JP2000126856A - Manufacture of slab free from surface defect caused by edging - Google Patents

Manufacture of slab free from surface defect caused by edging

Info

Publication number
JP2000126856A
JP2000126856A JP11159309A JP15930999A JP2000126856A JP 2000126856 A JP2000126856 A JP 2000126856A JP 11159309 A JP11159309 A JP 11159309A JP 15930999 A JP15930999 A JP 15930999A JP 2000126856 A JP2000126856 A JP 2000126856A
Authority
JP
Japan
Prior art keywords
weight
steel
slab
width
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11159309A
Other languages
Japanese (ja)
Inventor
Masamitsu Wakao
昌光 若生
Hiroaki Iiboshi
弘昭 飯星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11159309A priority Critical patent/JP2000126856A/en
Publication of JP2000126856A publication Critical patent/JP2000126856A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent any surface cracks generated in the edging by regulating the composition so as to contain Ti and Mg of specified quantity in a carbon steel having the composition consisting of C, Mn, Si, P, S, Al, N, O, Cu of respectively specified quantity, and the balance substantially Fe. SOLUTION: A molten steel whose composition is regulated to contain, by weight, 0.005-0.06% Ti and 0.0005-0.01% Mg in a carbon steel having the composition consisting of 0.001-0.5% C, 0.1-3% Mn, 0.005-2% Si, 0.001-0.1% P, 0.001-0.05% S, 0.001-0.1% Al, 0.0005-0.01% N, 0.0005-0.005% O, 0.05-2% Cu, and the balance substantially Fe, is continuously cast. This system is effective in a case where the carbon steel contains 0.05-2% one or more kinds of Nb, V, Cr, Mo, Ni, Zr, B and Ca. It is also effective in a case where the carbon steel contains <=0.1 % Sn.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造法で製造
した鋳片を幅圧下して鋳片を製造する方法に関し、特に
表面欠陥のない鋼片の製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a slab by reducing the width of a slab produced by a continuous casting method, and more particularly to a method for producing a slab having no surface defects.

【0002】[0002]

【従来の技術】鋼の大量生産を図るために、連続鋳造機
と幅圧下圧延機を組み合わせたプロセスが公知となって
いる。このプロセスは、連続鋳造では鋳片幅を一定にし
て鋳造し、その後の圧延機で幅圧下をすることにより鋳
片幅を変えるものであり、連鋳鋳造機での鋳型幅変更に
伴う時間ロスがないことによる生産性の向上や、幅変更
部の歩留まり向上が期待できる。
2. Description of the Related Art For mass production of steel, a process in which a continuous casting machine and a width reduction mill are combined is known. This process involves changing the width of the slab by changing the width of the slab by reducing the width of the slab in a continuous caster and then reducing the width in a subsequent rolling mill. It can be expected that productivity is improved due to the absence of the gap, and that the yield of the width changing portion is improved.

【0003】しかしながら、鋳片内にCuやCu−Sn
またはNbやV、N等を含有する場合には、幅圧下時に
割れが発生し、表面欠陥につながるという問題がある。
これらの割れ発生は鋼の脆化が原因となっており、Cu
やCu−Snを含有する鋼については、加熱炉で鋳片表
面にスケールが生成した際、酸化されにくいCuやCu
−Sn合金が、鋳片とスケールの界面に集まり、これら
が800〜1200℃近くの温度でγ結晶粒界へ浸入す
ることによって生じる脆化であることが判っており、ま
た、Nb−NやNb−V−Nを含む鋳片の脆化について
は、700〜1000℃近くの温度で起こるオーステナ
イト結晶粒界への析出物に起因する脆化であることが判
っている。
[0003] However, Cu or Cu-Sn
Alternatively, when Nb, V, N, or the like is contained, there is a problem that cracks occur at the time of width reduction, leading to surface defects.
The occurrence of these cracks is due to the embrittlement of steel, and Cu
For steel containing Cu and Cu-Sn, when scale is generated on the slab surface in a heating furnace, Cu or Cu that is hardly oxidized
It has been found that -Sn alloys gather at the interface between the slab and the scale, and that these are embrittlements caused by infiltration into the γ grain boundaries at temperatures near 800 to 1200 ° C. It has been known that embrittlement of a cast slab containing Nb-VN is caused by precipitation at austenite crystal grain boundaries at a temperature near 700 to 1000 ° C.

【0004】これらの脆化を防止する手段として、鋳片
内のCuやSn量を極力低減することが望ましいが、C
uやSnはスクラップから混入する場合が多く、低減す
ることには限界がある。また、材質上Cuを積極的に含
ませる鋼種もあり、このようにCuやCu−Snを含む
鋼においても、幅圧下した際に割れの生じない方法が望
まれている。また、Nb−NやNb−V−Nを含む鋳片
について、幅圧下による鋳片への変形歪みがかかる前の
鋳片温度を700〜1000℃近くの脆化域より高温に
保つことが有効であることは公知である。しかし、幅圧
下の場合は1回当たり圧下量に制約があり、必要幅圧下
量を得るには、多パスの圧下となるため、多パス圧下の
途中で鋳片温度が脆化域に入らないように圧下前の鋳片
温度を非常に高く保つ必要があり、経済的に成立が困難
となる。したがって、温度履歴の制約や含有量の制約が
ない対策が要望されていた。
As means for preventing such embrittlement, it is desirable to reduce the amounts of Cu and Sn in the slab as much as possible.
In many cases, u and Sn are mixed from scrap, and there is a limit to the reduction. In addition, there is a steel type in which Cu is positively contained in the material, and a method that does not cause cracking when the width is reduced even in steel containing Cu or Cu—Sn is desired. In addition, for a slab containing Nb-N or Nb-V-N, it is effective to keep the slab temperature before applying deformation strain to the slab due to width reduction to a temperature higher than the embrittlement region near 700 to 1000 ° C. Is known. However, in the case of width reduction, there is a limitation on the amount of reduction per operation, and in order to obtain the required width reduction amount, multiple passes are reduced, so that the slab temperature does not enter the embrittlement zone during the multipass reduction. As described above, it is necessary to keep the slab temperature before the reduction very high, and it is difficult to achieve economically. Therefore, there has been a demand for a measure that does not have a restriction on the temperature history or a restriction on the content.

【0005】[0005]

【発明が解決しようとする課題】本発明は、連続鋳造前
の溶鋼段階でTiとMgを適量添加することにより、脆
化の原因となる元素(Cu、Sn、Nb、V、N)を含
有する鋼を幅圧下する場合にも、表面割れを防止するこ
とが可能な製造方法を提供するものである。
SUMMARY OF THE INVENTION The present invention contains elements (Cu, Sn, Nb, V, N) which cause embrittlement by adding appropriate amounts of Ti and Mg in a molten steel stage before continuous casting. It is an object of the present invention to provide a manufacturing method capable of preventing surface cracks even when the steel to be rolled is reduced in width.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するためになされたものであり、以下の構成を執るこ
とを特徴とする。手段1は、C:0.001〜0.5重
量%、Mn:0.1〜3.0重量%、Si:0.005
〜2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、N:0.0005〜0.01重量%、酸素を
0.0005〜0.005重量%含み、Cuを0.05
〜2.0重量%含む、残部鉄および不可避的不純物から
なる炭素鋼に対して、Tiを0.005〜0.06重量
%かつMgを0.0005〜0.01重量%となるよう
に成分調整をした溶鋼を連続鋳造し、その鋳造した鋳片
を幅圧下することをにより表面欠陥が生じない鋼片の製
造方法である。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and has the following configuration. Means 1 is as follows: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005%
To 2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1% by weight, N: 0.0005 to 0.01% by weight, containing 0.0005 to 0.005% by weight of oxygen and 0.05% of Cu
The composition is such that the content of Ti is 0.005 to 0.06% by weight and the content of Mg is 0.0005 to 0.01% by weight based on carbon steel containing iron and unavoidable impurities. This is a method of producing a steel slab in which surface defects do not occur by continuously casting molten steel that has been adjusted and reducing the width of the cast slab.

