/(窒素+酸素):0.90〜0.98、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μmである、
Ti−Al窒酸化物層からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着してなる、
高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法に特徴を有するものである。
【0009】
つぎに、この発明の硬質被覆層形成方法において、形成される硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Alおよび酸素の最高含有点
Ti−Al窒酸化物層のTiおよび窒素成分には強度を向上させ、同Alおよび酸素成分には高温硬さおよび耐熱性を向上させる作用があり、したがってAlおよび酸素の最高含有点ではAlおよび酸素の含有割合を相対的に高くして高温硬さおよび耐熱性を向上させることにより、高熱発生を伴う高速切削に適合するものとするが、この場合AlとTiおよび酸素と窒素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+窒素)がいずれも原子比で(以下、同じ)0.95および0.98を越えると、Alおよび酸素の割合が多くなり過ぎて、高強度を有するTiと窒素の最高含有点が隣接して存在しても層自体の強度の低下は避けられず、この結果チッピングなどが発生し易くなり、一方同値がそれぞれ0.70未満および0.90未満になると高温硬さおよび耐熱性が急激に低下し、摩耗促進の原因となることから、Al/(Al+Ti)および酸素/(酸素+窒素)の値をそれぞれ0.70〜0.95および0.90〜0.98と定めた。
【0010】
(b)Tiおよび窒素の最高含有点
上記の通りAlおよび酸素の最高含有点は相対的にすぐれた高温硬さおよび耐熱性を有するが、反面相対的に強度が不十分であるため、このAlおよび酸素の最高含有点の強度不足を補う目的で、高強度を有するTiおよび窒素の最高含有点を厚さ方向に交互に介在させるものである。しかし、TiとAlおよび窒素と酸素の相互含有割合を示すTi/(Ti+Al)および窒素/(窒素+酸素)が、それぞれ0.60および0.98を越えると、Tiおよび窒素の割合が多くなり過ぎて、Tiおよび窒素の最高含有点に所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同値がそれぞれ0.35未満および0.90未満になると、所望のすぐれた強度を確保することができず、この結果チッピングが発生し易くなることから、Ti/(Ti+Al)および窒素/(窒素+酸素)の値をそれぞれ0.35〜0.60および0.90〜0.98と定めた。
【0011】
(c)Alおよび酸素の最高含有点とTiおよび窒素の最高含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望のすぐれた高温硬さおよび耐熱性、さらに高強度を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAlおよび酸素の最高含有点であれば強度不足、Tiおよび窒素の最高含有点であれば高温硬さおよび耐熱性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0012】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0013】
【発明の実施の形態】
つぎに、この発明の硬質被覆層形成方法を実施例により具体的に説明する。
(実施例1)
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1420℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施すことにより、切削工具としてISO規格・CNMG120412の形状をもったWC基超硬合金製のスローアウエイチップ(以下、チップ工具という)A−1〜A−10を形成した。
【0014】
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで60時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1520℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施すことにより、切削工具としてISO規格・CNMG120412の形状をもったTiCN系サーメット製のチップ工具B−1〜B−6を形成した。
【0015】
ついで、上記のチップ工具A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して自転自在に装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAlおよび酸素最高含有点形成用Al−Ti合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったTiおよび窒素最高含有点形成用Ti−Al合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転するチップ工具に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もってチップ工具表面をTiボンバート洗浄し、ついで、前記回転テーブル上で自転しながら回転するチップ工具に−30Vの直流バイアス電圧を印加し、かつそれぞれのカソード電極(前記Alおよび酸素最高含有点形成用Al−Ti合金およびTiおよび窒素最高含有点形成用Ti−Al合金)とアノード電極との間に150Aの電流を流してアーク放電を発生させ、かつ前記切削工具が上記の一方側の相対的にAl含有量の高いAl−Ti合金のカソード電極(蒸発源)に最も接近した時点での上記アークイオンプレーティング装置内の反応雰囲気を3Paの酸素系ガス、すなわち蒸着形成しようとするTi−Al窒酸化物層におけるAlおよび酸素最高含有点の組成に対応したガス組成を有し、かつ主体が酸素で、残りの僅かの含有割合が窒素からなる反応雰囲気とし、また前記切削工具が上記の他方側の相対的にTi含有量の高いTi−Al合金のカソード電極に最も接近した時点での同装置内の反応雰囲気を同じく3Paの窒素系ガス、すなわち同Tiおよび窒素最高含有点の組成に対応したガス組成を有し、かつ主体が窒素で、残りの僅かの含有割合が酸素からなる反応雰囲気とした条件で本発明法1〜16を実施し、もって前記チップ工具の表面に、厚さ方向に沿って表3,4に示される目標組成のAlおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に、同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Alおよび酸素最高含有点へAlと酸素およびTiと窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着形成してなる本発明被覆チップ工具を製造した。
【0016】
また、比較の目的で、これらチップ工具A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される化学蒸着装置に装入し、Al2O3層の形成条件を、
反応ガス組成:(容量%で)AlCl3:3%、CO2:7%、HCl:3%、H2:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:7kPa、
とし、また、TiN層の形成条件を、
反応ガス組成:(容量%で)TiCl4:2%、N2:55%、H2:残り、
反応雰囲気温度:1000℃、
反応雰囲気圧力:13kPa、
として、それぞれ表5,6に示される目標層厚のAl2O3層およびTiN層の交互積層からなる硬質被覆層を、前記チップ工具A1〜A10およびB1〜B6のそれぞれの表面に、同じく表5,6に示される目標全体層厚で蒸着形成する従来法1〜16をそれぞれ実施し、従来被覆チップ工具を製造した。
【0017】
つぎに、上記本発明法1〜16および従来法1〜16により得られた被覆チップ工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、上記本発明法1〜10および従来法1〜10により得られた被覆チップ工具については、
被削材:JIS・SCM440の丸棒、
切削速度:300m/min.、
切り込み:2.4mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:280m/min.、
切り込み:1.5mm、
送り:0.32mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:250m/min.、
切り込み:2.3mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式断続高速高切り込み切削加工試験を行なった。
【0018】
また、上記本発明法11〜16および従来法11〜16により得られた被覆チップ工具については、
被削材:JIS・SNCM439の丸棒、
切削速度:320m/min.、
切り込み:2.5mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件での合金鋼の乾式連続高速高切り込み切削加工試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.35mm/rev.、
切削時間:5分、
の条件での炭素鋼の乾式断続高速高送り切削加工試験、さらに、
被削材:JIS・FC250の長さ方向等間隔4本縦溝入り丸棒、
切削速度:270m/min.、
切り込み:25mm、
送り:0.3mm/rev.、
切削時間:5分、
の条件での鋳鉄の乾式断続高速高切り込み切削加工試験を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5〜6に示した。
【0019】
【表1】
【0020】
【表2】
【0021】
【表3】
【0022】
【表4】
【0023】
【表5】
【0024】
【表6】
【0025】
(実施例2)
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で60時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種のエンドミル工具形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角:30度の4枚刃スクエア形状をもったエンドミル工具C−1〜C−8を切削工具としてそれぞれ製造した。
【0026】
ついで、これらのエンドミル工具C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で本発明法17〜24を実施し、もって前記チップ工具の表面に、厚さ方向に沿って表8に示される目標組成のAlおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に、同じく表8に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Alおよび酸素最高含有点へAlと酸素およびTiと窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表8に示される目標全体層厚の硬質被覆層を蒸着形成してなる本発明被覆エンドミル工具を製造した。
【0027】
また、比較の目的で、上記のエンドミル工具C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される化学蒸着装置に装入し、上記実施例1における硬質被覆層の形成条件と同一の条件で従来法17〜24を実施し、もって表9に示される目標層厚のAl2O3層およびTiN層の交互積層からなる硬質被覆層を、前記エンドミル工具C−1〜C−8のそれぞれの表面に、同じく表9に示される目標全体層厚で蒸着形成してなる従来被覆エンドミル工具を製造した。
【0028】
つぎに、上記本発明法17〜24および従来法17〜24により得られた被覆エンドミル工具ついて、これらのうち本発明法17〜19および従来法17〜19により得られた被覆エンドミル工具については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・S55Cの板材、
切削速度:160m/min.、
軸方向切り込み:2mm、
径方向切り込み:10mm、
テーブル送り:650mm/分、
の条件での炭素鋼の湿式高速高切り込み側面切削加工試験、本発明法20〜22および従来法20〜22により得られた被覆エンドミル工具については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:100m/min.、
軸方向切り込み:3mm、
径方向切り込み:18mm、
テーブル送り:300mm/分、
の条件での合金鋼の湿式高速高切り込み側面切削加工試験、本発明法23.24および従来法23.24により得られた被覆エンドミル工具については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SKD61(硬さ:HRC52)の板材、
切削速度:60m/min.、
軸方向切り込み:2mm、
径方向切り込み:25mm、
テーブル送り:150mm/分、
の条件での焼入れ鋼の湿式高速高切り込み側面切削加工試験をそれぞれ行い、いずれの湿式側面切削加工試験(水溶性切削油使用)でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削長を測定した。この測定結果を表8、9にそれぞれ示した。
【0029】
【表7】
【0030】
【表8】
【0031】
【表9】
【0032】
(実施例3)
上記の実施例2で製造した直径が8mm(エンドミル工具C−1〜C−3形成用)、13mm(エンドミル工具C−4〜C−6形成用)、および26mm(エンドミル工具C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(ドリル工具D−1〜D−3)、8mm×22mm(ドリル工具D−4〜D−6)、および16mm×45mm(ドリル工具D−7、D−8)の寸法、並びにいずれもねじれ角:30度の2枚刃形状をもったドリル工具D−1〜D−8を切削工具としてそれぞれ製造した。
【0033】
ついで、これらのドリル工具D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で本発明法25〜32を実施し、もって前記ドリル工具の表面に、、厚さ方向に沿って表10に示される目標組成のAlおよび酸素最高含有点とTiおよび窒素最高含有点とが交互に同じく表10に示される目標間隔で繰り返し存在し、かつ前記Alおよび酸素最高含有点から前記Tiおよび窒素最高含有点、前記Tiおよび窒素最高含有点から前記Alおよび酸素最高含有点へAlと酸素およびTiと窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、かつ同じく表10に示される目標全体層厚の硬質被覆層を蒸着形成してなる本発明被覆ドリル工具を製造した。
【0034】
また、比較の目的で、上記のドリル工具D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される化学蒸着装置に装入し、上記実施例1における硬質被覆層の形成条件と同一の条件で従来法25〜32を実施し、もって表11に示される目標層厚のAl2O3層およびTiN層の交互積層からなる硬質被覆層を、前記ドリル工具D−1〜D−8のそれぞれの表面に、同じく表11に示される目標全体層厚で蒸着形成してなる従来被覆ドリル工具を製造した。
【0035】
つぎに、上記本発明法25〜32および従来法25〜32により得られた被覆ドリル工具について、これらのうち本発明法25〜27および従来法25〜27により得られたドリル工具については、
被削材:平面寸法:100mm×250、厚さ:50mmのJIS・S45Cの板材、
切削速度:120m/min.、
送り:0.25mm/rev、
穴深さ:8mm、
の条件での炭素鋼の湿式高速高送り穴あけ切削加工試験、本発明法28〜30および従来法28〜30により得られた被覆ドリル工具については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・SCM440の板材、
切削速度:100m/min.、
送り:0.30mm/rev、
穴深さ:16mm、
の条件での合金鋼の湿式高速高送り穴あけ切削加工試験、本発明法31,32および従来法31,32により得られた被覆ドリル工具については、
被削材:平面寸法:100mm×250mm、厚さ:50mmのJIS・FC250の板材、
切削速度:150m/min.、
送り:0.42mm/rev、
穴深さ:24mm、
の条件での鋳鉄の湿式高速高送り穴あけ切削加工試験、をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表10、11にそれぞれ示した。
【0036】
【表10】
【0037】
【表11】
【0038】
なお、上記本発明法1〜32で得られた各種の切削工具の硬質被覆層について、厚さ方向に沿ってAl、Ti、酸素、および窒素の含有量をオージェ分光分析装置を用いて測定し、この測定結果から各測定点におけるAl/(Al+Ti)および酸素/(酸素+窒素)値、さらにTi/(Ti+Al)および窒素/(窒素+酸素)値を算出したところ、本発明法で形成された硬質被覆層では、Alおよび酸素の最高含有点と、Tiおよび窒素の最高含有点とがそれぞれ目標値と実質的に同じ組成および間隔で交互に繰り返し存在し、かつAlおよび酸素の最高含有点からTiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点からAlおよび酸素の最高含有点へAlとTiおよび酸素と窒素の含有量が連続的に変化する成分濃度分布構造を有することが確認され、硬質被覆層の平均層厚も目標全体層厚と実質的に同じ値を示した。また、上記従来法1〜32で得られた各種の切削工具の硬質被覆層においても目標層厚と実質的に同じ平均層厚のAl2O3層とTiN層とが交互に、かつ目標全体層厚と実質的に同じ平均層厚で形成されていることが確認された。
【0039】
【発明の効果】
表3〜11に示される結果から、上記本発明法1〜32にて、硬質被覆層が層厚方向に、相対的にすぐれた高温硬さと耐熱性を有するAlおよび酸素の最高含有点と相対的に高強度を有するTiおよび窒素の最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlとTiおよび酸素と窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有するTi−Al窒酸化物層からなる硬質被覆層を形成してなる切削工具は、いずれも各種の鋼や鋳鉄などの切削加工を、高速で、かつ高い熱的機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性および耐摩耗性を発揮するのに対して、上記従来法1〜32にて、Al2O3層とTiN層の交互積層からなる硬質被覆層を形成してなる切削工具は、いずれも前記硬質被覆層のAl2O3層が特に高速重切削条件ではチッピング発生の起点となり、また前記TiN層の摩耗進行が切削時の高熱発熱により促進されることから、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の硬質被覆層形成方法によれば、特に各種の鋼や鋳鉄などの高速切削加工を、高い機械的衝撃を伴う高切り込みや高送りなどの重切削条件で行なった場合にも、すぐれた耐チッピング性を発揮し、長期に亘ってすぐれた耐摩耗性を示す硬質被覆層を切削工具表面に形成することができ、この結果の切削工具は切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】本発明硬質被覆層形成方法の実施装置であるアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来硬質被覆層形成方法の実施装置である化学蒸着装置を示す概略縦断面図である。
Claims (1)
- (a)アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に偏心して炭化タングステン基超硬合金および/または炭窒化チタン系サーメットからなる切削工具を自転自在に装着し、
(b)また、上記回転テーブルを挟んで、一方側のカソード電極(蒸発源)として、相対的にAl含有量の高いAl−Ti合金、他方側のカソード電極(蒸発源)として、相対的にTi含有量の高いTi−Al合金を対向配置し、
(c)上記回転テーブルを挟んで対向配置した上記Al−Ti合金のカソード電極およびTi−Al合金のカソード電極と、これらカソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
(d)前記切削工具が上記の一方側の相対的にAl含有量の高いAl−Ti合金のカソード電極(蒸発源)に最も接近した時点での上記アークイオンプレーティング装置内の反応雰囲気を酸素系ガス雰囲気とし、また前記切削工具が上記の他方側の相対的にTi含有量の高いTi−Al合金のカソード電極に最も接近した時点での同装置内の反応雰囲気を窒素系ガス雰囲気とし、
(e)もって、上記回転テーブル上で自転しながら偏心回転する上記切削工具の表面に、層厚方向にそって、Alおよび酸素の最高含有点とTiおよび窒素の最高含有点とが所定間隔をおいて交互に繰り返し存在し、かつ前記Alおよび酸素の最高含有点から前記Tiおよび窒素の最高含有点、前記Tiおよび窒素の最高含有点から前記Alおよび酸素の最高含有点へAlと酸素およびTiと窒素の含有量がそれぞれ連続的に変化する成分濃度分布構造を有し、
さらに、上記Alおよび酸素の最高含有点におけるAlとTiおよび酸素と窒素の相互含有割合を示すAl/(Al+Ti)および酸素/(酸素+窒素)が、それぞれ原子比で、
Al/(Al+Ti):0.70〜0.95、
酸素/(酸素+窒素):0.90〜0.98、
上記Tiおよび窒素の最高含有点におけるTiとAlおよび窒素と酸素の相互含有割合を示すTi/(Ti+Al)および窒素/(窒素+酸素)が、それぞれ原子比で、
Ti/(Ti+Al):0.35〜0.60、
窒素/(窒素+酸素):0.90〜0.98、
を満足し、かつ隣り合う上記Alおよび酸素の最高含有点と上記Tiおよび窒素の最高含有点の間隔が、0.01〜0.1μmである、
AlとTiの複合窒酸化物層からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着すること、
を特徴とする高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002338143A JP4158191B2 (ja) | 2002-11-21 | 2002-11-21 | 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002338143A JP4158191B2 (ja) | 2002-11-21 | 2002-11-21 | 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004169151A true JP2004169151A (ja) | 2004-06-17 |
JP4158191B2 JP4158191B2 (ja) | 2008-10-01 |
Family
ID=32701445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002338143A Expired - Fee Related JP4158191B2 (ja) | 2002-11-21 | 2002-11-21 | 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4158191B2 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011051034A (ja) * | 2009-08-31 | 2011-03-17 | Mitsubishi Materials Corp | 表面被覆切削工具 |
KR101050014B1 (ko) * | 2007-11-15 | 2011-07-19 | 가부시키가이샤 고베 세이코쇼 | 경질 피막을 구비한 내마모성 부재 |
-
2002
- 2002-11-21 JP JP2002338143A patent/JP4158191B2/ja not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101050014B1 (ko) * | 2007-11-15 | 2011-07-19 | 가부시키가이샤 고베 세이코쇼 | 경질 피막을 구비한 내마모성 부재 |
JP2011051034A (ja) * | 2009-08-31 | 2011-03-17 | Mitsubishi Materials Corp | 表面被覆切削工具 |
Also Published As
Publication number | Publication date |
---|---|
JP4158191B2 (ja) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4193111B2 (ja) | 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 | |
JP4389152B2 (ja) | 重切削加工条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 | |
JP4007102B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 | |
JP3985227B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 | |
JP4150913B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法 | |
JP4120500B2 (ja) | 高速切削加工で表面被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 | |
JP4158191B2 (ja) | 高速重切削条件ですぐれた耐チッピング性および耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 | |
JP4029328B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP3991272B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 | |
JP2004358610A (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具 | |
JP4193110B2 (ja) | 高速切削条件ですぐれた耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 | |
JP2004338060A (ja) | 高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法 | |
JP4120458B2 (ja) | 高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法 | |
JP4029331B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具 | |
JP4029323B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 | |
JP2004344991A (ja) | 高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法 | |
JP4048365B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具 | |
JP2004322279A (ja) | 高速重切削条件で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具 | |
JP3969282B2 (ja) | 高速重切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 | |
JP3928498B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具 | |
JP4029329B2 (ja) | 高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆サーメット製切削工具 | |
JP4150915B2 (ja) | 高速重切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法 | |
JP4150916B2 (ja) | 高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法 | |
JP3978777B2 (ja) | 高速重切削条件ですぐれた耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法 | |
JP2004306166A (ja) | 高速切削条件で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051117 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080623 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080706 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |