JP2002346602A - Production method of billet without crack defect - Google Patents

Production method of billet without crack defect

Info

Publication number
JP2002346602A
JP2002346602A JP2001151943A JP2001151943A JP2002346602A JP 2002346602 A JP2002346602 A JP 2002346602A JP 2001151943 A JP2001151943 A JP 2001151943A JP 2001151943 A JP2001151943 A JP 2001151943A JP 2002346602 A JP2002346602 A JP 2002346602A
Authority
JP
Japan
Prior art keywords
mass
steel
slab
billet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001151943A
Other languages
Japanese (ja)
Other versions
JP4593006B2 (en
Inventor
Masamitsu Wakao
昌光 若生
Shuntaro Saito
俊太郎 齊藤
Toshiyuki Taya
利之 田谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001151943A priority Critical patent/JP4593006B2/en
Publication of JP2002346602A publication Critical patent/JP2002346602A/en
Application granted granted Critical
Publication of JP4593006B2 publication Critical patent/JP4593006B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a crack in the billet at the time of edge rolling. SOLUTION: The production method of the billet which prevent crack defects at the time of edge rolling is characterized in that, when a width of carbon steel billet produced by continuous casting is reduced by edge rolling, the billet temperature when the edge rolling is finished is prescribed so that the deposit amount in the billet satisfies the formula mentioned below. W<=1000×d<-2.5> where: W (ppm): Deposit amount to be determined by a concentration and temperature of composing elements of a deposit in the billet. d (mm): Average radius of grain particle in the billet before edge rolling.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、連続鋳造法で製造
した鋳片を幅圧下して鋼片を製造する方法に関し、特に
表面欠陥のない鋼片の製造方法に係わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel slab by reducing the width of a slab produced by a continuous casting method, and more particularly to a method for producing a steel slab having no surface defects.

【0002】[0002]

【従来の技術】鋼の大量生産を図るために、連続鋳造機
と幅圧下圧延機を組み合わせたプロセスが公知となって
いる。このプロセスは、連続鋳造では鋳片幅を一定にし
て鋳造し、その後の圧延機で幅圧下をすることにより鋼
片幅を変えるものであり、連鋳機での鋳型幅変更に伴う
時間ロスがないことによる生産性の向上や、幅変更部の
歩留まり向上が期待できる。
2. Description of the Related Art For mass production of steel, a process in which a continuous casting machine and a width reduction mill are combined is known. In this process, in continuous casting, the width of the slab is changed by reducing the width of the slab by reducing the width of the slab in a continuous rolling mill, and the time loss associated with changing the width of the mold in the continuous casting machine It can be expected to improve productivity and increase the yield of the width changing part due to the absence of the above.

【0003】しかしながら、鋳片内にAlやNbやV、
N等を含有する場合には、幅圧下時に割れが発生し、表
面欠陥につながるという問題がある。この脆化は、70
0〜1000℃近くの温度で起こるγ結晶粒界への析出
物に起因する脆化であることが判っている。これらの脆
化を防止する手段として、変形歪みがかかる前の鋳片温
度を脆化温度域より高温に保つこと、すなわち析出物の
析出量を少なくすることが有効である事は公知である。
[0003] However, Al, Nb, V,
When N or the like is contained, there is a problem that cracks occur at the time of width reduction, leading to surface defects. This embrittlement is 70
It has been found that embrittlement occurs at a temperature close to 0 to 1000 ° C. due to a precipitate at a γ grain boundary. It is known that as a means for preventing such embrittlement, it is effective to keep the slab temperature before deformation strain is higher than the embrittlement temperature range, that is, to reduce the amount of precipitates.

【0004】また、特開昭55−14173号公報に記
載のように、鋳片表層部温度がAr1以下、復熱温度が
Ar3+100℃の範囲になるように二次冷却帯で冷却
−復熱を2回以上繰り返すことにより、オーステナイト
粒径を微細化し炭窒化物の粒界析出の抑制とフィルム状
フェライトの析出を防止することにより割れ防止を図る
ことが開示されている。更に、特開平5−161948
号公報では、連鋳機内の最終矯正点を通過した後、速や
かに鋳片表層部10mm以内を特定の式で示す温度に一
旦下げた後、850℃以上に復熱させて熱間圧延を行う
ことにより、幅圧下中に割れを防止する方法が示されて
いる。
Further, as described in Japanese Patent Application Laid-Open No. 55-14173, cooling-reheating is performed in a secondary cooling zone such that the surface layer temperature of the slab is Ar1 or less and the recuperation temperature is in the range of Ar3 + 100 ° C. It is disclosed that by repeating at least two times, the austenite grain size is refined, thereby preventing grain boundary precipitation of carbonitride and preventing precipitation of film-like ferrite, thereby preventing cracking. Further, JP-A-5-161948
In the publication, after passing through the final straightening point in the continuous casting machine, the surface of the slab surface portion within 10 mm is once reduced to a temperature indicated by a specific formula, and then heated to 850 ° C. or more to perform hot rolling. Thus, a method of preventing cracking during width reduction is disclosed.

【0005】しかしながら、これらの脆化温度域を特定
する為には、鋼の成分ごとに引張り試験を行う必要があ
り、すべての鋼種の脆化域を特定することは、実質的に
不可能である。特に、鋼の炭素濃度が異なると、同じ析
出物の量でも脆化したりしなかったりするといった現象
がある。また、上記2件の特許公開公報に示された、温
度履歴を制御して結晶粒を微細にする方法は、特定の成
分の鋼種でしか実現出来ない方法であり、実プロセスで
は炭素濃度が0.15%以上では難しい。従って、どの
ような鋼種にも適用できる、析出物に起因する脆化温度
を特定する為の一般的な法則が望まれていた。
However, in order to specify these embrittlement temperature ranges, it is necessary to carry out a tensile test for each steel component, and it is practically impossible to specify the embrittlement zones of all steel types. is there. In particular, when the carbon concentration of steel is different, there is a phenomenon that embrittlement does not occur even with the same amount of precipitate. Further, the method of controlling the temperature history and making the crystal grains fine, which is disclosed in the above two patent publications, is a method that can be realized only with a steel type of a specific component. It is difficult if it is over 15%. Therefore, a general rule for specifying the embrittlement temperature caused by the precipitate, which can be applied to any steel type, has been desired.

【0006】[0006]

【発明が解決しようとする課題】本発明は、炭素や析出
物構成元素の濃度が変わっても、脆化が生じない、すな
わち割れが発生しない一般的な条件を提示することによ
り、脆化の原因となる元素を含有する鋼を幅圧下する場
合にも、表面割れを防止することが可能な製造方法を提
供するものである。
SUMMARY OF THE INVENTION The present invention provides a general condition under which embrittlement does not occur even when the concentration of carbon or precipitate constituent elements changes, that is, cracks do not occur. An object of the present invention is to provide a production method capable of preventing surface cracks even when a steel containing a causal element is reduced in width.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明は以下の構成を特徴とする。 (1)連続鋳造によって得られた炭素鋼鋳片を幅圧下す
る際に、鋳片内の析出物の析出量が以下の式を満足する
ように幅圧下完了時の温度を規定することを特徴とする
幅圧下による割れ欠陥が生じない鋼片の製造方法であ
る。 W≦1000×d-2.5 ここで、 W(ppm):鋳片内の析出物の構成元素の濃度と温度
によって決まる析出量 d(mm):幅圧下前の鋳片内の平均γ粒径
In order to achieve the above object, the present invention has the following features. (1) When the width of a carbon steel slab obtained by continuous casting is reduced, the temperature at the time of completion of the width reduction is defined so that the amount of precipitates in the slab satisfies the following equation. This is a method for producing a steel slab which does not cause cracking defects due to the width reduction. W ≦ 1000 × d −2.5 where, W (ppm): Precipitation amount determined by the concentration of constituent elements of precipitates in the slab and temperature d (mm): Average γ particle size in the slab before width reduction

【0008】(2)鋼の成分が、C:0.001〜0.
5質量%、Mn:0.1〜3.0質量%、Si:0.0
05〜2.0質量%、P:0.001〜0.1質量%、
S:0.001〜0.05質量%、N:0.002〜
0.015質量%酸素:0.0005〜0.0050質
量%含み、さらにAl、Nb、Ti、Vの内、一種また
は二種以上含み、それぞれの成分範囲が、Al:0.0
01〜0.1質量%、Nb:0.01〜0.1質量%T
i:0.005〜0.1質量%V:0.01〜0.1質
量%、であり、残部鉄および不可避的不純物からなる鋼
片であることを特徴とする前記(1)記載の幅圧下によ
る割れ欠陥が生じない鋼片の製造方法である。
(2) The composition of steel is C: 0.001-0.
5% by mass, Mn: 0.1 to 3.0% by mass, Si: 0.0
05 to 2.0% by mass, P: 0.001 to 0.1% by mass,
S: 0.001 to 0.05% by mass, N: 0.002 to
0.015% by mass oxygen: 0.0005 to 0.0050% by mass, and further contains one or more of Al, Nb, Ti, and V, and each component range is Al: 0.0
01 to 0.1% by mass, Nb: 0.01 to 0.1% by mass T
i: 0.005 to 0.1% by mass V: 0.01 to 0.1% by mass, and is a slab consisting of iron and unavoidable impurities. This is a method for producing a steel slab that does not cause cracking defects due to rolling.