【0007】手段2は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、N:0.0005〜0.01重量%、酸素を
0.0005〜0.005重量%含み、その他として、
Nb、V、Cr、Mo、Ni、Zr、B、Caの一種ま
たは二種以上を0.1重量%以下含み、Cuを0.05
〜2.0重量%含む、残部鉄および不可避的不純物から
なる炭素鋼に対して、Tiを0.005〜0.06重量
%かつMgを0.0005〜0.01重量%となるよう
に成分調整をした溶鋼を連続鋳造し、その鋳造した鋳片
を幅圧下する幅圧下による表面欠陥が生じない鋼片の製
造方法である。
Means 2 comprises C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to 5% by weight.
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1% by weight, N: 0.0005 to 0.01% by weight, containing 0.0005 to 0.005% by weight of oxygen.
One or more of Nb, V, Cr, Mo, Ni, Zr, B, and Ca are contained in an amount of 0.1% by weight or less, and Cu is contained in an amount of 0.05% or less.
The composition is such that the content of Ti is 0.005 to 0.06% by weight and the content of Mg is 0.0005 to 0.01% by weight based on carbon steel containing iron and unavoidable impurities. This is a method for producing a steel slab in which the molten steel that has been adjusted is continuously cast, and the cast slab is subjected to a width reduction in which the surface defect does not occur due to the width reduction.

【0008】手段3は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、N:0.0005〜0.01重量%、酸素を
0.0005〜0.005重量%含み、Cuを0.05
〜2.0重量%かつSnを0.1重量%以下含む、残部
鉄および不可避的不純物からなる炭素鋼に対して、Ti
を0.005〜0.06重量%かつMgを0.0005
〜0.01重量%となるように成分調整をした溶鋼を連
続鋳造し、この鋳造した鋳片を幅圧下することを幅圧下
による表面欠陥が生じない鋼片の製造方法である。
Means 3 comprises C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to 5% by weight.
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1% by weight, N: 0.0005 to 0.01% by weight, containing 0.0005 to 0.005% by weight of oxygen and 0.05% of Cu
To 2.0% by weight and a carbon steel containing 0.1% by weight or less of Sn and the balance of iron and unavoidable impurities,
0.005 to 0.06% by weight and Mg
A method of manufacturing a steel slab in which the molten steel whose composition is adjusted to 0.01% by weight is continuously cast, and the cast slab is reduced in width by a width reduction does not cause surface defects due to the width reduction.

【0009】手段4は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、N:0.0005〜0.01重量%、酸素を
0.0005〜0.005重量%含み、その他として、
Nb、V、Cr、Mo、Ni、Zr、B、Caの一種ま
たは二種以上を0.1重量%以下含み、Cuを0.05
〜2.0重量%かつSnを0.1重量%以下含む、残部
鉄および不可避的不純物からなる炭素鋼に対して、Ti
を0.005〜0.06重量%かつMgを0.0005
〜0.01重量%となるように成分調整をした溶鋼を連
続鋳造し、その鋳造した鋳片を幅圧下する幅圧下による
表面欠陥が生じない鋼片の製造方法である。
Means 4 is as follows: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1% by weight, N: 0.0005 to 0.01% by weight, containing 0.0005 to 0.005% by weight of oxygen.
One or more of Nb, V, Cr, Mo, Ni, Zr, B, and Ca are contained in an amount of 0.1% by weight or less, and Cu is contained in an amount of 0.05% or less.
To 2.0% by weight and a carbon steel containing 0.1% by weight or less of Sn and the balance of iron and unavoidable impurities,
0.005 to 0.06% by weight and Mg
This is a method of manufacturing a steel slab in which molten steel whose composition is adjusted to be 0.01% by weight is continuously cast, and the cast slab is reduced in width by a width reduction without surface defects.

【0010】手段5は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%を含
み、残部鉄および不可避的不純物からなる炭素鋼に対し
て、Tiを0.005〜0.06重量%かつMgを0.
0005〜0.01重量%となるように成分調整をした
溶鋼を連続鋳造し、その鋳造した鋳片を幅圧下すること
により表面欠陥が生じない鋼片の製造方法である。
Means 5 are: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1-5% by weight, 0.0005-0.005% by weight of oxygen, and 0.005-0.06% by weight of Ti and 0. 0% by weight of Mg based on carbon steel consisting of iron and unavoidable impurities.
This is a method for producing a steel slab in which surface defects do not occur by continuously casting molten steel whose components are adjusted to be 0005 to 0.01% by weight and reducing the width of the cast slab.

【0011】手段6は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%を含
み、かつNを0.002〜0.015重量%含み、残部
鉄および不可避的不純物からなる炭素鋼に対して、Ti
を0.005〜0.06重量%かつMgを0.0005
〜0.01重量%となるように成分調整した溶鋼を連続
鋳造し、その鋳造した鋳片を幅圧下することにより表面
欠陥が生じない鋼片の製造方法である。
Means 6 are: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to 5% by weight.
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1% by weight, 0.0005 to 0.005% by weight of oxygen, 0.002 to 0.015% by weight of N, and the balance of carbon steel consisting of iron and unavoidable impurities,
0.005 to 0.06% by weight and Mg
This is a method for producing a steel slab in which surface defects do not occur by continuously casting molten steel whose composition is adjusted to be 0.01% by weight and reducing the width of the cast slab.

【0012】手段7は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%を含
み、かつNbを0.02〜0.1重量%かつNを0.0
02〜0.015重量%含み、残部鉄および不可避的不
純物からなる炭素鋼に対して、Tiを0.005〜0.
06重量%かつMgを0.0005〜0.01重量%と
なるように成分調整した溶鋼を連続鋳造し、その鋳造し
た鋳片を幅圧下することにより表面欠陥が生じない鋼片
の製造方法である。
Means 7 are: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to 5% by weight.
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1 wt%, 0.0005 to 0.005 wt% oxygen, 0.02 to 0.1 wt% Nb and 0.0
Ti in a carbon steel containing 0.002 to 0.015% by weight, the balance being iron and unavoidable impurities.
A method for producing a steel slab in which a molten steel having a composition adjusted to be 0.6% by weight and Mg in a range of 0.0005 to 0.01% by weight is continuously cast, and the cast slab is reduced in width by a width reduction to prevent surface defects. is there.

【0013】手段8は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%を含
み、かつNbを0.02〜0.1重量%かつVを0.0
1〜0.1重量%かつNを0.002〜0.015重量
%含み、残部鉄および不可避的不純物からなる炭素鋼に
対して、Tiを0.005〜0.06重量%かつMgを
0.0005〜0.01重量%となるように成分調整し
た溶鋼を連続鋳造し、その鋳造した鋳片を幅圧下するこ
とにより表面欠陥が生じない鋼片の製造方法である。
Means 8 are: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to 5% by weight.
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1 wt%, oxygen 0.0005 to 0.005 wt%, Nb 0.02 to 0.1 wt% and V 0.0
1 to 0.1% by weight and 0.002 to 0.015% by weight of N, and 0.005 to 0.06% by weight of Ti and 0 to 0% by weight of the carbon steel consisting of iron and unavoidable impurities. This is a method for producing a steel slab in which surface defects do not occur by continuously casting molten steel whose composition is adjusted to be 0.0005 to 0.01% by weight and reducing the width of the cast slab.

【0014】手段9は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%、そ
の他として、鋼の用途に応じてCr、Mo、Ni、B、
Zr、Caの一種または二種以上を0.1重量%以下含
み、残部鉄および不可避的不純物からなる炭素鋼に対し
て、連続鋳造で製造して出来た鋳片を幅方向に圧下する
際に、Tiを0.005〜0.06重量%かつMgを
0.0005〜0.01重量%となるように成分調整し
た溶鋼を連続鋳造し、その鋳造した鋳片を幅圧下するこ
とにより表面欠陥が生じない鋼片の製造方法である。
Means 9 are as follows: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1 wt%, oxygen 0.0005 to 0.005 wt%, and others, such as Cr, Mo, Ni, B,
When rolling down a slab produced by continuous casting to carbon steel containing one or more of Zr and Ca in an amount of 0.1% by weight or less and the balance of iron and unavoidable impurities, , Continuous casting of molten steel in which the composition is adjusted so that Ti is 0.005 to 0.06% by weight and Mg is 0.0005 to 0.01% by weight, and the cast slab is reduced in width to reduce surface defects. This is a method for producing a billet in which no slag occurs.

【0015】手段10は、C:0.001〜0.5重量
%、Mn:0.1〜3.0 量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%、そ
の他として、鋼の用途に応じてCr、Mo、Ni、B、
Zr、Caの一種または二種以上を0.1重量%以下か
つNを0.002〜0.015重量%含み、残部鉄およ
び不可避的不純物からなる炭素鋼に対して、連続鋳造で
製造して出来た鋳片を幅方向に圧下する際に、Tiを
0.005〜0.06重量%かつMgを0.0005〜
0.01重量%となるように成分調整した溶鋼を連続鋳
造し、その鋳造した鋳片を幅圧下することにより表面欠
陥が生じない鋼片の製造方法である。
Means 10 are: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1 wt%, oxygen 0.0005 to 0.005 wt%, and others, such as Cr, Mo, Ni, B,
A carbon steel containing one or more of Zr and Ca in an amount of 0.1% by weight or less and N in an amount of 0.002 to 0.015% by weight and a balance of iron and inevitable impurities is produced by continuous casting. When the resulting slab is reduced in the width direction, 0.005 to 0.06% by weight of Ti and 0.0005 to
This is a method for producing a steel slab in which surface defects do not occur by continuously casting molten steel whose composition is adjusted to 0.01% by weight and reducing the width of the cast slab.

【0016】手段11は、C:0.001〜0.5重量
%、Mn:0.1〜3.0重量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%、そ
の他として、鋼の用途に応じてCr、Mo、Ni、B、
Zr、Caの一種または二種以上を0.1重量%以下含
み、かつNbを0.02〜0.1重量%かつNを0.0
02〜0.015重量%含み、残部鉄および不可避的不
純物からなる炭素鋼に対して、Tiを0.005〜0.
06重量%かつMgを0.0005〜0.01重量%と
なるように成分調整をした溶鋼を連続鋳造し、その鋳造
した鋳片を幅圧下することにより表面欠陥が生じない鋼
片の製造方法である。
Means 11 are: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to 5% by weight.
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1 wt%, oxygen 0.0005 to 0.005 wt%, and others, such as Cr, Mo, Ni, B,
0.1% by weight or less of one or more of Zr and Ca, 0.02 to 0.1% by weight of Nb and 0.0% by weight of N
Ti in a carbon steel containing 0.002 to 0.015% by weight, the balance being iron and unavoidable impurities.
A method for producing a steel slab in which surface defects do not occur by continuously casting molten steel having a composition adjusted to be 0.6% by weight and Mg being 0.0005% to 0.01% by weight, and reducing the width of the cast slab. It is.

【0017】手段12は、C:0.001〜0.5重量
%、Mn:0.1〜3.0 量%、Si:0.005〜
2.0重量%、P:0.001〜0.1重量%、S:
0.001〜0.05重量%、Al:0.001〜0.
1重量%、酸素を0.0005〜0.005重量%、そ
の他として、鋼の用途に応じてCr、Mo、Ni、B、
Zr、Caの一種または二種以上を0.1重量%以下を
含み、かつNbを0.02〜0.1重量%かつVを0.
01〜0.1重量%、かつNを0.002〜0.015
重量%含み、残部鉄および不可避的不純物からなる炭素
鋼に対して、Tiを0.005〜0.06重量%かつM
gを0.0005〜0.01重量%となるように成分調
整した溶鋼を連続鋳造し、その鋳造した鋳片を幅圧下す
ることにより表面欠陥が生じない鋼片の製造方法であ
る。
Means 12 are as follows: C: 0.001 to 0.5% by weight, Mn: 0.1 to 3.0% by weight, Si: 0.005 to 5% by weight.
2.0% by weight, P: 0.001 to 0.1% by weight, S:
0.001-0.05% by weight, Al: 0.001-0.
1 wt%, oxygen 0.0005 to 0.005 wt%, and others, such as Cr, Mo, Ni, B,
One or more of Zr and Ca are contained in an amount of 0.1% by weight or less, Nb is contained in an amount of 0.02 to 0.1% by weight, and V is contained in an amount of 0.1 to 0.1% by weight.
01 to 0.1% by weight, and N is 0.002 to 0.015
0.005 to 0.06% by weight of Ti and M with respect to carbon steel containing iron and inevitable impurities.
This is a method for producing a steel slab in which surface defects do not occur by continuously casting molten steel whose components are adjusted so that the g becomes 0.0005 to 0.01% by weight, and reducing the width of the cast slab.

【0018】本発明者らは、まず、鋳片内にCuやCu
−SnまたはNbやV、N等を含有する場合の脆化が、
いずれもオーステナイト結晶粒界の脆化であることに着
目して、これらの脆化を防止する手段として、結晶粒径
を鋳造の段階から細かくすることにより、結晶粒界にC
uやCu−Sn合金の液相が浸入してもまたは、Nbや
V、N等の析出物が析出しても脆化を生じさせないよう
にすることを発想し、結晶粒径を細かくする手段とし
て、鋼中の微細な介在物を利用することを着想するに至
った。
The present inventors first set Cu or Cu in a slab.
Embrittlement when containing Sn or Nb, V, N, etc.,
Focusing on the embrittlement of austenite grain boundaries in all cases, as a means of preventing these embrittlements, the crystal grain size is reduced from the casting stage, and C
Means for reducing the crystal grain size in order to prevent embrittlement even if the liquid phase of u or Cu-Sn alloy enters or precipitates such as Nb, V, and N precipitate. As a result, the idea of utilizing fine inclusions in steel has been conceived.

【0019】以下に本発明の詳細を記す。本発明者ら
は、まず、幅圧下時の脆化を防止する手段として、結晶
粒径の鋳造の段階から細かくすることにより、結晶粒界
にCuやCu−Sn合金の液相が浸入してもまた、Nb
やV、N等の析出物が析出しても脆化を生じさせないよ
うにすることを着想した。結晶粒径を細かくすれば、結
晶粒界の面積は大きくなるが、生成するCやCu−Sn
合金液相の量が一定であれば、逆に粒界1個当たりの浸
入深さは浅くなり、また、NbやV、N等では逆に単位
面積当たりの析出物の数が少なくなるので、全析出物の
量が変わらなくても、脆化を抑制できるものと考えられ
る。
The details of the present invention are described below. The present inventors firstly, as means for preventing embrittlement during width reduction, by reducing the crystal grain size from the casting stage, the liquid phase of Cu or Cu-Sn alloy enters the crystal grain boundary. Also Nb
It has been conceived to prevent embrittlement from occurring even when precipitates such as V, N and the like precipitate. If the crystal grain size is made smaller, the area of the crystal grain boundary becomes larger, but C or Cu-Sn
If the amount of the alloy liquid phase is constant, on the contrary, the penetration depth per grain boundary becomes shallower, and in the case of Nb, V, N, etc., on the contrary, the number of precipitates per unit area becomes smaller. It is considered that embrittlement can be suppressed even if the amount of the substance does not change.

【0020】このための手段として、本発明者らは結晶
粒の元になる凝固組織を細かくすること、更に鋼中の介
在物を利用して結晶粒の成長を抑制することが可能であ
ろうと考えた。鋼中にはもともと脱酸時に生成した酸化
物系の介在物が多数存在している。このような酸化物は
比較的サイズが大きいために、結晶粒の成長をピンニン
グで抑制する効果は期待できないが、酸化物を微細にす
ることができれば、結晶粒の成長を抑制することができ
ることを思い至った。
As a means for achieving this, the inventors of the present invention will be able to reduce the solidification structure from which the crystal grains are formed and to suppress the growth of the crystal grains by using inclusions in the steel. Thought. There are many oxide-based inclusions originally formed during deoxidation in steel. Such an oxide is relatively large in size, so that the effect of suppressing the growth of crystal grains by pinning cannot be expected. However, if the oxide can be made finer, the growth of crystal grains can be suppressed. I thought.

【0021】そこでまず、鋼が凝固する際に凝固組織を
微細にする方法について検討した。凝固組織を微細にす
る方法として、Mgを溶鋼中に添加することを考えた。
次に、微細な酸化物を生成する脱酸法を検討した。鋼中
の酸化物を微細にする方法についても種々の方法が公知
となっているが、その一つとして、特開平5−4397
7には、Ti脱酸をした後にMgを適量添加するとよい
ことが示されている。この中で述べられているのは、溶
接後の靱性が向上するという効果であるが、本発明者ら
は、この方法が溶接部だけでなく鋳片の結晶粒成長抑制
に対しても効果があるのではないかと予想した。この予
想を基に本発明者らは、Ti−Mg脱酸を鋳片の幅圧下
時の脆化防止に適用することが可能であろうとの結論を
得た。
[0021] First, a method of refining the solidification structure when the steel solidifies was studied. As a method of refining the solidification structure, it was considered to add Mg to molten steel.
Next, a deoxidation method for forming a fine oxide was examined. Various methods have been known for making oxides in steel finer, and one of them is disclosed in JP-A-5-4397.
No. 7 shows that an appropriate amount of Mg should be added after deoxidation of Ti. What is mentioned in this is the effect that the toughness after welding is improved, but the present inventors have found that this method is not only effective for suppressing the grain growth of the slab but also for the slab. I expected there was. Based on this expectation, the present inventors have concluded that it would be possible to apply Ti-Mg deoxidation to the prevention of embrittlement of a slab at the time of width reduction.

【0022】[0022]

【表1】 [Table 1]

【0023】[0023]

【表2】 [Table 2]

【0024】まず、Ti−Mg脱酸を行って、酸化Ti
や酸化Mgを生成させて組織を微細化させることによ
り、脆化が防止できるかどうかについて、ラボ実験で調
査した。表1および表2に示す成分の鋼から引張り試験
片を切り出し、引張りが可能な熱サイクル試験機で実験
を行った。引張りを与える温度を変えた実験を行い、引
張り時の断面収縮率を調査した。併せて、試料片の破面
を走査型電子顕微鏡と透過型電子顕微鏡で調査した。図
1は結晶粒内およびCuやCu−Sn合金の結晶粒界へ
の浸入状況を調査し、また図2は結晶粒内および結晶粒
界のNb(CN)やV(CN)等の析出物分布状況を調
査した。
First, Ti-Mg deoxidation is performed to obtain Ti oxide.
A laboratory experiment was conducted to determine whether embrittlement can be prevented by generating fine particles or Mg oxide to refine the structure. Tensile test pieces were cut out of steel having the components shown in Tables 1 and 2, and an experiment was performed using a heat cycle tester capable of pulling. An experiment was performed in which the temperature at which the tension was applied was changed, and the cross-sectional shrinkage during the tension was examined. In addition, the fracture surface of the sample piece was examined with a scanning electron microscope and a transmission electron microscope. FIG. 1 shows the state of infiltration into crystal grains and the boundaries of Cu and Cu-Sn alloy into crystal grains. FIG. 2 shows precipitates such as Nb (CN) and V (CN) in crystal grains and in crystal grain boundaries. The distribution situation was investigated.

【0025】図1は主にCu、Snを含有した鋼(請求
項1〜4に対応、以下同様)について調査した結果であ
り、脆化挙動に及ぼすTi濃度およびMg濃度の影響を
示す。ここで、白丸と白三角は脆化が生じなかった場
合、黒丸と黒三角は脆化が生じた場合である。グリーブ
ル型の引張り試験機により、TiおよびMg濃度を変化
させて製造した鋼を所定の温度で引張った時の破断面の
絞り値が、60%を切った場合に脆化していると判断し
た。試験はサンプル表面にスケールを発生させるために
空気中で行った。
FIG. 1 shows the results of investigations on steels mainly containing Cu and Sn (corresponding to claims 1 to 4, the same applies hereinafter), and shows the effects of Ti concentration and Mg concentration on the embrittlement behavior. Here, white circles and white triangles indicate cases where embrittlement did not occur, and black circles and black triangles indicate cases where embrittlement occurred. It was determined that the steel produced by changing the concentrations of Ti and Mg by a grease-type tensile tester was brittle when the drawing value of the fractured surface when pulled at a predetermined temperature was less than 60%. The test was performed in air to generate scale on the sample surface.

【0026】図1には、試験条件として、一番厳しい条
件の場合を選択した。すなわち、温度は一番脆化の激し
い900℃とした。図1よりTiを0.005重量%以
上かつMgを0.0005重量%以上添加することによ
り、白丸または白三角となる。すなわち、破断面の絞り
値が60%を越えて脆化が解消されていることが判る。
しかしながら、Tiを0.06重量%より多く、または
Mgを0.01重量%より多くなるように添加した場合
には、逆に脆化が生じている。
In FIG. 1, the most severe condition was selected as the test condition. That is, the temperature was set to 900 ° C., which is the most brittle. From FIG. 1, white circles or white triangles are obtained by adding 0.005% by weight or more of Ti and 0.0005% by weight or more of Mg. That is, it can be understood that embrittlement has been eliminated because the aperture value of the fractured surface exceeds 60%.
However, when Ti is added in an amount of more than 0.06% by weight or Mg is added in an amount of more than 0.01% by weight, conversely, embrittlement occurs.

【0027】図2は主にNbやV、Nを含有した鋼(請
求項5〜12に対応、以下同様)について調査したもの
で、脆化挙動に及ぼすTi濃度およびMg濃度の影響を
示した。ここで、白丸、白四角、白三角は脆化が生じな
かった場合で、黒丸、黒四角、黒三角は脆化が生じた場
合である。グリーブル型の引張り試験機により、Tiお
よびMg濃度を変化させて製造した鋼を所定の温度で引
張った時の破断面の絞り値が60%を切った場合に脆化
していると判断した。
FIG. 2 is a survey of steels mainly containing Nb, V, and N (corresponding to claims 5 to 12, the same applies hereinafter), and shows the effects of Ti concentration and Mg concentration on the embrittlement behavior. . Here, open circles, open squares, and open triangles indicate cases where embrittlement did not occur, and open circles, open squares, and open triangles indicate cases where embrittlement occurred. It was determined that the steel produced by changing the concentrations of Ti and Mg with a grease-type tensile tester was brittle when the drawing value of the fractured surface was less than 60% when the steel was pulled at a predetermined temperature.

【0028】図2には、試験条件として、一番厳しい条
件の場合を選択した。すなわち、温度は一番脆化の激し
い800℃とした。図2よりTiを0.005重量%以
上かつMgを0.0005重量%以上添加することによ
り、破断面の絞り値が60%を越えて白丸、白四角また
は白三角となる。すなわち、脆化が解消されていること
が判る。しかしながら、Tiを0.06重量%より多
く、またはMgを0.01重量%より多く添加した場合
には、逆に脆化が生じている。
In FIG. 2, the severest conditions were selected as the test conditions. That is, the temperature was set to 800 ° C., which is the most brittle. As shown in FIG. 2, by adding 0.005% by weight or more of Ti and 0.0005% by weight or more of Mg, the aperture value of the fractured surface exceeds 60% and becomes a white circle, white square or white triangle. That is, it is understood that embrittlement has been eliminated. However, when more than 0.06% by weight of Ti or more than 0.01% by weight of Mg is added, embrittlement occurs on the contrary.

【0029】次に、このような効果が結晶粒径が細かく
なったためであることを確認するために、破断面近傍の
結晶組織を調べたところ、絞り値が60%以上と良好な
場合には、いずれにおいても結晶粒が微細になっている
ことが確認できた。すなわち、予想通り、結晶粒径が微
細になったことで結晶粒界にCuやCu−Sn合金の液
相が浸入しても、また、結晶粒界にNb(CN)やV
(CN)等の析出物が存在しても脆化を防止することが
できた。
Next, in order to confirm that such an effect is due to the reduction in the crystal grain size, the crystal structure near the fractured surface was examined. In each case, it was confirmed that the crystal grains were fine. That is, as expected, even if the liquid phase of Cu or Cu—Sn alloy penetrates into the crystal grain boundaries due to the fine crystal grain size, Nb (CN) or V
Embrittlement could be prevented even when precipitates such as (CN) were present.

【0030】以下に、本発明の条件を規定した理由につ
いて説明する。対象となる鋼種は、炭素鋼でCuが含ま
れるもの、CuとSnが含まれるもの、または、Nが含
まれるもの、NbとNが含まれるもの、さらにはNb、
VとNが含まれているものならば、どんな鋼であっても
よい。しかしながら、実際に使用される鋼材の鋼成分範
囲を考慮すると以下のような成分範囲となる。
The reason for defining the conditions of the present invention will be described below. The target steel types are carbon steel containing Cu, containing Cu and Sn, or containing N, containing Nb and N, and further containing Nb,
Any steel containing V and N may be used. However, considering the steel composition range of the steel material actually used, the following composition range is obtained.

【0031】Cは鋼の強度を持たす為に不可欠の元素で
あるため、下限を0.001重量%とし、上限は板材で
用いられる最大炭素量として0.5重量%とした。ま
た、Mnも強度を得るために必要でありその効果を出す
ために下限を0.1重量%とし、上限は特殊用途で使用
される場合の最大値3.0重量%とした。Siは用途に
よっては不要の場合もあるが、不可避的に混入するため
その下限を0.005重量%とし、上限は特殊用途で用
いられる2.0重量%とした。
Since C is an indispensable element for imparting the strength of steel, the lower limit is set to 0.001% by weight, and the upper limit is set to 0.5% by weight as the maximum amount of carbon used in the sheet material. Also, Mn is necessary for obtaining strength and the lower limit is set to 0.1% by weight in order to exert its effect, and the upper limit is set to the maximum value of 3.0% by weight when used for special applications. Although Si may be unnecessary depending on the use, it is unavoidably mixed, so the lower limit is 0.005% by weight, and the upper limit is 2.0% by weight used for special purposes.

【0032】Pは鋼に有害な元素であるため、その上限
を0.1重量%とし極力少ないほうが望ましいが、不可
避的に混入するため下限値0.001重量%が現実的で
ある。Sも同様に製品特性に害をなす場合が多く極力低
位とすることが望ましいが、不可避的に混入するため下
限値0.001重量%が現実的である。また、上限は連
続鋳造時の割れを防ぐために0.05重量%とした。
Since P is an element harmful to steel, its upper limit is preferably set to 0.1% by weight and is as small as possible. However, since P is inevitably mixed, the lower limit of 0.001% by weight is practical. Similarly, S also often impairs the product characteristics, and is desirably as low as possible. However, since it is inevitably mixed, the lower limit of 0.001% by weight is practical. The upper limit is set to 0.05% by weight to prevent cracking during continuous casting.

【0033】CuおよびSnは本発明の対象元素であ
り、CuおよびSnは鋼の原料であるスクラップから混
入する。また、Cuは材料の強度を上げるためにも用い
られる。Cuの下限は脆化を生じる最低濃度として、
0.05重量%とした。また、Cuの上限は、材質に悪
影響を与える濃度として、2.0重量%とした。一方、
Snの上限は本発明の効果が安定する上限である0.1
重量%とした。
Cu and Sn are target elements of the present invention, and Cu and Sn are mixed in from scrap, which is a raw material of steel. Cu is also used to increase the strength of the material. The lower limit of Cu is the lowest concentration that causes embrittlement,
It was 0.05% by weight. The upper limit of Cu was set to 2.0% by weight as a concentration that adversely affects the material. on the other hand,
The upper limit of Sn is 0.1 at which the effect of the present invention is stabilized.
% By weight.

【0034】Nb、V、Nも本発明に関係する元素であ
り、材料の強度や靱性を上げるために用いられている
が、主にNbやV、Nを含有した鋼については、その効
果を得るためにはNb、V、Nのそれぞれ上限が制限さ
れる。また、Nb、V、Nそれぞれの下限はそれぞれ脆
化の発生しない値で規定した。この観点から、Nb、
V、Nの範囲をNb:0.02〜0.10重量%、V:
0.01〜0.10重量%、N:0.002〜0.01
5重量%とした。また、主にCu、Snを含有した鋼に
ついては、N:0.0005〜0.010重量%とし
た。
Nb, V, and N are also elements related to the present invention, and are used to increase the strength and toughness of the material. However, the effects of steel mainly containing Nb, V, and N are not significant. To obtain it, the upper limits of Nb, V, and N are limited. Further, the lower limits of Nb, V, and N were defined as values at which embrittlement did not occur. From this viewpoint, Nb,
The range of V and N is Nb: 0.02 to 0.10% by weight, V:
0.01 to 0.10% by weight, N: 0.002 to 0.01
It was 5% by weight. Further, for steel mainly containing Cu and Sn, the N content was set to 0.0005 to 0.010% by weight.

【0035】Alは脱酸元素として一般的に使用されて
いるが、Tiの下限値は本実験で脆化抑制効果が現れな
いために、上限は0.1重量%と規定した。また下限に
ついては、不可避的に混入される値として、0.001
重量%とした。
Although Al is generally used as a deoxidizing element, the lower limit of Ti is set to 0.1% by weight because the effect of suppressing embrittlement does not appear in this experiment. The lower limit is 0.001 as a value that is inevitably mixed.
% By weight.

【0036】TiおよびMgは本発明の重要な元素であ
る。Tiの下限値は本実験で脆化抑制の効果が現れた
0.005重量%とした。また、上限については、脆化
が再び出現した0.06重量%と規定した。Mgについ
ても同様に、下限値0.0005重量%、上限値0.0
1重量%とした。
[0036] Ti and Mg are important elements of the present invention. The lower limit of Ti was set to 0.005% by weight at which the effect of suppressing embrittlement appeared in this experiment. The upper limit was defined as 0.06% by weight at which embrittlement appeared again. Similarly, for Mg, the lower limit is 0.0005% by weight, and the upper limit is 0.0% by weight.
1% by weight.

【0037】また、酸素も本発明の重要な元素である。
MgやTiが酸化物となるためには酸素が必要である
が、酸素濃度が0.0005重量%未満では、酸化物の
個数が足りなくなる。また、酸化物があまり多くなると
逆に脆化に影響するので、上限を0.0050重量%と
した。
[0037] Oxygen is also an important element of the present invention.
Oxygen is required for Mg and Ti to become oxides, but if the oxygen concentration is less than 0.0005% by weight, the number of oxides becomes insufficient. Further, too much oxide adversely affects embrittlement, so the upper limit was made 0.0050% by weight.

【0038】その他、鋼の用途に応じて主にCu、Sn
含有鋼では、Nb、V、Cr、Mo、Ni、Zr、B、
Caの一種または二種以上を、主にNb、V、N含有鋼
では、Cr、Mo、Cu、Ni、Zr、B、Caの一種
または二種以上を0.1重量%以下含んでも構わない。
なお、実際の製造プロセスでは、添加した元素が100
%溶鋼中に含まれることになるわけではないので、歩留
りを考慮して余分に添加する必要がある。また、添加方
法については、特に規定はしない。上記条件を満足する
ように鋼中に含有できる方法であれば、どのような方法
でも構わない。
In addition, mainly Cu, Sn
In the contained steel, Nb, V, Cr, Mo, Ni, Zr, B,
One or two or more kinds of Ca, mainly Nb, V, and N-containing steels, may contain one or more kinds of Cr, Mo, Cu, Ni, Zr, B, and Ca in an amount of 0.1% by weight or less. .
In the actual manufacturing process, the added element is 100
% Is not necessarily contained in the molten steel, so it is necessary to add extra in consideration of the yield. There is no particular limitation on the method of addition. Any method may be used as long as it can be contained in steel so as to satisfy the above conditions.

【0039】[0039]

【実施例】表3および表4,5に示す成分の炭素鋼を表
6および表7に示す製造条件で連続鋳造および幅圧下を
し、得られた鋼片で割れを調整した。割れの調査方法と
しては、鋼片上面と下面にスカーフ溶削を2〜10mm
行い、表面を目視観察した。更に鋼片からサンプルを切
り出し、断面の割れの状態をカラーチェックで調査し
た。なお、本実験においては、TiおよびMgは、真空
二次精錬装置(RH)内で添加した。
EXAMPLES Carbon steels having the components shown in Tables 3 and 4 and 5 were subjected to continuous casting and width reduction under the production conditions shown in Tables 6 and 7, and cracks were adjusted with the obtained steel slabs. As a method for checking cracks, scarf cutting was performed on the upper and lower surfaces of the slab by 2 to 10 mm.
The surface was visually observed. Further, a sample was cut out from the steel slab and the state of cracks in the cross section was examined by color check. In this experiment, Ti and Mg were added in a vacuum secondary refining device (RH).

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【表6】 [Table 6]

【0044】[0044]

【表7】 [Table 7]

【0045】主にCu、Snを含有する鋼の実施結果を
表8に示す。表より、本発明の場合の条件を満たす場合
には、目視観察およびカラーチェックとも割れは検出さ
れなかった。上記本発明の実施例を表3と表8を用いて
具体的に説明する。表中A2、B2は、請求項1に対応
する実施例であり、G2は請求項2に対応する実施例で
ある。また、H2は請求項3に対応する実施例であり、
C2、D2、E2、F2は請求項4に対応する実施例で
ある。いずれも幅圧下時における鋳片の割れは発生せず
良好なものであった。
Table 8 shows the results of working the steel mainly containing Cu and Sn. From the table, when the conditions in the case of the present invention were satisfied, no cracks were detected by visual observation and color check. Examples of the present invention will be specifically described with reference to Tables 3 and 8. In the table, A2 and B2 are examples corresponding to claim 1, and G2 is an example corresponding to claim 2. H2 is an embodiment corresponding to claim 3,
C2, D2, E2, and F2 are embodiments corresponding to claim 4. In each case, the slab did not crack at the time of width reduction, and was good.

【0046】これに対し、比較例D1、E1はMgが添
加されていないために割れが発生した。比較例A1はT
iおよびMgの両方共に添加されていないために割れが
発生した。比較例C1はTiがH1はMgが、G1はT
i、Mgが本発明の範囲よりも高くなりすぎたために割
れが発生した。比較例B1、F1はそれぞれCu、Sn
が本発明範囲よりも高いため割れが発生した。なお、従
来例のG3は、Cu濃度が本発明範囲外であり、割れが
発生する濃度よりも低いために割れなかった例である。
On the other hand, in Comparative Examples D1 and E1, cracks occurred because Mg was not added. Comparative Example A1 is T
Cracking occurred because neither i nor Mg was added. Comparative Example C1 is Ti, H1 is Mg, and G1 is T
Cracks occurred because i and Mg were too high from the range of the present invention. Comparative Examples B1 and F1 were Cu and Sn, respectively.
Was higher than the range of the present invention. G3 of the conventional example is an example in which the Cu concentration was out of the range of the present invention and was lower than the concentration at which cracking occurred, so that no cracking occurred.

【0047】[0047]

【表8】 [Table 8]

【0048】また、Cu、Sn含有せず主にNb、V、
Nを含有する鋼の実施結果を表8に示す。表より、本発
明の場合の条件を満たす場合には、目視観察およびカラ
ーチェックとも割れは検出されなかった。前記と同様に
本発明の実施例を表4,5と表9を用いて具体的に説明
する。表中O2は請求項5に対応する実施例、M2は請
求項6に対応する実施例であり、B2、C2は請求項7
に対応する実施例、A2は請求項8に対応する実施例で
ある。また、L2は請求項9に対応する実施例、D2、
K2は請求項10に対応する実施例であり、J2は請求
項11に対応する実施例、E2、F2、G2、H2、I
2は請求項12に対応する実施例である。いずれも幅圧
下時における鋳片の割れは発生せず、良好な結果が得ら
れた。
Also, without containing Cu and Sn, mainly Nb, V,
Table 8 shows the execution results of the steel containing N. From the table, when the conditions in the case of the present invention were satisfied, no cracks were detected by visual observation and color check. Examples of the present invention will be specifically described with reference to Tables 4, 5 and 9 in the same manner as described above. In the table, O2 is an embodiment corresponding to claim 5, M2 is an embodiment corresponding to claim 6, and B2 and C2 are claims 7
A2 is an embodiment corresponding to claim 8. Further, L2 is an embodiment corresponding to claim 9, D2,
K2 is an embodiment corresponding to claim 10, J2 is an embodiment corresponding to claim 11, E2, F2, G2, H2, I
2 is an embodiment corresponding to claim 12. In each case, no cracks occurred in the slab at the time of width reduction, and good results were obtained.

【0049】これに対し、比較例A1、G1、K1で
は、TiおよびMgが添加されていないので、割れが生
じた。比較例B1、E1、F1、H1、J1、L1で
は、Mgが添加されていないので、割れが生じた。比較
例O1ではTiが添加されていないので割れが生じた。
また、比較例D1、I1では、それぞれTi、Mgが本
発明範囲の上限を越えていたので、割れが生じた。比較
例C1では、Nbが適正範囲を越えているので、割れが
生じた。比較例PではVが、比較例M1およびQではN
がそれぞれ適正範囲を越えているので割れが生じ、また
比較例RではTiが本発明範囲よりも少ないので、割れ
が生じた。なお、従来例のS、T、Uでは、それぞれN
b、V、Nが本発明範囲外であり、割れが発生する濃度
より低いために、本発明を用いなくても割れなかった例
である。
On the other hand, in Comparative Examples A1, G1, and K1, cracks occurred because Ti and Mg were not added. In Comparative Examples B1, E1, F1, H1, J1, and L1, cracks occurred because Mg was not added. In Comparative Example O1, cracking occurred because Ti was not added.
In Comparative Examples D1 and I1, cracks occurred because Ti and Mg exceeded the upper limit of the range of the present invention, respectively. In Comparative Example C1, cracks occurred because Nb exceeded the appropriate range. V in Comparative Example P and N in Comparative Examples M1 and Q
, Respectively, were out of the proper range, and cracks occurred. In Comparative Example R, since Ti was less than the range of the present invention, cracks occurred. In the conventional examples S, T, and U, N
Since b, V, and N were out of the range of the present invention and were lower than the concentration at which cracking occurred, the example did not crack without using the present invention.

【0050】[0050]

【表9】 [Table 9]

【0051】[0051]

【発明の効果】以上のように、本発明によりCuやCu
−SnまたはNbやV、Nを所定の濃度を含む鋼におい
ても幅圧下時の割れが発生しなくなり、表面疵のない良
好な鋼片が得られることが可能となり、割れ手入れの省
略や圧延工程への直行化が可能となるととともに歩留り
も良好になる等の効果を奏するものであり、この分野で
の効果は大きい。
As described above, according to the present invention, Cu or Cu
-Even in steel containing predetermined concentrations of Sn, Nb, V, and N, cracking during width reduction does not occur, and a good steel piece without surface flaws can be obtained. It is possible to achieve the effects such as the ability to go straight to and the improvement of the yield, and the effect in this field is great.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Cu、Sn含有鋼での脆化防止に対するTiお
よびMg添加量の影響を表した図。
FIG. 1 is a graph showing the influence of the amounts of Ti and Mg added on the prevention of embrittlement in steel containing Cu and Sn.

【図2】Nb、V、N含有鋼での脆化防止に対するTi
およびMg添加量の影響を表した図。
FIG. 2 Ti for preventing embrittlement in steel containing Nb, V and N
FIG. 3 is a graph showing the influence of the amount of Mg and the amount of Mg added.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22C 38/16 C22C 38/16 38/58 38/58 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22C 38/16 C22C 38/16 38/58 38/58

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、
N:0.0005〜0.01重量%、酸素を0.000
5〜0.005重量%含み、Cuを0.05〜2.0重
量%含む、残部鉄および不可避的不純物からなる炭素鋼
に対して、Tiを0.005〜0.06重量%かつMg
を0.0005〜0.01重量%となるように成分調整
をした溶鋼を連続鋳造し、その鋳造した鋳片を幅圧下す
ることを特徴とする幅圧下による表面欠陥が生じない鋼
片の製造方法。
1. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight,
N: 0.0005 to 0.01% by weight, oxygen is 0.000%
0.005-0.06% by weight of Ti and Mg based on carbon steel containing 5-0.005% by weight and 0.05-2.0% by weight of Cu, and the balance being iron and unavoidable impurities.
Is characterized by continuously casting molten steel whose composition is adjusted to 0.0005 to 0.01% by weight, and reducing the width of the cast slab to produce a steel slab free of surface defects due to width reduction. Method.
【請求項2】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、
N:0.0005〜0.01重量%、酸素を0.000
5〜0.005重量%含み、その他として、Nb、V、
Cr、Mo、Ni、Zr、B、Caの一種または二種以
上を0.1重量%以下含み、Cuを0.05〜2.0重
量%含む、残部鉄および不可避的不純物からなる炭素鋼
に対して、Tiを0.005〜0.06重量%かつMg
を0.0005〜0.01重量%となるように成分調整
をした溶鋼を連続鋳造し、その鋳造した鋳片を幅圧下す
ることを特徴とする幅圧下による表面欠陥が生じない鋼
片の製造方法。
2. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight,
N: 0.0005 to 0.01% by weight, oxygen is 0.000%
5 to 0.005% by weight, and Nb, V,
Carbon steel containing one or more of Cr, Mo, Ni, Zr, B, and Ca in an amount of 0.1% by weight or less and containing 0.05 to 2.0% by weight of Cu, the balance being iron and inevitable impurities. On the other hand, 0.005 to 0.06% by weight of Ti and Mg
Is characterized by continuously casting molten steel whose composition is adjusted to 0.0005 to 0.01% by weight, and reducing the width of the cast slab to produce a steel slab free of surface defects due to width reduction. Method.
【請求項3】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、
N:0.0005〜0.01重量%、酸素を0.000
5〜0.005重量%含み、Cuを0.05〜2.0重
量%かつSnを0.1重量%以下含む、残部鉄および不
可避的不純物からなる炭素鋼に対して、Tiを0.00
5〜0.06重量%かつMgを0.0005〜0.01
重量%となるように成分調整をした溶鋼を連続鋳造し、
この鋳造した鋳片を幅圧下することを特徴とする幅圧下
による表面欠陥が生じない鋼片の製造方法。
3. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight,
N: 0.0005 to 0.01% by weight, oxygen is 0.000%
5 to 0.005% by weight, 0.05 to 2.0% by weight of Cu and 0.1% by weight or less of Sn, and 0.00% of Ti with respect to carbon steel consisting of iron and unavoidable impurities.
5 to 0.06% by weight and 0.0005 to 0.01% Mg
Continuous casting of molten steel whose composition has been adjusted to be
A method for producing a steel slab which does not cause surface defects due to width reduction of the cast slab.
【請求項4】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、
N:0.0005〜0.01重量%、酸素を0.000
5〜0.005重量%含み、その他として、Nb、V、
Cr、Mo、Ni、Zr、B、Caの一種または二種以
上を0.1重量%以下含み、Cuを0.05〜2.0重
量%かつSnを0.1重量%以下含む、残部鉄および不
可避的不純物からなる炭素鋼に対して、Tiを0.00
5〜0.06重量%かつMgを0.0005〜0.01
重量%となるように成分調整をした溶鋼を連続鋳造し、
その鋳造した鋳片を幅圧下することを特徴とする幅圧下
による表面欠陥が生じない鋼片の製造方法。
4. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight,
N: 0.0005 to 0.01% by weight, oxygen is 0.000%
5 to 0.005% by weight, and Nb, V,
The balance iron containing one or more of Cr, Mo, Ni, Zr, B and Ca in an amount of 0.1% by weight or less, containing 0.05 to 2.0% by weight of Cu and 0.1% by weight or less of Sn. And carbon steel consisting of unavoidable impurities
5 to 0.06% by weight and 0.0005 to 0.01% Mg
Continuous casting of molten steel whose composition has been adjusted to be
A method for producing a steel slab which does not cause surface defects due to width reduction of the cast slab.
【請求項5】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、酸
素を0.0005〜0.005重量%を含み、残部鉄お
よび不可避的不純物からなる炭素鋼に対して、Tiを
0.005〜0.06重量%かつMgを0.0005〜
0.01重量%となるように成分調整した溶鋼を連続鋳
造し、その鋳造した鋳片を幅圧下することを特徴とする
幅圧下による表面欠陥が生じない鋼片の製造方法。
5. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight, oxygen 0.0005 to 0.005% by weight. 005-0.06% by weight and 0.0005-Mg
A method for producing a steel slab free from surface defects due to width reduction, comprising continuously casting molten steel whose composition is adjusted to 0.01% by weight, and reducing the width of the cast slab.
【請求項6】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、酸
素を0.0005〜0.005重量%を含み、かつNを
0.002〜0.015重量%含み、残部鉄および不可
避的不純物からなる炭素鋼に対して、Tiを0.005
〜0.06重量%かつMgを0.0005〜0.01重
量%となるように成分調整した溶鋼を連続鋳造し、その
鋳造した鋳片を幅圧下することを特徴とする幅圧下によ
る表面欠陥が生じない鋼片の製造方法。
6. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight, 0.0005 to 0.005% by weight of oxygen, and 0.002 to 0.015% by weight of N, with the balance being iron and inevitable 0.005 Ti for carbon steel consisting of chemical impurities
A surface defect caused by width reduction, characterized by continuously casting molten steel in which the composition is adjusted to be 0.06% by weight and Mg being 0.0005% to 0.01% by weight, and reducing the width of the cast slab. Method for producing billets that does not cause cracks.
【請求項7】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、酸
素を0.0005〜0.005重量%を含み、かつNb
を0.02〜0.1重量%かつNを0.002〜0.0
15重量%含み、残部鉄および不可避的不純物からなる
炭素鋼に対して、Tiを0.005〜0.06重量%か
つMgを0.0005〜0.01重量%となるように成
分調整した溶鋼を連続鋳造し、その鋳造した鋳片を幅圧
下することを特徴とする幅圧下による表面欠陥が生じな
い鋼片の製造方法。
7. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight, 0.0005 to 0.005% by weight of oxygen, and Nb
0.02 to 0.1% by weight and N
Molten steel containing 15% by weight and the composition adjusted to 0.005 to 0.06% by weight of Ti and 0.0005 to 0.01% by weight of Mg with respect to carbon steel consisting of iron and unavoidable impurities. And continuously reducing the width of the cast slab to produce a steel slab free of surface defects due to the width reduction.
【請求項8】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、酸
素を0.0005〜0.005重量%を含み、かつNb
を0.02〜0.1重量%かつVを0.01〜0.1重
量%かつNを0.002〜0.015重量%含み、残部
鉄および不可避的不純物からなる炭素鋼に対して、Ti
を0.005〜0.06重量%かつMgを0.0005
〜0.01重量%となるように成分調整した溶鋼を連続
鋳造し、その鋳造した鋳片を幅圧下することを特徴とす
る幅圧下による表面欠陥が生じない鋼片の製造方法。
8. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight, 0.0005 to 0.005% by weight of oxygen, and Nb
0.02 to 0.1% by weight, 0.01 to 0.1% by weight of V and 0.002 to 0.015% by weight of N, and the balance of carbon steel comprising iron and unavoidable impurities, Ti
0.005 to 0.06% by weight and Mg
A method for producing a steel slab that does not cause surface defects due to width reduction, wherein a molten steel whose composition is adjusted to be 0.01% by weight is continuously cast, and the cast slab is reduced in width.
【請求項9】 C:0.001〜0.5重量%、Mn:
0.1〜3.0重量%、Si:0.005〜2.0重量
%、P:0.001〜0.1重量%、S:0.001〜
0.05重量%、Al:0.001〜0.1重量%、酸
素を0.0005〜0.005重量%、その他として、
鋼の用途に応じてCr、Mo、Ni、B、Zr、Caの
一種または二種以上を0.1重量%以下含み、残部鉄お
よび不可避的不純物からなる炭素鋼に対して、連続鋳造
で製造して出来た鋳片を幅方向に圧下する際に、Tiを
0.005〜0.06重量%かつMgを0.0005〜
0.01重量%となるように成分調整した溶鋼を連続鋳
造し、その鋳造した鋳片を幅圧下することを特徴とする
幅圧下による表面欠陥が生じない鋼片の製造方法。
9. C: 0.001 to 0.5% by weight, Mn:
0.1 to 3.0% by weight, Si: 0.005 to 2.0% by weight, P: 0.001 to 0.1% by weight, S: 0.001 to
0.05% by weight, Al: 0.001 to 0.1% by weight, oxygen 0.0005 to 0.005% by weight, etc.
Manufactured by continuous casting for carbon steel containing 0.1% by weight or less of one or more of Cr, Mo, Ni, B, Zr, and Ca depending on the use of the steel and the balance being iron and unavoidable impurities When the slab is rolled down in the width direction, 0.005 to 0.06% by weight of Ti and 0.0005 to
A method for producing a steel slab free from surface defects due to width reduction, comprising continuously casting molten steel whose composition is adjusted to 0.01% by weight, and reducing the width of the cast slab.
【請求項10】 C:0.001〜0.5重量%、M
n:0.1〜3.0重量%、Si:0.005〜2.0
重量%、P:0.001〜0.1重量%、S:0.00
1〜0.05重量%、Al:0.001〜0.1重量
%、酸素を0.0005〜0.005重量%、その他と
して、鋼の用途に応じてCr、Mo、Ni、B、Zr、
Caの一種または二種以上を0.1重量%以下かつNを
0.002〜0.015重量%含み、残部鉄および不可
避的不純物からなる炭素鋼に対して、連続鋳造で製造し
て出来た鋳片を幅方向に圧下する際に、Tiを0.00
5〜0.06重量%かつMgを0.0005〜0.01
重量%となるように成分調整した溶鋼を連続鋳造し、そ
の鋳造した鋳片を幅圧下することを特徴とする幅圧下に
よる表面欠陥が生じない鋼片の製造方法。
10. C: 0.001 to 0.5% by weight, M
n: 0.1 to 3.0% by weight, Si: 0.005 to 2.0
% By weight, P: 0.001 to 0.1% by weight, S: 0.00
1-0.05% by weight, Al: 0.001-0.1% by weight, oxygen 0.0005-0.005% by weight, and others, Cr, Mo, Ni, B, Zr depending on the use of steel ,
It was produced by continuous casting of carbon steel containing 0.1% by weight or less of one or more kinds of Ca and 0.002 to 0.015% by weight of N, the balance being iron and unavoidable impurities. When rolling down the slab in the width direction, Ti
5 to 0.06% by weight and 0.0005 to 0.01% Mg
A method for producing a steel slab which does not cause surface defects due to width reduction, characterized by continuously casting molten steel whose composition is adjusted to be in the range of weight%, and reducing the width of the cast slab.
【請求項11】 C:0.001〜0.5重量%、M
n:0.1〜3.0重量%、Si:0.005〜2.0
重量%、P:0.001〜0.1重量%、S:0.00
1〜0.05重量%、Al:0.001〜0.1重量
%、酸素を0.0005〜0.005重量%、その他と
して、鋼の用途に応じてCr、Mo、Ni、B、Zr、
Caの一種または二種以上を0.1重量%以下を含み、
かつNbを0.02〜0.1重量%かつNを0.002
〜0.015重量%含み、残部鉄および不可避的不純物
からなる炭素鋼に対して、Tiを0.005〜0.06
重量%かつMgを0.0005〜0.01重量%となる
ように成分調整した溶鋼を連続鋳造し、その鋳造した鋳
片を幅圧下することを特徴とする幅圧下による表面欠陥
が生じない鋼片の製造方法。
11. C: 0.001 to 0.5% by weight, M
n: 0.1 to 3.0% by weight, Si: 0.005 to 2.0
% By weight, P: 0.001 to 0.1% by weight, S: 0.00
1-0.05% by weight, Al: 0.001-0.1% by weight, oxygen 0.0005-0.005% by weight, and others, Cr, Mo, Ni, B, Zr depending on the use of steel ,
Containing 0.1% by weight or less of one or more kinds of Ca;
And 0.02 to 0.1% by weight of Nb and 0.002% of N.
To 0.015% by weight, and 0.005 to 0.06 of Ti with respect to carbon steel consisting of iron and unavoidable impurities.
A steel having no surface defects due to width reduction, characterized by continuously casting molten steel in which the composition is adjusted so that the content of Mg is 0.0005 to 0.01% by weight and the cast slab is reduced in width. How to make pieces.
【請求項12】 C:0.001〜0.5重量%、M
n:0.1〜3.0重量%、Si:0.005〜2.0
重量%、P:0.001〜0.1重量%、S:0.00
1〜0.05重量%、Al:0.001〜0.1重量
%、酸素を0.0005〜0.005重量%、その他と
して、鋼の用途に応じてCr、Mo、Ni、B、Zr、
Caの一種または二種以上を0.1重量%以下を含み、
かつNbを0.02〜0.1重量%かつVを0.01〜
0.1重量%、かつNを0.002〜0.015重量%
含み、残部鉄および不可避的不純物からなる炭素鋼に対
して、Tiを0.005〜0.06重量%かつMgを
0.0005〜0.01重量%となるように成分調整し
た溶鋼を連続鋳造し、その鋳造した鋳片を幅圧下するこ
とを特徴とする幅圧下による表面欠陥が生じない鋼片の
製造方法。
12. C: 0.001 to 0.5% by weight, M
n: 0.1 to 3.0% by weight, Si: 0.005 to 2.0
% By weight, P: 0.001 to 0.1% by weight, S: 0.00
1-0.05% by weight, Al: 0.001-0.1% by weight, oxygen 0.0005-0.005% by weight, and others, Cr, Mo, Ni, B, Zr depending on the use of steel ,
Containing 0.1% by weight or less of one or more kinds of Ca;
And Nb is 0.02 to 0.1% by weight and V is 0.01 to
0.1% by weight and N is 0.002 to 0.015% by weight
Continuously cast molten steel containing Ti and 0.0005 to 0.01% by weight of Ti and 0.0005 to 0.01% by weight of carbon steel containing iron and unavoidable impurities. And a method for producing a steel slab in which surface defects do not occur due to the width reduction of the cast slab.
JP11159309A 1998-08-19 1999-06-07 Manufacture of slab free from surface defect caused by edging Withdrawn JP2000126856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11159309A JP2000126856A (en) 1998-08-19 1999-06-07 Manufacture of slab free from surface defect caused by edging

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP24771098 1998-08-19
JP10-247710 1998-08-19
JP11159309A JP2000126856A (en) 1998-08-19 1999-06-07 Manufacture of slab free from surface defect caused by edging

Publications (1)

Publication Number Publication Date
JP2000126856A true JP2000126856A (en) 2000-05-09

Family

ID=26486153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11159309A Withdrawn JP2000126856A (en) 1998-08-19 1999-06-07 Manufacture of slab free from surface defect caused by edging

Country Status (1)

Country Link
JP (1) JP2000126856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321905A (en) * 2000-05-17 2001-11-20 Kawasaki Steel Corp Continuous casting method
JP2002346602A (en) * 2001-05-22 2002-12-03 Nippon Steel Corp Production method of billet without crack defect
EP3006137A4 (en) * 2013-08-29 2017-03-08 Nippon Steel & Sumitomo Metal Corporation STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001321905A (en) * 2000-05-17 2001-11-20 Kawasaki Steel Corp Continuous casting method
JP4501223B2 (en) * 2000-05-17 2010-07-14 Jfeスチール株式会社 Continuous casting method
JP2002346602A (en) * 2001-05-22 2002-12-03 Nippon Steel Corp Production method of billet without crack defect
JP4593006B2 (en) * 2001-05-22 2010-12-08 新日本製鐵株式会社 Method for producing a billet free from crack defects
EP3006137A4 (en) * 2013-08-29 2017-03-08 Nippon Steel & Sumitomo Metal Corporation STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME

Similar Documents

Publication Publication Date Title
JP6728455B1 (en) Highly corrosion resistant Ni-Cr-Mo steel excellent in weldability and surface properties and method for producing the same
JP2007063589A (en) Steel bar or wire rod
US6805757B1 (en) Casting material for indefinite rollers with sleeve part and method for producing the same
JP6111892B2 (en) Continuous casting method and continuous casting slab
JP6652021B2 (en) Hot forging steel and hot forged products
JP2000034538A (en) Steel for machine structure excellent in machinability
US9243314B2 (en) Method for manufacturing high-Si austenitic stainless steel
WO2005035798A1 (en) Method for producing steel ingot
JP2000126856A (en) Manufacture of slab free from surface defect caused by edging
JP4593006B2 (en) Method for producing a billet free from crack defects
JP2014047356A (en) Bar steel or wire material
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling
JP6341053B2 (en) High Si austenitic stainless steel containing composite non-metallic inclusions
JPS6320412A (en) Hot working method for austenitic stainless steel containing mo and n
JPH0641687A (en) Fe-ni alloy excellent in surface characteristic and its production
JP2020109198A (en) Ni-BASED ALLOY AND Ni-BASED ALLOY SHEET
JP7356025B2 (en) Hot width reduction rolling method for continuously cast slabs
JP6950071B2 (en) Ni-Cr-Mo-Nb alloy
WO2023286338A1 (en) Ni-cr-mo-based alloy for welded pipe having excellent workability and corrosion resistance
JP2002069592A (en) Cast stainless steel slab containing two phases of austenite and ferrite and having excellent hot workability
JP2759678B2 (en) Stainless steel with excellent hot workability
EP3006137A1 (en) STEEL IN WHICH Cu-Sn COEXIST, AND METHOD FOR MANUFACTURING SAME
JPH07292418A (en) Production of chromium-nickel stainless steel free from occurrence of surface flaw at hot rolling
JPH08283895A (en) Method for preventing surface defect at edging of cast slab
JP2003166038A (en) Continuously cast slab free from intercrystalline cracking

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060905