JP2004166400A - Cooling medium compressor - Google Patents

Cooling medium compressor Download PDF

Info

Publication number
JP2004166400A
JP2004166400A JP2002329343A JP2002329343A JP2004166400A JP 2004166400 A JP2004166400 A JP 2004166400A JP 2002329343 A JP2002329343 A JP 2002329343A JP 2002329343 A JP2002329343 A JP 2002329343A JP 2004166400 A JP2004166400 A JP 2004166400A
Authority
JP
Japan
Prior art keywords
winding wire
rotor
compression mechanism
fluid compression
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002329343A
Other languages
Japanese (ja)
Inventor
Fumihiko Ishizono
文彦 石園
Tetsuzo Matsuki
哲三 松木
Nobunori Kosone
伸憲 小曽根
Takashi Ishigaki
隆士 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002329343A priority Critical patent/JP2004166400A/en
Publication of JP2004166400A publication Critical patent/JP2004166400A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling medium compressor that does not require a rotor to be magnetized in advance, can perform magnetization while assembling a stator and the rotor even in the course of assembling a compressor, and does not crucially damage a winding wire due to a high voltage and a current even in the magnetization. <P>SOLUTION: The cooling medium compressor houses a fluid compression mechanism 1 and a DC brushless motor 22 that drives the fluid compression mechanism 1 via a rotating drive shaft 4 in a sealed vessel 5. The DC brushless motor 22 comprises a permanent magnet 2b at the rotor 2, and the winding wire with its external periphery coated with an insulating coating at the stator 3. The film thickness of the insulating coating of the winding wire is set to a prescribed film thickness that is sustainable in motor life over a prescribed service life even if the winding wire is energized in magnetizing the rotor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍空調装置に用いられる流体圧縮機構をDCブラシレスモータによって駆動する冷媒圧縮機に関するものである。
【0002】
【従来の技術】
従来、この種の冷媒圧縮機は、例えば下記の特許文献1に記載されている。特許文献1に記載の冷媒圧縮機を図4に示す。図中符号の、51は流体圧縮機構、2はDCブラシレスモータ72のロータ、53はDCブラシレスモータ72のステータである。また、4はロータ2に焼き嵌め固定されて流体圧縮機構51を駆動する回転駆動軸、5は器内下部に流体圧縮機構51を固定配備するとともに器内上下中間部にステータ53を支持する密閉容器である。2aはロータ鉄心であり、2bはロータ鉄心2aに埋め込み配置された永久磁石である。3aはステータ53の巻線ワイヤ、3bはステータ鉄心である。ステータ53は、図5に示すように、合成樹脂被膜3dで被覆された巻線ワイヤ3aがステータ鉄心3bに巻かれた後に整形され、その後さらにワニスを塗布し乾燥させてワニス被膜3cとしたものである。
【0003】
【特許文献1】
特開平6−197490号公報
【0004】
次に動作について説明する。ステータ53に給電されると、ロータ2はトルクを発生して回転駆動軸4とともに回転し、流体圧縮機構51を回転させることで低温低圧の吸入冷媒ガスを高温高圧のガスにして吐出する。また、回転駆動軸4の回転により、密閉容器5底部の潤滑油が回転駆動軸4を軸心方向に貫通する油穴で吸い上げられ、流体圧縮機構51を含む各軸受部を潤滑するようになっている。
【0005】
【発明が解決しようとする課題】
ところで、近年、冷凍空調装置の性能向上が要求されるようになり、磁石埋め込み型DCブラシレスモータを搭載する冷媒圧縮機が多くなってきた。このタイプはモータのロータに埋め込まれた永久磁石を、圧縮機組立て前にあるいは組立て途中に磁化すなわち着磁する必要がある。また最近では、大きな磁力を持つ永久磁石も開発され、磁石埋め込み型DCブラシレスモータが大型の圧縮機にも搭載されるようになってきた。しかし、上記した着磁の際には、短い時間であるが非常に高い電圧と電流がステータの巻線ワイヤに加えられる。この際、巻線ワイヤは縛り糸で固定されているにもかかわらず、極めて僅かではあるが振動する。圧縮機組立て途中にステータとロータを組み込んで着磁を行うと、巻線ワイヤの振動のため巻線ワイヤ間がこすれて絶縁被膜にダメージを与えてしまう。また、大型の圧縮機になるほど大きな磁力が必要になるため、着磁時にかかる電圧と電流の値はより大きくなってダメージがさらに増大する。圧縮機の起動時も同様に、高い電圧と電流がステータの巻線ワイヤに加わり、同様に絶縁被膜にダメージを与えてしまう。さらには、その高い電圧と電流のため巻線ワイヤの絶縁被膜に小さなピンホールがあるとスパークしてしまうため、その巻線ワイヤの絶縁被膜のダメージが圧縮機のモータ寿命を短くしてしまったり、モータを焼損してしまったりする問題があった。一方、圧縮機組立て前に着磁専用のステータを用いて着磁しても、同様にその着磁専用ステータの巻線ワイヤの寿命は短く、頻繁に交換しなければならない。また、ロータが大きな磁力を持つため、着磁後のロータの組立てやその後の他部品の組立ては非常に困難になってしまう。
【0006】
本発明は上記のような問題点を解決するために為されたものであり、予めロータを着磁しておく必要がなく、圧縮機組立て途中にステータとロータを組み込んで着磁を行え、また、着磁の際にも高い電圧と電流による巻線ワイヤに致命的なダメージを与えてしまうことのない冷媒圧縮機を得ることを目的とする。
【0007】
【課題を解決するための手段】
前記の目的を達成するために、本発明の請求項1に係る冷媒圧縮機は、密閉容器内に、流体圧縮機構、およびこの流体圧縮機構を回転駆動軸を介して駆動するモータが収容され、モータが、ロータに永久磁石を備えるとともに、ステータに外周が絶縁被膜で被覆された巻線ワイヤを備えてなるDCブラシレスモータで構成されている冷媒圧縮機において、巻線ワイヤの絶縁被膜の膜厚が、ロータ着磁時に巻線ワイヤに通電されてもモータ寿命を所定寿命以上に維持可能な所定膜厚に設定されているものである。
【0008】
また、請求項2に係る冷媒圧縮機は、請求項1に係る構成において、絶縁被膜は、巻線ワイヤを被覆した合成樹脂被膜と、合成樹脂被膜の外面を更に被覆したワニス被膜とからなり、ワニス被膜は、合成樹脂被膜により被覆された巻線ワイヤがステータとしてコイル状に巻かれた状態でワニス浴中への浸漬処理および乾燥処理が少なくとも2回繰り返されて形成されているものである。
【0009】
また、請求項3に係る冷媒圧縮機は、請求項1または請求項2に係る構成において、流体圧縮機構がスクロール方式で構成されているものである。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態につき図に基づいて詳しく説明する。
実施の形態1.
図1は本発明の実施の形態1に係る冷媒圧縮機の概略側断面図、図2は図1におけるA部拡大断面図である。
図1において、この実施形態に係る冷媒圧縮機では、密閉容器5内の上部に冷媒を圧縮して吐出する流体圧縮機構1が配備され、この流体圧縮機構1を回転駆動軸4を介して駆動するDCブラシレスモータ22が密閉容器5内の中下部に収容されている。DCブラシレスモータ22は、回転駆動軸4に焼き嵌め固定されたロータ2と、ロータ2の外周に対面する位置で密閉容器5内周面に固設されたステータ3とから成っている。ロータ2のロータ鉄心2aには永久磁石2bが埋め込み配置されている。回転駆動軸4はその上端が流体圧縮機構1の駆動部と連結され、下端が密閉容器5内下部に固定配備されたサブフレーム8に回動自由にスラスト支持されている。密閉容器5の上部には冷媒を吐き出す(または吸い込む)ための冷媒管23が連結され、密閉容器5の胴部に冷媒を吸い込む(または吐き出す)ための冷媒管24が連結されている。本実施形態の冷媒圧縮機による冷媒圧縮動作は、従来技術で述べた冷媒圧縮機の動作と同じである。
【0011】
そして、DCブラシレスモータ22のステータ3は、図2に示すように、予め合成樹脂被膜3dで被覆された巻線ワイヤ3aがステータ鉄心3bに巻かれた後に整形され、その後さらにワニスが塗布されたものである。ワニスの塗布は、別途用意したワニス浴(図示省略)中にステータ鉄心3bに巻かれた巻線ワイヤ3a全体を浸漬することにより行われる。その後、巻線ワイヤ3a全体をワニス浴から引き上げて乾燥させることにより、合成樹脂被膜3d上にワニス被膜3cが定着する。これらの合成樹脂被膜3dとワニス被膜3cの複合構造が、本発明にいうところの絶縁被膜25である。
【0012】
上記のように絶縁被膜25を有するステータ3を搭載した冷媒圧縮機においては、ロータ2の永久磁石2bの着磁時に巻線ワイヤ3aに通電がなされて、着磁時の高い電圧と電流が加わる。これにより、巻線ワイヤ3aが一瞬振動することによる絶縁被膜25の剥離や、小さなピンホールでのスパーク等のDCブラシレスモータ特有のストレスがあるが、絶縁被膜25の被膜tが寿命カーブのフラットな長寿命域となる40μm(所定膜厚S)以上に設定されているので、図3に示すように、モータ寿命を通常の使用状態に耐え得る所定寿命R(誘導電動機と同等の寿命)以上に維持することができる。これにより、モータ焼損がなく、長寿命のモータを持った高効率で信頼性の高い磁石埋め込み型のDCブラシレスモータ搭載スクロール圧縮機を得ることができる。
【0013】
尚、流体圧縮機構1としては、例えば、小容量の冷媒圧縮機に多用されるレシプロ式流体圧縮機構や、大容量の冷媒圧縮機に多用されるスクロール式流体圧縮機構が使用可能である。
【0014】
実施の形態2.
この実施形態では、流体圧縮機構1としてスクロール式流体圧縮機構21を用いた場合を説明する。他の構成は前述した実施形態1の冷媒圧縮機と同じである。
スクロール式流体圧縮機構21は、密閉容器5内の上部に固定配備されて渦巻翼を有する固定スクロール6と、固定スクロール6に対し所定の旋回動作を行って冷媒を圧縮する揺動スクロール7とから構成されている。揺動スクロール7は回転駆動軸4の上端に連結されている。
【0015】
前記のように、絶縁被膜25の膜厚tを所定膜厚Sに設定してモータ寿命を所定寿命R以上に維持できるようにした冷媒圧縮機に、スクロール式流体圧縮機構21を用いれば、小容量から大容量までの広領域可変速において高効率の冷媒圧縮機を得ることができる。特に、スクロール式流体圧縮機構は大型の冷凍空調装置に用いられることが多く、大型の冷凍空調装置も長寿命化することが可能となる。
【0016】
実施の形態3.
これまでに述べた実施形態では、巻線ワイヤ3aの合成樹脂被膜3dに塗布されるワニスの塗布回数を特に限定していない。そこで、この実施形態では、合成樹脂被膜3dで被覆された巻線ワイヤ3aをステータとしてコイル状に巻いたものをワニス浴中へ浸漬する浸漬処理と、ワニス浴から引き上げて風乾ないしは加熱乾燥させる乾燥処理を、それぞれ2回以上繰り返した。このようにして形成されたワニス被膜3cはそれ自体の膜厚が厚くなり所定膜厚Sを超えやすくなるのは無論のこと、隣合った巻線ワイヤ3a,3a間がワニスで十分に満たされて固められるため、コイル全体の機械強度が高くなる。従って、ロータ2の永久磁石2bの着磁時における不具合をよりいっそう抑えることができ、格段に長寿命の冷媒圧縮機が実現される。
【0017】
【発明の効果】
以上詳述したように、本発明に係る冷媒圧縮機によれば、ステータの巻線ワイヤの絶縁被膜の膜厚が所定膜厚に設定されているので、ロータ着磁時の高い電圧と電流が加えられることによる巻線ワイヤの一瞬の振動を小さくすることができ、巻線ワイヤ間のこすれによる被膜の剥離を抑えることができる。また、小さなピンホールでのスパークを抑えることも可能である。かかる作用効果により、モータ焼損がなく長寿命のモータを有する磁石埋め込み型DCブラシレスモータ搭載の冷媒圧縮機が実現される。
【図面の簡単な説明】
【図1】本発明の実施の形態に係る冷媒圧縮機の概略側断面図である。
【図2】図1におけるA部拡大断面図である。
【図3】前記冷媒圧縮機におけるモータステータの絶縁被膜の膜厚とモータ寿命との関係を表した図である。
【図4】従来の冷媒圧縮機の概略側断面図である。
【図5】図4におけるB部拡大断面図である。
【符号の説明】
1 流体圧縮機構、2 ロータ、2a ロータ鉄心、2b 永久磁石、3 ステータ、3a 巻線ワイヤ、3b ステータ鉄心、3c ワニス被膜、3d 合成樹脂被膜、4 回転駆動軸、5 密閉容器、6 固定スクロール、7 揺動スクロール、21 スクロール式流体圧縮機構、22 DCブラシレスモータ、25 絶縁被膜、R 所定寿命、S 所定膜厚、t 膜厚。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a refrigerant compressor that drives a fluid compression mechanism used in a refrigerating air conditioner by a DC brushless motor.
[0002]
[Prior art]
Conventionally, this type of refrigerant compressor is described in, for example, Patent Document 1 below. FIG. 4 shows a refrigerant compressor described in Patent Document 1. In the figure, reference numeral 51 denotes a fluid compression mechanism, 2 denotes a rotor of the DC brushless motor 72, and 53 denotes a stator of the DC brushless motor 72. Reference numeral 4 denotes a rotary drive shaft which is shrink-fitted and fixed to the rotor 2 and drives the fluid compression mechanism 51. Reference numeral 5 denotes a hermetic seal in which the fluid compression mechanism 51 is fixedly provided in a lower portion of the inside of the device and a stator 53 is supported at an upper and lower middle portion in the device. Container. 2a is a rotor core, and 2b is a permanent magnet embedded in the rotor core 2a. 3a is a winding wire of the stator 53, and 3b is a stator core. As shown in FIG. 5, the stator 53 is shaped after a winding wire 3a covered with a synthetic resin film 3d is wound around a stator core 3b, and then further coated with varnish and dried to form a varnish film 3c. It is.
[0003]
[Patent Document 1]
JP-A-6-197490 [0004]
Next, the operation will be described. When power is supplied to the stator 53, the rotor 2 generates torque and rotates together with the rotary drive shaft 4. By rotating the fluid compression mechanism 51, the low-temperature low-pressure suction refrigerant gas is discharged as high-temperature high-pressure gas. In addition, by the rotation of the rotary drive shaft 4, the lubricating oil at the bottom of the sealed container 5 is sucked up by an oil hole penetrating the rotary drive shaft 4 in the axial direction, and lubricates each bearing portion including the fluid compression mechanism 51. ing.
[0005]
[Problems to be solved by the invention]
By the way, in recent years, the performance of refrigeration and air-conditioning systems has been required to be improved, and the number of refrigerant compressors equipped with an embedded magnet type DC brushless motor has increased. This type requires permanent magnets embedded in the rotor of the motor to be magnetized or magnetized before or during assembly of the compressor. In recent years, permanent magnets having a large magnetic force have been developed, and DC brushless motors with embedded magnets have come to be mounted on large compressors. However, during the above-described magnetization, a very short but very high voltage and current are applied to the winding wires of the stator. At this time, the winding wire vibrates, though very slightly, despite being fixed by the binding thread. If the stator and the rotor are assembled during the assembly of the compressor and magnetized, the wound wires are rubbed due to the vibration of the wound wires, and the insulating film is damaged. In addition, since a larger compressor requires a larger magnetic force, the value of the voltage and current applied during magnetization is further increased, and the damage is further increased. Similarly, when starting the compressor, a high voltage and current are applied to the winding wire of the stator, which similarly damages the insulating coating. Furthermore, because of the high voltage and current, if there is a small pinhole in the insulation coating of the winding wire, sparks will occur, and damage to the insulation coating of the winding wire will shorten the life of the motor of the compressor. However, there is a problem that the motor is burned. On the other hand, even if the magnetizing is performed by using a magnetizing-dedicated stator before assembling the compressor, the life of the winding wire of the magnetized-dedicated stator is similarly short and must be frequently replaced. In addition, since the rotor has a large magnetic force, it is very difficult to assemble the rotor after magnetization and to assemble other parts thereafter.
[0006]
The present invention has been made in order to solve the above-described problems, it is not necessary to magnetize the rotor in advance, it is possible to magnetize by incorporating the stator and rotor during the compressor assembly, It is another object of the present invention to provide a refrigerant compressor that does not cause a fatal damage to a winding wire due to a high voltage and current even when magnetized.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the refrigerant compressor according to claim 1 of the present invention is configured such that a fluid compression mechanism and a motor that drives the fluid compression mechanism via a rotary drive shaft are housed in a closed container, In a refrigerant compressor in which a motor includes a permanent magnet on a rotor and a winding brush wire having an outer periphery covered with an insulation coating on a stator, a film thickness of the insulation coating of the winding wire is provided. However, even if the winding wire is energized during the magnetization of the rotor, the motor life is set to a predetermined film thickness that can maintain the motor life longer than the predetermined life.
[0008]
Further, in the refrigerant compressor according to claim 2, in the configuration according to claim 1, the insulating coating comprises a synthetic resin coating covering the winding wire, and a varnish coating further covering the outer surface of the synthetic resin coating, The varnish coating is formed by repeating a dipping process and a drying process in a varnish bath at least twice in a state where a winding wire covered with a synthetic resin film is wound in a coil shape as a stator.
[0009]
A refrigerant compressor according to a third aspect is the refrigerant compressor according to the first or second aspect, wherein the fluid compression mechanism is configured by a scroll system.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
Embodiment 1 FIG.
1 is a schematic side sectional view of a refrigerant compressor according to Embodiment 1 of the present invention, and FIG. 2 is an enlarged sectional view of a portion A in FIG.
In FIG. 1, in the refrigerant compressor according to this embodiment, a fluid compression mechanism 1 for compressing and discharging a refrigerant is provided at an upper portion in a closed container 5, and the fluid compression mechanism 1 is driven via a rotary drive shaft 4. The DC brushless motor 22 is accommodated in the middle and lower parts of the closed container 5. The DC brushless motor 22 includes a rotor 2 fixed to the rotary drive shaft 4 by shrink fitting, and a stator 3 fixed to the inner peripheral surface of the closed casing 5 at a position facing the outer periphery of the rotor 2. A permanent magnet 2b is embedded in a rotor core 2a of the rotor 2. The upper end of the rotary drive shaft 4 is connected to the drive unit of the fluid compression mechanism 1, and the lower end is rotatably supported by a sub-frame 8 fixedly arranged in the lower portion of the closed vessel 5. A refrigerant pipe 23 for discharging (or sucking) the refrigerant is connected to an upper portion of the closed container 5, and a refrigerant pipe 24 for sucking (or discharging) the refrigerant is connected to the body of the closed container 5. The refrigerant compression operation of the refrigerant compressor of the present embodiment is the same as the operation of the refrigerant compressor described in the related art.
[0011]
Then, as shown in FIG. 2, the stator 3 of the DC brushless motor 22 is shaped after a winding wire 3a previously coated with a synthetic resin film 3d is wound around a stator core 3b, and then a varnish is further applied. Things. The varnish is applied by dipping the entire winding wire 3a wound around the stator core 3b into a separately prepared varnish bath (not shown). Thereafter, the entire winding wire 3a is pulled up from the varnish bath and dried to fix the varnish coating 3c on the synthetic resin coating 3d. The composite structure of the synthetic resin film 3d and the varnish film 3c is the insulating film 25 according to the present invention.
[0012]
In the refrigerant compressor equipped with the stator 3 having the insulating coating 25 as described above, the winding wire 3a is energized when the permanent magnet 2b of the rotor 2 is magnetized, and a high voltage and current are applied during magnetization. . As a result, there is a stress peculiar to the DC brushless motor such as the peeling of the insulating film 25 due to the momentary vibration of the winding wire 3a and the spark in a small pinhole, but the film t of the insulating film 25 has a flat life curve. Since it is set to 40 μm (predetermined film thickness S) or more, which is a long life range, as shown in FIG. 3, the motor life is longer than a predetermined life R (life equivalent to that of an induction motor) that can withstand normal use. Can be maintained. This makes it possible to obtain a highly efficient, highly reliable magnet-embedded DC brushless motor-mounted scroll compressor having a long-life motor without motor burnout.
[0013]
As the fluid compression mechanism 1, for example, a reciprocating fluid compression mechanism frequently used in a small capacity refrigerant compressor or a scroll fluid compression mechanism frequently used in a large capacity refrigerant compressor can be used.
[0014]
Embodiment 2 FIG.
In this embodiment, a case where a scroll-type fluid compression mechanism 21 is used as the fluid compression mechanism 1 will be described. Other configurations are the same as those of the refrigerant compressor of the first embodiment.
The scroll-type fluid compression mechanism 21 includes a fixed scroll 6 fixedly provided at an upper portion in the closed vessel 5 and having a spiral blade, and an oscillating scroll 7 that performs a predetermined turning operation on the fixed scroll 6 to compress the refrigerant. It is configured. The orbiting scroll 7 is connected to the upper end of the rotary drive shaft 4.
[0015]
As described above, if the scroll type fluid compression mechanism 21 is used for a refrigerant compressor in which the thickness t of the insulating film 25 is set to the predetermined thickness S and the motor life can be maintained to be equal to or longer than the predetermined life R, A high-efficiency refrigerant compressor can be obtained in a wide range variable speed from a large capacity to a large capacity. In particular, the scroll-type fluid compression mechanism is often used for a large-sized refrigeration / air-conditioning apparatus, and the life of the large-sized refrigeration / air-conditioning apparatus can be extended.
[0016]
Embodiment 3 FIG.
In the embodiments described above, the number of times of applying the varnish applied to the synthetic resin film 3d of the winding wire 3a is not particularly limited. Therefore, in this embodiment, a dipping process in which the coiled wire 3a covered with the synthetic resin film 3d is wound into a coil shape as a stator is dipped into a varnish bath, and drying is performed by pulling up from the varnish bath and air drying or heat drying. The treatment was repeated twice or more each time. It goes without saying that the varnish coating 3c formed in this way has a large thickness itself and easily exceeds the predetermined thickness S. The varnish is sufficiently filled between the adjacent winding wires 3a. Since the coil is hardened, the mechanical strength of the entire coil increases. Therefore, it is possible to further suppress the trouble at the time of the magnetization of the permanent magnet 2b of the rotor 2, and to realize a refrigerant compressor having a remarkably long life.
[0017]
【The invention's effect】
As described above in detail, according to the refrigerant compressor of the present invention, since the thickness of the insulating coating of the winding wire of the stator is set to a predetermined thickness, a high voltage and current during magnetization of the rotor are reduced. Momentary vibration of the winding wire due to the addition can be reduced, and peeling of the coating due to rubbing between the winding wires can be suppressed. It is also possible to suppress sparks in small pinholes. By such an operation and effect, a refrigerant compressor equipped with a magnet-embedded DC brushless motor having a long-life motor without motor burnout is realized.
[Brief description of the drawings]
FIG. 1 is a schematic side sectional view of a refrigerant compressor according to an embodiment of the present invention.
FIG. 2 is an enlarged sectional view of a portion A in FIG.
FIG. 3 is a diagram illustrating a relationship between a film thickness of an insulating film of a motor stator and a motor life in the refrigerant compressor.
FIG. 4 is a schematic side sectional view of a conventional refrigerant compressor.
FIG. 5 is an enlarged sectional view of a portion B in FIG.
[Explanation of symbols]
Reference Signs List 1 fluid compression mechanism, 2 rotor, 2a rotor core, 2b permanent magnet, 3 stator, 3a winding wire, 3b stator core, 3c varnish coating, 3d synthetic resin coating, 4 rotary drive shaft, 5 closed vessel, 6 fixed scroll, 7 orbiting scroll, 21 scroll-type fluid compression mechanism, 22 DC brushless motor, 25 insulating film, R predetermined life, S predetermined film thickness, t film thickness.

Claims (3)

密閉容器内に、流体圧縮機構、およびこの流体圧縮機構を回転駆動軸を介して駆動するモータが収容され、前記モータが、ロータに永久磁石を備えるとともに、ステータに外周が絶縁被膜で被覆された巻線ワイヤを備えてなるDCブラシレスモータで構成されている冷媒圧縮機において、前記巻線ワイヤの絶縁被膜の膜厚が、ロータ着磁時に前記巻線ワイヤに通電されてもモータ寿命を所定寿命以上に維持可能な所定膜厚に設定されていることを特徴とする冷媒圧縮機。A fluid compression mechanism and a motor for driving the fluid compression mechanism via a rotary drive shaft are accommodated in the closed container. In a refrigerant compressor constituted by a DC brushless motor having a winding wire, the thickness of the insulating film of the winding wire is such that the motor life is a predetermined life even if the winding wire is energized when the rotor is magnetized. A refrigerant compressor characterized by being set to a predetermined film thickness that can be maintained as described above. 絶縁被膜は、巻線ワイヤを被覆した合成樹脂被膜と、前記合成樹脂被膜の外面を更に被覆したワニス被膜とからなり、前記ワニス被膜は、前記合成樹脂被膜により被覆された巻線ワイヤがステータとしてコイル状に巻かれた状態でワニス浴中への浸漬処理および乾燥処理が少なくとも2回繰り返されて形成されていることを特徴とする請求項1記載の冷媒圧縮機。The insulating coating is composed of a synthetic resin coating covering the winding wire, and a varnish coating further covering the outer surface of the synthetic resin coating, and the varnish coating is such that the winding wire coated with the synthetic resin coating serves as a stator. 2. The refrigerant compressor according to claim 1, wherein the immersion treatment in the varnish bath and the drying treatment are repeated at least twice in a state of being wound in a coil shape. 流体圧縮機構がスクロール方式で構成されていることを特徴とする請求項1または請求項2記載の冷媒圧縮機。3. The refrigerant compressor according to claim 1, wherein the fluid compression mechanism is configured by a scroll system.
JP2002329343A 2002-11-13 2002-11-13 Cooling medium compressor Pending JP2004166400A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002329343A JP2004166400A (en) 2002-11-13 2002-11-13 Cooling medium compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329343A JP2004166400A (en) 2002-11-13 2002-11-13 Cooling medium compressor

Publications (1)

Publication Number Publication Date
JP2004166400A true JP2004166400A (en) 2004-06-10

Family

ID=32807372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329343A Pending JP2004166400A (en) 2002-11-13 2002-11-13 Cooling medium compressor

Country Status (1)

Country Link
JP (1) JP2004166400A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051050A (en) * 2006-08-28 2008-03-06 Hitachi Appliances Inc Hermetic compressor for helium
JP2009097417A (en) * 2007-10-16 2009-05-07 Mayekawa Mfg Co Ltd Hermetically sealed scroll compressor and assembly method therefor
JP2015214928A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051050A (en) * 2006-08-28 2008-03-06 Hitachi Appliances Inc Hermetic compressor for helium
JP2009097417A (en) * 2007-10-16 2009-05-07 Mayekawa Mfg Co Ltd Hermetically sealed scroll compressor and assembly method therefor
JP2015214928A (en) * 2014-05-12 2015-12-03 パナソニックIpマネジメント株式会社 Compressor, and refrigeration cycle device using the same

Similar Documents

Publication Publication Date Title
US6836051B2 (en) Motor
JP4005169B2 (en) Compressor
US20120131945A1 (en) Self-Starting Type Axial Gap Synchronous Motor, Compressor and Refrigeration Cycle Apparatus Using the Same
JP5303833B2 (en) Motor rotor, motor and compressor
WO2004079883A1 (en) Magnetizing jig, magnetizing method using the jig, and method of assembling electric compressor by using the jig and the magnetizing method
EP1278293A2 (en) Low-noise motor-compressor
US20150010412A1 (en) Stator, motor and compressor
WO2009084245A1 (en) Electric motor for compressor, compressor, and freezing cycle device
JP2005117771A (en) Permanent magnet type synchronous motor and compressor using it
JP2004232523A (en) Rotary compressor
US20150010414A1 (en) Stator, three-phase induction motor, and compressor
JP2004166400A (en) Cooling medium compressor
JP2004056887A (en) Single-phase or two-phase auto-starting synchronous motor, and compressor using this motor
JP7150181B2 (en) motors, compressors, and air conditioners
JPWO2008062789A1 (en) Rotary compressor and refrigeration cycle apparatus
JP2007327497A (en) Compressor
JP3763462B2 (en) Self-starting synchronous motor and compressor using the same
JP2016171646A (en) Permanent magnet dynamo-electric machine, and compressor for use therein
US7659650B2 (en) Self-magnetizing motor and compressor having the same
JP2005168097A (en) Motor and rotary compressor
JP4031454B2 (en) Compressor
JP2005185008A (en) Motor, sealed-type compressor, refrigerating air conditioner, wedge, and manufacturing method of the wedge
WO2022176307A1 (en) Permanent magnet synchronous motor, compressor, and device
CN104518580A (en) Stator, motor and compressor
JP7204887B2 (en) Stator, electric motor, compressor, air conditioner, and stator manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20040709

Free format text: JAPANESE INTERMEDIATE CODE: A7421