【0009】(3)鋼の成分がCr,Mo,Ni,B,
Zr,Mg,Caの内、一種または二種以上含みそれぞ
れの成分が0.1質量%以下であることを特徴とする前
記(2)記載の幅圧下による割れ欠陥が生じない鋼片の
製造方法である。
(3) The components of steel are Cr, Mo, Ni, B,
(2) The method for producing a steel slab free from cracking defects caused by width reduction as described in (2) above, wherein one or more of Zr, Mg, and Ca are contained, and each component is 0.1% by mass or less. It is.

【0010】[0010]

【発明の実施の形態】本発明者らは、まず、Nと共にA
l、Nb及びV等を含有する鋼の脆化が、いずれもオー
ステナイト(γ)結晶粒界の脆化であることに着目し
て、これらの脆化が生じる条件を検討した結果、脆化す
なわち割れの発生有無を、γ粒径と析出物の析出量との
関係式で決定することを着想するに至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present inventors first set A together with N
Focusing on the fact that the embrittlement of steel containing l, Nb, V and the like is all embrittlement of austenite (γ) grain boundaries, as a result of examining the conditions under which these embrittlements occur, We came to the idea of determining whether or not cracks occurred by a relational expression between the γ particle size and the amount of precipitates.

【0011】以下に本発明の詳細を記す。発明者らは、
まず、鋳片の幅圧下時に得られた鋼片の割れが発生する
条件を実機試験のデータをもとに検討した。種々の鋼種
について、幅圧下時の温度を変え、割れ発生有無を調査
した。特に鋳片内のγ粒径と析出物の析出量に着目して
解析を行なった。その結果を図1に示す。図1から、γ
粒径が大きい場合には鋳片内の析出物の析出量を非常に
小さくしないと割れが発生するが、γ粒径を小さくする
と、鋳片内の析出物の析出量が多くても割れは発生しな
い。
The details of the present invention will be described below. The inventors have
First, the conditions under which the steel slab obtained when the slab was reduced in width were examined based on the data of actual machine tests. For various steel types, the temperature during width reduction was changed and the presence or absence of cracks was investigated. In particular, the analysis was carried out focusing on the γ grain size and the amount of precipitates in the slab. The result is shown in FIG. From FIG. 1, γ
If the particle size is large, cracks will occur unless the amount of precipitates in the slab is very small, but if the γ particle size is small, cracks will occur even if the amount of precipitates in the slab is large. Does not occur.

【0012】この図1より、割れが発生する領域と発生
しない領域は、以下の式で分けられることが判った。 W≦1000×d-2.5 ここで、W(ppm):析出物の構成元素の濃度(質量
%)と温度によって決まる析出量 d(mm):幅圧下前の平均γ粒径
From FIG. 1, it is found that the region where cracks occur and the region where cracks do not occur can be divided by the following equation. W ≦ 1000 × d −2.5 where, W (ppm): the amount of precipitation determined by the concentration (% by mass) of the constituent elements of the precipitate and the temperature d (mm): average γ particle size before width reduction

【0013】次に、本発明の条件を規定した理由と、本
発明の具体的な適用法について説明する。まず、式の規
定であるが、上述したように、実際の製造条件と割れ発
生有無のデータを解析した結果から得られたものであ
る。具体的な適用法としては、まず、幅圧下前の鋳片の
γ粒径を求める必要がある。これは事前に、当該成分の
鋳片の断面を腐食して顕出したγ結晶粒組織より求めて
おく。γ結晶粒径は、成分、特に炭素濃度と連続鋳造時
の温度履歴、そして幅圧下前の加熱炉の温度条件でほぼ
決定されるので、ある程度の代表鋼種、製造条件につい
て調査しておけば、すべての鋼種について調査する必要
はない。γ粒径を測定する領域は、鋳片表層から約10
mmの深さで、幅方向で10点以上測定し、円相当径に
換算してから平均値をとれば良い。
Next, the reason for defining the conditions of the present invention and the specific application method of the present invention will be described. First, the equation is defined, but as described above, it is obtained from the result of analyzing the actual manufacturing conditions and data on the occurrence of cracks. As a specific application method, first, it is necessary to determine the γ grain size of the slab before the width reduction. This is determined in advance from the γ crystal grain structure revealed by corroding the cross section of the slab of the component. The γ crystal grain size is almost determined by the components, especially the carbon concentration and the temperature history at the time of continuous casting, and the temperature conditions of the heating furnace before the width reduction, so if we investigate some representative steel types and manufacturing conditions, It is not necessary to investigate every steel grade. The area for measuring the γ particle size is approximately 10
It is sufficient to measure 10 or more points in the width direction at a depth of mm, convert to a circle equivalent diameter, and then take an average value.

【0014】なお、積極的にγ粒径を小さくする方法と
して、連続鋳造機内で鋳片を強冷却し、一旦γからα変
態させた後、連鋳機内または連鋳機内後に鋳片を加熱し
て再びγに逆変態させる方法が公知であるが、この場合
には、逆変態させて微細になったγ粒径を本発明の式に
代入すれば、割れが発生しない析出物の析出量が多くな
っても良いので、成分や製造条件の自由度が大きくな
る。
As a method of positively reducing the γ grain size, the slab is strongly cooled in a continuous casting machine, and once transformed from γ to α, the slab is heated in the continuous casting machine or in the continuous casting machine. A method of reverse transformation to γ again is known, but in this case, if the γ particle diameter obtained by the reverse transformation and becoming fine is substituted into the formula of the present invention, the amount of precipitates that do not cause cracking can be reduced. Since the number of components may be increased, the degree of freedom of components and manufacturing conditions is increased.

【0015】次に、鋳片内の析出量の見積もり方法であ
るが、これについては一般に、鋼中析出物の溶解度積の
式が公知となっているので、これらの式を用いて計算す
る。以下、AlとNで生成する析出物AlNに関して、
具体例を挙げて説明する。AlとNに関しては、以下の
ような式が代表的なものとして公知になっている。 (Darkenの式) log{(%Al)×(%N)}=−7400/T+
1.95 ここで、(%Al)および(%N):それぞれ鋼中のA
l濃度(質量%)、N濃度(質量%)、T:絶対温度
(K)
Next, a method of estimating the amount of precipitation in a slab is described. Generally, a formula for the solubility product of precipitates in steel is known, and the calculation is performed using these formulas. Hereinafter, regarding the precipitate AlN generated by Al and N,
A specific example will be described. For Al and N, the following equations are known as typical ones. (Darken's formula) log {(% Al) × (% N)} = − 7400 / T +
1.95 where (% Al) and (% N): each in steel
l concentration (% by mass), N concentration (% by mass), T: absolute temperature (K)

【0016】ある温度におけるAlNの析出物は以下の
式で表される。 log[{(%Al)−α)}×{(%N)−β}]=
−7400/T+1.95 ここで、 αとβ:AlN析出物となったAlおよびN量 また、AlとNの結合質量比の関係から α:β=27:14 この二つの方程式を連立させて解くと、当該温度におけ
る析出量が計算できる。
The precipitate of AlN at a certain temperature is represented by the following equation. log [{(% Al) -α)} × {(% N) -β}] =
−7400 / T + 1.95 Here, α and β: Al and N amounts as AlN precipitates Also, from the relationship of the binding mass ratio of Al and N, α: β = 27: 14 When solved, the amount of precipitation at that temperature can be calculated.

【0017】NbとNが関与する析出物NbNについて
は、以下のような式を用いた。(成田の式) log{(%Nb)×(%N)}=−8500/T+
2.89 ここで、(%Nb)および(%N):それぞれ鋼中のN
b濃度(質量%)、N濃度(質量%)、T:絶対温度
(K) また、VとNが関与する析出物VNに付いては、以下の
ような式を用いた。(成田の式) log{(%V)×(%N)}=−8700/T+3.
63 ここで、(%V)および(%N):それぞれ鋼中のV濃
度(質量%)、N濃度(質量%)、T:絶対温度(K)
For the precipitate NbN involving Nb and N, the following equation was used. (Narita's formula) log {(% Nb) × (% N)} = − 8500 / T +
2.89 where (% Nb) and (% N): N in steel
b concentration (% by mass), N concentration (% by mass), T: absolute temperature (K) The following equation was used for the precipitate VN involving V and N. (Narita's equation) log {(% V) * (% N)} =-8700 / T + 3.
63 Here, (% V) and (% N): V concentration (% by mass) and N concentration (% by mass) in steel, respectively, T: Absolute temperature (K)

【0018】なお、NbとVが同時に所定量以上含まれ
る場合には、まずNbNについて計算し、NbNに使用
されたN分を除いて、今度はVNについて計算し、それ
ぞれの析出量の和を用いればよい。また、Tiの影響に
ついては、以下のように考慮する必要がある。すなわ
ち、TiもNと結合してTiNを生成するが、TiNは
粒界脆化に対してそれほど影響しない。TiNは比較的
高い温度で析出するので、まず、当該温度でのTiNの
析出量を計算し、そこに含まれるN分を差し引いて、N
bNやVNの析出量を計算する。
When Nb and V are simultaneously contained in a predetermined amount or more, the calculation is first performed for NbN, and then, except for the N used for NbN, this time is calculated for VN, and the sum of the respective deposition amounts is calculated. It may be used. In addition, the influence of Ti needs to be considered as follows. That is, Ti also combines with N to form TiN, but TiN does not significantly affect grain boundary embrittlement. Since TiN precipitates at a relatively high temperature, the amount of TiN deposited at that temperature is first calculated, and the N content contained therein is subtracted.
The amount of bN or VN deposited is calculated.

【0019】実際の製造プロセスへの適用としては、与
えられ得たγ粒径から本発明の式を満たすように、析出
量の上限値を決め、その値以下となるように、成分や幅
圧下時の温度を変化させることで、割れが発生しない製
造条件が求められる。対象となる鋼種は、炭素鋼であれ
ばどんなものでも構わないが、特にAlとNが含まれる
もの、かつまたはNbとNが含まれているもの、かつま
たはVとNが含まれているもので本発明の効果が顕著で
ある。実際に使用される鋼材の鋼成分範囲を考慮すると
以下のような成分範囲となる。
As an application to an actual manufacturing process, the upper limit of the amount of precipitation is determined from the given γ particle size so as to satisfy the formula of the present invention, and the component and width reduction are determined so as to be less than that value. By changing the temperature at the time, manufacturing conditions that do not cause cracks are required. The target steel type may be any type of carbon steel, particularly those containing Al and N, or those containing Nb and N, and those containing V and N. The effect of the present invention is remarkable. Considering the steel composition range of the steel material actually used, the following composition ranges are obtained.

【0020】Cは鋼の強度を持たす為に不可欠の元素で
あるため、下限を0.001質量%とし、上限は板材で
用いられる最大炭素量として0.5質量%とした。ま
た、Mnも強度を得るために必要であり、その効果を出
すために下限を0.1質量%とし、上限は特殊用途で使
用される場合の最大値3.0質量%とした。Siは用途
によっては不要の場合もあるが、不可避的に混入するた
めその下限を0.005質量%とし、上限は特殊用途で
用いられる2.0質量%とした。
Since C is an indispensable element for imparting the strength of steel, the lower limit is set to 0.001% by mass, and the upper limit is set to 0.5% by mass as the maximum amount of carbon used in the sheet material. Also, Mn is necessary for obtaining strength, and the lower limit is set to 0.1% by mass in order to obtain the effect, and the upper limit is set to the maximum value of 3.0% by mass when used for special applications. Although Si may be unnecessary depending on the use, it is inevitably mixed, so the lower limit is 0.005% by mass, and the upper limit is 2.0% by mass used for special applications.

【0021】Pは鋼に有害な元素であるため、その上限
を0.1質量%とし極力少ないほうが望ましいが、不可
避的に混入するため下限値0.001質量%が現実的で
ある。Sも同様に製品特性に害をなす場合が多く極力低
位とすることが望ましいが、不可避的に混入するため下
限値0.001質量%が現実的である。また上限は連続
鋳造時の割れを防ぐために0.05質量%とした。酸素
は非金属介在物生成の原因となるため、極力低いほうが
望ましいが、下限は不可避的に混入する0.001質量
%とし、上限は介在物があまり多くなると製品欠陥の原
因となるので、0.050質量%とした。
Since P is an element harmful to steel, its upper limit is preferably set to 0.1% by mass and is as small as possible. However, since it is inevitably mixed, the lower limit of 0.001% by mass is practical. Similarly, S often causes harm to the product characteristics, and is desirably as low as possible. However, since it is inevitably mixed, the lower limit of 0.001% by mass is practical. The upper limit is set to 0.05% by mass to prevent cracking during continuous casting. Oxygen causes the formation of nonmetallic inclusions. Therefore, it is desirable that oxygen is as low as possible. However, the lower limit is 0.001% by mass, which is inevitably mixed, and the upper limit is 0% because too much inclusion causes product defects. 0.050 mass%.

【0022】Nは本発明に関係する元素である。材料の
強度や靱性を上げるために用いられているが、本発明の
効果を得るためには上限が制限される。また、下限は脆
化の発生しない値で規定した。すなわち下限以下であれ
ば、本発明を用いる必要はない。この観点から、N:
0.002〜0.015質量%となる。Alは必要に応
じ、脱酸元素として一般的に使用されているが、Nと化
合してAlNを生成するため、材料の強度を上げる目的
で用いられることもある。この観点から下限は不可避的
に混入する0.001質量%とし、上限は材料の強度を
上げるために0.1質量%とした。
N is an element related to the present invention. Although used to increase the strength and toughness of the material, the upper limit is limited in order to obtain the effects of the present invention. The lower limit was defined as a value at which embrittlement did not occur. That is, the present invention does not need to be used as long as it is at or below the lower limit. From this perspective, N:
It becomes 0.002-0.015 mass%. Al is generally used as a deoxidizing element as needed, but is sometimes used for the purpose of increasing the strength of the material because it combines with N to produce AlN. From this viewpoint, the lower limit is set to 0.001% by mass inevitably mixed, and the upper limit is set to 0.1% by mass in order to increase the strength of the material.

【0023】Nb,V、Tiはは必要に応じ材料の強度
や靱性を上げるために用いられているが、本発明の効果
を得るためには上限が制限される。また、下限は脆化の
発生しない値で規定した。すなわち下限以下であれば、
本発明を用いる必要はない。この観点から、それぞれ、
Nb:0.01〜0.1質量%、V:0.01〜0.1
質量%Ti:0.005〜0.1質量%となる。その
他、鋼の用途に応じてCr,Mo,Cu,Ni,Zr,
B,Mg,Caの一種または二種以上を0.1質量%以
下含んでも構わない。
Nb, V, and Ti are used to increase the strength and toughness of the material as needed, but the upper limit is limited in order to obtain the effects of the present invention. The lower limit was defined as a value at which embrittlement did not occur. That is, if it is below the lower limit,
It is not necessary to use the present invention. From this perspective,
Nb: 0.01 to 0.1% by mass, V: 0.01 to 0.1
% By mass Ti: 0.005 to 0.1% by mass. In addition, Cr, Mo, Cu, Ni, Zr,
One, two or more of B, Mg, and Ca may be contained in an amount of 0.1% by mass or less.

【0024】[0024]

【実施例】表1に示す成分の炭素鋼を表2に示す製造条
件で連続鋳造および得られた鋳片を幅圧下をし、得られ
た鋼片で割れを調査した。割れの評価方法としては、表
3に示すように、鋼片上面と下面にスカーフ溶削を2m
m〜10mm行い、表面を目視観察した。更に鋼片から
サンプルを切り出し、断面の割れの状態をカラーチェッ
クで調査した。結果を表4に示す。
EXAMPLES Continuous casting of carbon steel having the components shown in Table 1 under the production conditions shown in Table 2 was carried out, and the obtained slab was reduced in width. As shown in Table 3, the upper and lower surfaces of the steel slab were subjected to scarf cutting by 2 m.
m to 10 mm, and the surface was visually observed. Further, a sample was cut out from the steel slab and the state of cracks in the cross section was examined by color check. Table 4 shows the results.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【表3】 [Table 3]

【0028】[0028]

【表4】 [Table 4]

【0029】表より、本発明の場合(試験No.1,
3、5,7,9,11,13,15)の条件を満たす場
合には、目視観察およびカラーチェックとも割れは検出
されなかった。一方、いずれの比較例(試験No.2,
4,6,8,10,12,14,16)においても、実
際の析出量が、本発明の式から計算される許容析出量を
越えており、鋳片の目視やカラーチェック検査で割れが
観察された。
From the table, it can be seen that the case of the present invention (Test No. 1,
When the conditions of 3, 5, 7, 9, 11, 13, 15) were satisfied, no cracks were detected by both visual observation and color check. On the other hand, all of the comparative examples (Test No. 2 and
4, 6, 8, 10, 12, 14, 16), the actual amount of precipitation exceeds the allowable precipitation calculated from the formula of the present invention. Was observed.

【0030】[0030]

【発明の効果】以上のように本発明により、Nと共にA
l、NbV及びTiを含む鋼においても幅圧下時の割れ
が発生しなくなり、表面疵のない良好な鋼片が得られる
ことが可能となる。
As described above, according to the present invention, N and A
Even in steel containing 1, NbV, and Ti, cracking during width reduction does not occur, and a good steel slab without surface flaws can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】γ粒径と析出量から脆化発生領域を表した図FIG. 1 is a diagram showing an embrittlement occurrence region based on a γ particle size and a precipitation amount.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田谷 利之 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 Fターム(参考) 4E002 AB04 BC07 CB04  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toshiyuki Taya 1 Nishinosu, Oita-shi, Oita Pref. F-term in Nippon Steel Corporation Oita Works (reference)

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造によって得られた炭素鋼鋳片を
幅圧下する際に、鋳の析出物の析出量が以下の式を満足
するように幅圧下完了時の温度を規定することを特徴と
する幅圧下による割れ欠陥が生じない鋼片の製造方法。 W≦1000×d-2.5 ここで、 W(ppm):鋳片内の析出物の構成元素の濃度と温度
によって決まる析出量 d(mm):幅圧下前の鋳片内の平均γ粒径
When the width of a carbon steel slab obtained by continuous casting is reduced, the temperature at the time of completion of the width reduction is defined so that the amount of precipitates of the casting satisfies the following equation. A method for producing a steel slab which does not cause cracking defects due to width reduction. W ≦ 1000 × d −2.5 where, W (ppm): Precipitation amount determined by the concentration of constituent elements of precipitates in the slab and temperature d (mm): Average γ particle size in the slab before width reduction
【請求項2】 鋼の成分が、C:0.001〜0.5質
量%、Mn:0.1〜3.0質量%、Si:0.005
〜2.0質量%、P:0.001〜0.1質量%、S:
0.001〜0.05質量%、N:0.002〜0.0
15質量%、酸素:0.0005〜0.0050質量%
含み、さらにAl、Nb、Ti、Vの内、一種または二
種以上含み、それぞれの成分範囲が、Al:0.001
〜0.1質量%、Nb:0.01〜0.1質量%Ti:
0.005〜0.1質量%V:0.01〜0.1質量
%、であり、残部鉄および不可避的不純物からなる鋼片
であることを特徴とする請求項1記載の幅圧下による割
れ欠陥が生じない鋼片の製造方法。
2. The steel composition comprises: C: 0.001 to 0.5% by mass, Mn: 0.1 to 3.0% by mass, Si: 0.005%.
To 2.0% by mass, P: 0.001 to 0.1% by mass, S:
0.001 to 0.05% by mass, N: 0.002 to 0.0
15% by mass, oxygen: 0.0005 to 0.0050% by mass
And one or more of Al, Nb, Ti, and V, and each component range is Al: 0.001
To 0.1% by mass, Nb: 0.01 to 0.1% by mass Ti:
The steel sheet according to claim 1, wherein V is 0.005 to 0.1% by mass V: 0.01 to 0.1% by mass, and is a steel slab composed of a balance of iron and unavoidable impurities. A method for producing a billet without defects.
【請求項3】 鋼の成分がCr,Mo,Ni,B,Z
r,Mg,Caの内、一種または二種以上含み、それぞ
れの成分が0.1質量%以下であることを特徴とする請
求項2記載の幅圧下による割れ欠陥が生じない鋼片の製
造方法。
3. The steel component is Cr, Mo, Ni, B, Z.
3. The method for producing a steel slab according to claim 2, wherein one or more of r, Mg, and Ca are contained, and each component is 0.1% by mass or less. .
JP2001151943A 2001-05-22 2001-05-22 Method for producing a billet free from crack defects Expired - Fee Related JP4593006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001151943A JP4593006B2 (en) 2001-05-22 2001-05-22 Method for producing a billet free from crack defects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001151943A JP4593006B2 (en) 2001-05-22 2001-05-22 Method for producing a billet free from crack defects

Publications (2)

Publication Number Publication Date
JP2002346602A true JP2002346602A (en) 2002-12-03
JP4593006B2 JP4593006B2 (en) 2010-12-08

Family

ID=18996687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001151943A Expired - Fee Related JP4593006B2 (en) 2001-05-22 2001-05-22 Method for producing a billet free from crack defects

Country Status (1)

Country Link
JP (1) JP4593006B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116591A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Method for casting steel
JP2007216247A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for producing continuous-cast slab and high-tension hot rolled steel plate, high-tension cold rolled steel sheet, and high-tension galvanized steel sheet
CN106086674A (en) * 2016-06-30 2016-11-09 中车戚墅堰机车车辆工艺研究所有限公司 Low-alloy cast steel and smelting process, heat treatment method and railway locomotive parts
JP2020082085A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Hot width reduction rolling method for continuously cast metal
JP2021109206A (en) * 2020-01-10 2021-08-02 日本製鉄株式会社 Hot width rolling reduction method of continuous casting piece

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126856A (en) * 1998-08-19 2000-05-09 Nippon Steel Corp Manufacture of slab free from surface defect caused by edging

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000126856A (en) * 1998-08-19 2000-05-09 Nippon Steel Corp Manufacture of slab free from surface defect caused by edging

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116591A (en) * 2004-10-25 2006-05-11 Jfe Steel Kk Method for casting steel
JP4613579B2 (en) * 2004-10-25 2011-01-19 Jfeスチール株式会社 Steel casting method
JP2007216247A (en) * 2006-02-15 2007-08-30 Jfe Steel Kk Method for producing continuous-cast slab and high-tension hot rolled steel plate, high-tension cold rolled steel sheet, and high-tension galvanized steel sheet
CN106086674A (en) * 2016-06-30 2016-11-09 中车戚墅堰机车车辆工艺研究所有限公司 Low-alloy cast steel and smelting process, heat treatment method and railway locomotive parts
CN113186465A (en) * 2016-06-30 2021-07-30 中车戚墅堰机车车辆工艺研究所有限公司 Low-alloy cast steel, smelting method and heat treatment method thereof and railway locomotive part
JP2020082085A (en) * 2018-11-15 2020-06-04 日本製鉄株式会社 Hot width reduction rolling method for continuously cast metal
JP7183721B2 (en) 2018-11-15 2022-12-06 日本製鉄株式会社 Hot width reduction rolling method for continuously cast slab
JP2021109206A (en) * 2020-01-10 2021-08-02 日本製鉄株式会社 Hot width rolling reduction method of continuous casting piece
JP7356025B2 (en) 2020-01-10 2023-10-04 日本製鉄株式会社 Hot width reduction rolling method for continuously cast slabs

Also Published As

Publication number Publication date
JP4593006B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
EP2865779B1 (en) H-Section steel and process for producing same
EP3483294B1 (en) Rolled h-shaped steel and manufacturing method thereof
US10358688B2 (en) Steel plate and method of producing same
EP3085803B1 (en) H-shaped steel and method for producing same
EP1980635B1 (en) Steel sheet with excellent suitability for fine blanking and process for producing the same
EP2792761B1 (en) High-strength extra-thick steel h-beam
EP3770289A1 (en) Wear-resistant steel and method for producing same
EP3133181B1 (en) H-section steel and method of producing
JP7479787B2 (en) Hot work tool steel with excellent thermal conductivity
EP3889298A1 (en) High-strength steel with excellent durability and method for manufacturing same
EP3425076A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
JP6790641B2 (en) Rolled H-section steel and its manufacturing method
JP4428550B2 (en) Ferritic stainless steel sheet excellent in ridging resistance and deep drawability and method for producing the same
JP6589503B2 (en) H-section steel and its manufacturing method
JPS5884958A (en) Manufacture of killed steel slab for hot rolling
JP2002346602A (en) Production method of billet without crack defect
KR101851245B1 (en) Ferritic stainless steel having excellent low temperature toughness of welded joint
KR20180117129A (en) Rolled wire rod
CN111684093B (en) High Mn steel and method for producing same
KR102361090B1 (en) Predicting method of ductility reducing region for as-cast slab in continuous casting process and continuous casting method using the same
JP7356025B2 (en) Hot width reduction rolling method for continuously cast slabs
JP2019026927A (en) Thick steel sheet and manufacturing method of thick steel sheet
JP7183721B2 (en) Hot width reduction rolling method for continuously cast slab
JP2003166038A (en) Continuously cast slab free from intercrystalline cracking
JP2000126856A (en) Manufacture of slab free from surface defect caused by edging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4593006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees