JP2004169130A - Method for manufacturing steel slab without any surface defect caused by edging - Google Patents

Method for manufacturing steel slab without any surface defect caused by edging Download PDF

Info

Publication number
JP2004169130A
JP2004169130A JP2002336835A JP2002336835A JP2004169130A JP 2004169130 A JP2004169130 A JP 2004169130A JP 2002336835 A JP2002336835 A JP 2002336835A JP 2002336835 A JP2002336835 A JP 2002336835A JP 2004169130 A JP2004169130 A JP 2004169130A
Authority
JP
Japan
Prior art keywords
steel
mass
slab
edging
steel slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002336835A
Other languages
Japanese (ja)
Inventor
Masamitsu Wakao
昌光 若生
Katsuhiro Fuchigami
勝弘 淵上
Takahiro Sato
貴洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2002336835A priority Critical patent/JP2004169130A/en
Publication of JP2004169130A publication Critical patent/JP2004169130A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel slab manufacturing method without crack defects by edging when a carbon steel cast slab is edged. <P>SOLUTION: In the method for manufacturing a steel slab by edging the steel cast slab obtained from molten steel by the continuous casting, the cast slab obtained by continuously casting the molten steel containing, by mass, 0.001-0.5% C, 0.1-1.9% Mn, 0.005-2.0% Si, 0.001-0.1% P, 0.001-0.1% S, 0.0005-0.005% O, and 0.002-0.005% N, further containing 0.005-0.05% Ti, 0.005-0.03% Al, and 0.0005-0.01% Ca, with the ratio Mn/S below 40, and the balance iron with inevitable impurities is rolled down in the width direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、連続鋳造法で製造した鋳片を幅圧下して鋼片を製造する方法に関し、特に表面欠陥のない鋼片の製造方法に関するものである。
【0002】
鋼の大量生産を図るために、連続鋳造機と幅圧下圧延機を組み合わせたプロセスが公知となっている。このプロセスは、連続鋳造では鋳片幅を一定にして鋳造し、その後の圧延機で幅圧下をすることにより鋼片幅を変えるものであり、連鋳機での鋳型幅変更に伴う時間ロスがないことによる生産性の向上や、幅変更部の歩留まり向上が期待できる。しかしながら、鋳片内にSを含有する場合には、条件によっては幅圧下時に割れが発生し、表面欠陥につながるという問題がある。
【0003】
この脆化は、1000〜1100℃近くの温度で起こるγ結晶粒界へのSの濃化による液膜脆化であることが判っている。本発明は、このSによる液膜脆化を防止する技術分野に属する。
【0004】
【従来の技術】
従来の技術としては、高強度鋼鈑の表面疵発生を抑制するために、鋼中のMn/S比を50以上に規定した発明がある(例えば、特許文献1参照。)。
【0005】
また、直送圧延プロセスでの表面欠陥を防止するため、同様に鋼中のMn/S比を50以上に規定した発明がある(例えば、特許文献2参照。)。
【0006】
しかしながら、いずれの技術においても、Mn/S比が低い場合に表面欠陥を防止することは出来ない。Mn/S比を高くするには、Mn量を増加させるか、S量を下げるかする必要がある。Mn量を増加させることは製造コストの増加につながり、また鋼種によっては強度が上がりすぎるために、Mn量を低く抑えているものもある。また、Sはもともと溶銑に含まれているため、S量を下げるためには、脱硫処理が必要となり、製造コストが増加する。
【0007】
一方、Mn/S比が20未満の鋼に対して、鋼片を1200〜1300℃に加熱した後、表面を900〜950℃に急冷し、その後1000℃以上に復熱し、1分間以上保持してから圧延することにより、表面割れを防ぐ技術がある(例えば、特許文献3参照。)。
【0008】
この場合には、大がかりな急冷設備が必要であったり、急冷による大幅なエネルギーロスが生じる。また、1000℃近傍での圧延では、後半の温度低下で、必要な仕上げ温度や巻き取り温度を確保できない恐れがある。
【0009】
【特許文献1】
特開2000−319747号公報
【特許文献2】
特開2001−152255号公報
【特許文献3】
特開平05−237508号公報
【0010】
【発明が解決しようとする課題】
本発明は、急冷・復熱等の温度履歴条件を規定することなく、S脆化による表面疵の発生を防止する条件を提示することにより、Mn/S比が低い鋼を幅圧下する場合にも、表面割れを防止することが可能な製造方法を提供するものである。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明は以下の構成を特徴とする。
(1)溶鋼から連続鋳造によって得られた鋳片から幅圧下して鋼片を製造する方法において、成分として質量%で
C:0.001〜0.5%、
Mn:0.1〜1.9%、
Si:0.005〜2.0%、
P:0.001〜0.1%、
S:0.001〜0.1%、
酸素:0.0005〜0.005%、
N:0.002〜0.005%含み、
さらに、
Ti:0.005〜0.05%
Al:0.005〜0.03%
Ca:0.0005〜0.01%を含み
かつ
Mn/S比が40未満であり、
残部鉄および不可避的不純物からなる溶鋼を
連続鋳造して得られた鋳片を幅方向に圧下することを特徴とする幅圧下による表面欠陥が生じない鋼片の製造方法。
(2)さらに、Cr、Mo、Ni、Cu、V、B、Zrの一種または二種以上をそれぞれ質量%で0.5%以下含むことを特徴とする(1)記載の幅圧下による表面欠陥が生じない鋼片の製造方法。
【0012】
【発明の実施の形態】
本発明者らは、まず、元素を添加するという手法で、S脆化を防止する条件を検討した結果、Ti、Al、Caの3元素を適量添加した場合に脆化すなわち割れの発生を防止することが出来ることを見いだした。
【0013】
以下に本発明の詳細を記す。
【0014】
発明者らは、まず、S脆化がオーステナイト(γ)結晶粒界の脆化であることに着目して、γ結晶粒径を細かくしたほうが脆化を生じにくいと予想し、そのための元素添加を検討した。γ結晶粒径を小さくする可能性がある元素として、いくつか候補を挙げ、ラボ実験によりインゴットを溶製して、その材料から試験片を切り出し、引張り試験を行なった。成分を表1に示す。Mn/S比はS脆化が生じやすい低い値として、10とした。実験条件を表2に示す。
【0015】
【表1】

Figure 2004169130
【0016】
【表2】
Figure 2004169130
【0017】
その結果を図1に示すが、S脆化の指標として、1050℃における引張り試験材の破断面の絞り値とした。図より、Ti、Al、Caを適量添加した場合(L4、L5、L6)に、1050℃の絞り値が著しく改善しているのが判る。これらの材料を組織解析してみると、ベース材や他の水準の材料と比較して、γ結晶粒が非常に細かくなっていることが判った。これにより、γ粒界にSの液膜が生じても絞り値が低下しなかったものと考えられる。γ粒界を詳細に観察すると、Ti、Al、Caを含んだ微細な酸化物が観察された。これが、結晶粒の成長を抑制したものと考えられる。
【0018】
次に、発明の条件を規定した理由とこの発明の具体的な適用法について説明する。対象となる鋼種は、Mn/Sが40未満の炭素鋼である。このMn/SのものはS脆化により表面割れを生じやすい。以下、構成成分について、具体的に記す。
【0019】
Cは、鋼の強度を持たす為に不可欠の元素であるため、下限を0.001質量%とし、上限は板材で用いられる最大炭素量として0.5質量%とした。
【0020】
また、Mnも強度を得るために必要でありその効果を出すために下限を0.1質量%とした。一般に上限は特殊用途で使用される場合の最大値3質量%であるが、Mnがあまり高い場合は、Mn/Sが高くなってS脆化を生じなくなる。ここではMn濃度の最大を、Sが高くてもMn/Sが40未満となる、1.9質量%とした。
【0021】
Siは、用途によっては不要の場合もあるが、不可避的に混入するためその下限を0.005質量%とし、上限は特殊用途で用いられる2.0質量%とした。
【0022】
Pは、鋼に有害な元素であるため、その上限を0.1質量%とし、極力少ないほうが望ましいが、不可避的に混入するため下限値0.001質量%が現実的である。
【0023】
Sも同様に製品特性に害をなす場合が多く、極力低位とすることが望ましいが、不可避的に混入するため下限値0.001質量%が現実的である。また上限は、粗大なMnSを生成させないために0.1質量%とした。粗大なMnSは製品での割れを引き起こす。
【0024】
Ti、Al、Caは本発明に関係する元素である。まず、Tiは、一般に材料の強度や靭性を上げるために用いられているが、本発明では、微細な酸化物を生成させるために用いる。その効果を得るための最低量として、下限を0.005質量%、上限は材質に悪影響を与える0.05質量%とした。Alは、脱酸元素として一般的に使用されているが、本発明では、Ti、Caと共同して微細な酸化物を生成させるために用いられる。この観点から下限は、効果を発揮する最低限の0.005質量%とした。また、効果を得るためには、TiやCaと共存することが重要であり、この観点から実験結果も考慮して上限を0.03質量%とした。
【0025】
Caも一般に脱酸元素や硫化物の無害化のために用いられているが、本発明では、微細な酸化物を生成させるために、効果を発揮する最低限の0.0005質量%とした。また、効果を得るためには、TiやAlと共存することが重要であり、この観点から実験結果も考慮して上限を0.01質量%とした。
【0026】
なお、Ti、Al、Caは脱酸材も兼ねており、また、生成する酸化物を微細にするには、Ti、Al、Caの順で添加することが望ましい。
【0027】
酸素は非金属介在物生成の原因となるため、極力低い方が望ましいが、本発明では酸化物を利用するので、下限は、効果を得るために0.0005質量%とし、上限は、介在物があまり多くなると製品欠陥の原因となるので、0.005質量%とした。
【0028】
更に、Nは、他の合金元素と結合して、材料の靱性や強度を上げるために用いられるが、下限は、不可避的に混入する0.002質量%とし、上限は、窒化物の析出で表面欠陥が発生しないよう、0.005質量%とした。
【0029】
その他、鋼の用途に応じてCr,Mo,Ni,Cu,V,B,Zrの一種または二種以上をそれぞれ0.5質量%以下含んでも構わない。
【0030】
【実施例】
表3および表4に示す成分の炭素鋼を表5に示す製造条件で連続鋳造および幅圧下をし、得られた鋼片で割れを調査した。
【0031】
【表3】
Figure 2004169130
【0032】
【表4】
Figure 2004169130
【0033】
【表5】
Figure 2004169130
【0034】
割れの調査方法としては、表6に示すように、鋼片上面と下面にスカーフ溶削を2mm〜10mm行い、表面を目視観察した。更に鋼片からサンプルを切り出し、断面の割れの状態をカラーチェックで調査した。
【0035】
【表6】
Figure 2004169130
【0036】
結果を表4に示す。表より、本発明例であるA1、B1、C1、D1、E1、F1、G1、H1の場合の条件を満たす場合には、目視観察およびカラーチェックとも割れは検出されなかった。
【0037】
一方、A2、B2、C2、D2、E2、F2、G2、H2のいずれの比較例においても、鋳片の目視やカラーチェック検査で割れが観察された。すなわち、A2ではTiが下限値を下回っており、B2ではAlが下限値を下回っており、C2では、Caが下限値を下回ったために、本発明を満たさなかった。また、D2では、TiとAlが上限値を超え、E2では、AlとCaが上限値を超えたために、本発明を満たさなかった。更に、F2では、Tiが下限値を下回っており、かつAlとCaが上限値を超えている。
【0038】
G2では、Tiが上限値を超えており、かつAlが下限値を下回っている。H2では、AlとCaが下限値を切ったために、本発明を満たさず、割れが生じた。
【0039】
【発明の効果】
以上のように本発明により、Mn/S比が低い鋼においても幅圧下時の割れが発生しなくなり、表面疵のない良好な鋼片が得られることが可能となる。
【図面の簡単な説明】
【図1】元素添加と絞り値の関係を表した図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a steel slab by reducing the width of a slab produced by a continuous casting method, and more particularly to a method for producing a steel slab having no surface defects.
[0002]
In order to achieve mass production of steel, a process combining a continuous casting machine and a width reduction mill is known. In this process, in continuous casting, the width of the slab is changed by casting with a constant slab width and then reducing the width in a subsequent rolling mill, and the time loss associated with changing the mold width in the continuous casting machine is reduced. It can be expected to improve productivity and increase the yield of the width changing part due to the absence of the above. However, in the case where S is contained in the slab, there is a problem that cracks are generated at the time of width reduction depending on conditions, which leads to surface defects.
[0003]
It has been found that this embrittlement is a liquid film embrittlement due to the concentration of S in the γ crystal grain boundary occurring at a temperature near 1000 to 1100 ° C. The present invention belongs to the technical field of preventing liquid film embrittlement due to S.
[0004]
[Prior art]
As a conventional technique, there is an invention in which the Mn / S ratio in steel is specified to be 50 or more in order to suppress the occurrence of surface flaws in a high-strength steel sheet (for example, see Patent Document 1).
[0005]
Also, there is an invention in which the Mn / S ratio in steel is specified to be 50 or more in order to prevent surface defects in the direct rolling process (for example, see Patent Document 2).
[0006]
However, none of the techniques can prevent surface defects when the Mn / S ratio is low. To increase the Mn / S ratio, it is necessary to increase the amount of Mn or decrease the amount of S. Increasing the amount of Mn leads to an increase in manufacturing cost, and depending on the type of steel, the strength is too high, so that the amount of Mn is suppressed to a low level. In addition, since S is originally contained in the hot metal, a desulfurization treatment is required to reduce the amount of S, and the production cost increases.
[0007]
On the other hand, for a steel having a Mn / S ratio of less than 20, after heating the billet to 1200 to 1300 ° C, the surface is rapidly cooled to 900 to 950 ° C, then reheated to 1000 ° C or more, and held for 1 minute or more. There is a technique of preventing surface cracks by rolling after the rolling (for example, see Patent Document 3).
[0008]
In this case, a large-scale quenching facility is required, or a large energy loss due to the rapid cooling occurs. In the case of rolling at around 1000 ° C., the required finishing temperature and winding temperature may not be able to be secured due to the temperature drop in the latter half.
[0009]
[Patent Document 1]
JP 2000-319747 A [Patent Document 2]
JP 2001-152255 A [Patent Document 3]
JP 05-237508 A
[Problems to be solved by the invention]
The present invention provides a condition for preventing the occurrence of surface flaws due to S embrittlement without defining temperature history conditions such as quenching and recuperation, thereby reducing the width of steel having a low Mn / S ratio. Another object of the present invention is to provide a manufacturing method capable of preventing surface cracks.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following features.
(1) In a method of producing a steel slab by reducing the width from a slab obtained by continuous casting from molten steel, C: 0.001 to 0.5% by mass as a component,
Mn: 0.1 to 1.9%,
Si: 0.005 to 2.0%,
P: 0.001-0.1%,
S: 0.001-0.1%,
Oxygen: 0.0005 to 0.005%,
N: 0.002-0.005%
further,
Ti: 0.005 to 0.05%
Al: 0.005 to 0.03%
Ca: 0.0005 to 0.01%, and the Mn / S ratio is less than 40;
A method for producing a steel slab free of surface defects due to width reduction, characterized in that a slab obtained by continuously casting molten steel comprising the balance of iron and unavoidable impurities is reduced in the width direction.
(2) The surface defect caused by width reduction according to (1), further including one or more of Cr, Mo, Ni, Cu, V, B, and Zr in an amount of 0.5% or less by mass%. Method for producing billets that does not cause cracks.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors first studied the conditions for preventing S embrittlement by adding an element, and as a result, found that when appropriate amounts of the three elements Ti, Al, and Ca were added, embrittlement, that is, generation of cracks was prevented. I found what I could do.
[0013]
The details of the present invention are described below.
[0014]
The present inventors first focused on the fact that S embrittlement is embrittlement of austenite (γ) crystal grain boundaries, and predicted that making the γ crystal grain size smaller would cause less embrittlement. It was investigated. Some candidates are listed as elements that may reduce the γ crystal grain size. Ingots were produced by lab experiments, test pieces were cut out of the materials, and tensile tests were performed. The components are shown in Table 1. The Mn / S ratio was set to 10 as a low value at which S embrittlement easily occurs. Table 2 shows the experimental conditions.
[0015]
[Table 1]
Figure 2004169130
[0016]
[Table 2]
Figure 2004169130
[0017]
The results are shown in FIG. 1, and as an index of S embrittlement, the aperture value of the fracture surface of the tensile test material at 1050 ° C. was used. From the figure, it can be seen that when appropriate amounts of Ti, Al, and Ca are added (L4, L5, L6), the aperture value at 1050 ° C. is significantly improved. Microstructural analysis of these materials showed that the γ crystal grains were very fine compared to the base material and other levels of material. It is considered that the aperture value did not decrease even if a liquid film of S was formed at the γ grain boundary. When the γ grain boundaries were observed in detail, fine oxides containing Ti, Al, and Ca were observed. This is considered to suppress the growth of crystal grains.
[0018]
Next, the reason for defining the conditions of the invention and the specific application method of the invention will be described. The target steel type is a carbon steel having Mn / S of less than 40. In the case of Mn / S, surface cracking is liable to occur due to S embrittlement. Hereinafter, the constituent components will be specifically described.
[0019]
Since C is an element indispensable for imparting the strength of steel, the lower limit was set to 0.001% by mass, and the upper limit was set to 0.5% by mass as the maximum amount of carbon used in the sheet material.
[0020]
Also, Mn is necessary for obtaining strength, and the lower limit is set to 0.1% by mass in order to obtain the effect. In general, the upper limit is the maximum value of 3% by mass when used for special applications. However, when Mn is too high, Mn / S increases and S embrittlement does not occur. Here, the maximum of the Mn concentration was set to 1.9% by mass at which Mn / S was less than 40 even when S was high.
[0021]
Si is unnecessary in some applications, but is inevitably mixed, so the lower limit is 0.005% by mass, and the upper limit is 2.0% by mass used for special applications.
[0022]
Since P is an element harmful to steel, its upper limit is set to 0.1% by mass, and it is desirable that P be as small as possible. However, since it is inevitably mixed, the lower limit of 0.001% by mass is practical.
[0023]
Similarly, S also often impairs the product characteristics, and is desirably as low as possible. However, the lower limit is 0.001% by mass because it is inevitably mixed. The upper limit is set to 0.1% by mass so as not to generate coarse MnS. Coarse MnS causes cracking in the product.
[0024]
Ti, Al, and Ca are elements related to the present invention. First, Ti is generally used to increase the strength and toughness of a material. In the present invention, Ti is used to generate a fine oxide. As a minimum amount for obtaining the effect, the lower limit is set to 0.005% by mass, and the upper limit is set to 0.05% by mass which adversely affects the material. Al is generally used as a deoxidizing element. In the present invention, Al is used in combination with Ti and Ca to generate a fine oxide. From this viewpoint, the lower limit is set to the minimum value of 0.005 mass% at which the effect is exhibited. Further, in order to obtain the effect, it is important to coexist with Ti and Ca. From this viewpoint, the upper limit is set to 0.03% by mass in consideration of the experimental results.
[0025]
Ca is also generally used for detoxification of deoxidizing elements and sulfides. However, in the present invention, in order to generate fine oxides, the minimum content of 0.0005% by mass is effective. Further, in order to obtain the effect, it is important to coexist with Ti and Al. From this viewpoint, the upper limit is set to 0.01% by mass in consideration of the experimental results.
[0026]
Note that Ti, Al, and Ca also serve as a deoxidizer, and it is desirable to add Ti, Al, and Ca in this order in order to make the generated oxide finer.
[0027]
Oxygen causes the formation of nonmetallic inclusions, so it is desirable that oxygen be as low as possible. However, in the present invention, since oxides are used, the lower limit is 0.0005% by mass to obtain the effect, and the upper limit is inclusions. Is too large, it causes a product defect. Therefore, the content was set to 0.005% by mass.
[0028]
Further, N is used to increase the toughness and strength of the material by combining with other alloying elements. The lower limit is 0.002% by mass which is inevitably mixed, and the upper limit is the precipitation of nitride. The content was set to 0.005% by mass so that surface defects did not occur.
[0029]
In addition, one or more of Cr, Mo, Ni, Cu, V, B, and Zr may be contained in an amount of 0.5% by mass or less, respectively, depending on the use of the steel.
[0030]
【Example】
The carbon steels having the components shown in Tables 3 and 4 were subjected to continuous casting and width reduction under the production conditions shown in Table 5, and the obtained steel pieces were examined for cracks.
[0031]
[Table 3]
Figure 2004169130
[0032]
[Table 4]
Figure 2004169130
[0033]
[Table 5]
Figure 2004169130
[0034]
As shown in Table 6, as shown in Table 6, the upper and lower surfaces of the steel slab were subjected to scarf cutting by 2 mm to 10 mm, and the surface was visually observed. Furthermore, a sample was cut out from the steel slab, and the state of cracks in the cross section was examined by color check.
[0035]
[Table 6]
Figure 2004169130
[0036]
Table 4 shows the results. From the table, when the conditions of A1, B1, C1, D1, E1, F1, G1, and H1 of the present invention were satisfied, no cracks were detected by visual observation and color check.
[0037]
On the other hand, in any of the comparative examples A2, B2, C2, D2, E2, F2, G2, and H2, cracks were observed by visual inspection and color check inspection of the slab. That is, Ti was lower than the lower limit in A2, Al was lower than the lower limit in B2, and Ca was lower than the lower limit in C2, so that the present invention was not satisfied. Further, in D2, Ti and Al exceeded the upper limit, and in E2, Al and Ca exceeded the upper limit, so that the present invention was not satisfied. Further, in F2, Ti is below the lower limit, and Al and Ca are above the upper limit.
[0038]
In G2, Ti is above the upper limit and Al is below the lower limit. In H2, the present invention was not satisfied and cracks occurred because Al and Ca fell below the lower limit values.
[0039]
【The invention's effect】
As described above, according to the present invention, even in a steel having a low Mn / S ratio, cracking during width reduction does not occur, and a good steel slab without surface flaws can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between element addition and aperture value.

Claims (2)

溶鋼から連続鋳造によって得られた鋳片から幅圧下して鋼片を製造する方法において、成分として質量%で
C:0.001〜0.5%、
Mn:0.1〜1.9%、
Si:0.005〜2.0%、
P:0.001〜0.1%、
S:0.001〜0.1%、
酸素:0.0005〜0.005%、
N:0.002〜0.005%含み、
さらに、
Ti:0.005〜0.05%
Al:0.005〜0.03%
Ca:0.0005〜0.01%を含み
かつ
Mn/S比が40未満であり、
残部鉄および不可避的不純物からなる溶鋼を連続鋳造して得られた鋳片を幅方向に圧下することを特徴とする幅圧下による表面欠陥が生じない鋼片の製造方法。
In a method for producing a steel slab by reducing the width from a slab obtained by continuous casting from molten steel, C: 0.001 to 0.5% by mass as a component,
Mn: 0.1 to 1.9%,
Si: 0.005 to 2.0%,
P: 0.001-0.1%,
S: 0.001-0.1%,
Oxygen: 0.0005 to 0.005%,
N: 0.002-0.005%
further,
Ti: 0.005 to 0.05%
Al: 0.005 to 0.03%
Ca: 0.0005 to 0.01%, and the Mn / S ratio is less than 40;
A method for producing a steel slab free of surface defects due to width reduction, characterized in that a slab obtained by continuously casting molten steel comprising the balance of iron and unavoidable impurities is reduced in the width direction.
さらに、Cr、Mo、Ni、Cu、V、B、Zrの一種または二種以上を、それぞれ質量%で、0.5%以下含むことを特徴とする請求項1記載の幅圧下による表面欠陥が生じない鋼片の製造方法。2. The method according to claim 1, further comprising 0.5% or less of one or more of Cr, Mo, Ni, Cu, V, B, and Zr in mass%. A method for producing billets that does not occur.
JP2002336835A 2002-11-20 2002-11-20 Method for manufacturing steel slab without any surface defect caused by edging Withdrawn JP2004169130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336835A JP2004169130A (en) 2002-11-20 2002-11-20 Method for manufacturing steel slab without any surface defect caused by edging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336835A JP2004169130A (en) 2002-11-20 2002-11-20 Method for manufacturing steel slab without any surface defect caused by edging

Publications (1)

Publication Number Publication Date
JP2004169130A true JP2004169130A (en) 2004-06-17

Family

ID=32700562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336835A Withdrawn JP2004169130A (en) 2002-11-20 2002-11-20 Method for manufacturing steel slab without any surface defect caused by edging

Country Status (1)

Country Link
JP (1) JP2004169130A (en)

Similar Documents

Publication Publication Date Title
AU2011275610B2 (en) Austenitic-ferritic stainless steel having improved machinability
CA2966476C (en) High toughness and high tensile strength thick steel plate with excellent material homogeneity and production method for same
TWI460293B (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP7063364B2 (en) High Mn steel
EP3722448A1 (en) High-mn steel and method for manufacturing same
JP4041511B2 (en) Low-carbon sulfur free-cutting steel with excellent machinability
JP2019178363A (en) AUSTENITIC STAINLESS STEEL WITH HIGH CONTENT OF Si, HAVING EXCELLENT MANUFACTURABILITY
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JP6359783B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
TW202138587A (en) Stainless steel, stainless steel material, and method for manufacturing stainless steel
JP2000034538A (en) Steel for machine structure excellent in machinability
WO2015033933A1 (en) Hot-rolled steel sheet having excellent cold workability and excellent surface properties and hardness after working
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
WO2020153407A1 (en) High-manganese steel cast slab production method and method for producing billet or sheet of high-manganese steel
CN117062927A (en) Martensitic stainless steel sheet excellent in corrosion resistance, method for producing same, and martensitic stainless steel tool product
JP4593006B2 (en) Method for producing a billet free from crack defects
KR20180000782A (en) Ferritic stainless steel having excellent low temperature toughness of welded joint
JP2004169130A (en) Method for manufacturing steel slab without any surface defect caused by edging
JP6597450B2 (en) Abrasion-resistant steel plate and method for producing the same
JP2971292B2 (en) Manufacturing method of austenitic stainless steel with few surface defects
JP2010280963A (en) Steel for cold working, method for producing steel for cold working, method for producing component for machine structure, and component for machine structure
JP2003166038A (en) Continuously cast slab free from intercrystalline cracking
JP6597449B2 (en) Abrasion-resistant steel plate and method for producing the same
JP2000126856A (en) Manufacture of slab free from surface defect caused by edging

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060207