JP2004165505A - Wiring board and its manufacturing method - Google Patents

Wiring board and its manufacturing method Download PDF

Info

Publication number
JP2004165505A
JP2004165505A JP2002331239A JP2002331239A JP2004165505A JP 2004165505 A JP2004165505 A JP 2004165505A JP 2002331239 A JP2002331239 A JP 2002331239A JP 2002331239 A JP2002331239 A JP 2002331239A JP 2004165505 A JP2004165505 A JP 2004165505A
Authority
JP
Japan
Prior art keywords
layer
tin
brazing material
melting point
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002331239A
Other languages
Japanese (ja)
Other versions
JP3792642B2 (en
Inventor
Yasuo Fukuda
康雄 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002331239A priority Critical patent/JP3792642B2/en
Publication of JP2004165505A publication Critical patent/JP2004165505A/en
Application granted granted Critical
Publication of JP3792642B2 publication Critical patent/JP3792642B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Abstract

<P>PROBLEM TO BE SOLVED: To overcome a problem that the strength deteriorates by the diffusion of a copper component contained in a wiring layer into a low-melting brazing material due to the heat generating in connecting an electronic component via the low-melting point brazing material, when a defect-free film is needed to form on the wiring layer of the surface of a wiring board using a plating film, such as a tin plating film, which can melt at low temperatures. <P>SOLUTION: The wiring board 4 comprises an insulating substrate 1 composed of glass ceramics, and the wiring layer 2 which is formed on/in the substrate 1 and mainly composed of copper and to which electrodes of an electronic component 3 are connected via the low-melting brazing material 5. In the wiring board 4, a thermally treated copper-tin alloy layer 6 and a thermally treated silver-tin or gold-tin alloy layer 7 are sequentially formed on the surfaces of the regions of the wiring layer 2 to which the electrodes are connected via the low-melting brazing material 5. It is possible to effectively prevent the copper component contained in the wiring layer 2 from diffusing into the low-melting brazing material 5, when the low-melting brazing material 5 is used to connect the wiring layer 2. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子や容量素子,抵抗器等の電子部品が半田等の低融点ロウ材を介して搭載される配線基板であって、その表面の配線層にめっき層が被着されている配線基板に関するものである。
【0002】
【従来の技術】
従来、半導体素子や容量素子,抵抗器等の電子部品が搭載される配線基板は、一般に、酸化アルミニウム質焼結体から成る絶縁基体と、この絶縁基体の上面から下面にかけて形成されたタングステン,モリブデン等の高融点金属材料から成る複数個の配線層とから構成されており、絶縁基体の上面に半導体素子や容量素子,抵抗器等の電子部品を搭載するとともにこのような電子部品の各電極を配線層に半田等の低融点ロウ材を介して電気的に接続するようになっている。
【0003】
このような配線基板は、配線層の絶縁基体の下面に導出されている部位を外部電気回路基板の配線導体に半田等の低融点ロウ材を介し接続することによって外部電気回路基板上に実装され、同時に配線基板に搭載されている電子部品の各電極が所定の外部電気回路に電気的に接続されることとなる。
【0004】
また、上述の配線基板は、配線層のうち少なくとも電子部品が半田等の低融点ロウ材を介して接続される領域に、ニッケル−リン合金またはニッケル−ホウ素合金から成るニッケルめっき層と金めっき層とが順次被着されており、このニッケルめっき層によってタングステン等の高融点金属材料から成る配線層に対する半田等の接合を良好とし、金めっき層によってニッケルめっき層の表面にニッケルの酸化物が形成されて半田接合性等が劣化するのを防止している。
【0005】
また、これらニッケルめっき層および金めっき層を被着させる方法としては、配線基板の小型化に伴う配線層の高密度化によって配線層に対するめっき電力供給用の引き出し線の形成が困難なことから、無電解法が多用されつつある。
【0006】
一方、金めっき層の下地めっき層となるニッケルめっき層には、タングステン,モリブデン等の高融点金属材料から成る配線層に強固に被着させるとともに、ニッケルめっき層に内在する応力によるクラックやピンホール等のめっき皮膜欠陥をニッケルの結晶成長により抑制する目的のために、例えば800℃乃至1000℃の熱処理が加えられる。それにより、めっき液が残留しやすいクラックやピンホールがニッケルめっき層において極めて少なくなるため、電子部品を配線層に半田等を介して接続させる際の熱によって残留していためっき液が金めっき層上にしみ出し、それが斑点状のしみを形成して外観不良を生じるという問題が発生しにくいものとなる。
【0007】
【特許文献1】
特開平10−102266号公報
【特許文献2】
特開2001−131774号公報
【0008】
【発明が解決しようとする課題】
近年の高度情報化時代を迎え、信号に使用される周波数帯域はますます高周波帯に移行しつつある。このような高周波の信号の伝送を行なう高周波用の配線基板においては、高周波信号を高速で伝送する上で、配線層を形成する導体の抵抗が小さいことが要求され、絶縁基体にもより低い誘電率が要求される。
【0009】
しかし、従来の配線層に用いられているタングステン,モリブデン等の高融点金属は、導体抵抗が大きいため、信号の伝播速度が遅く、また30GHz以上の高周波領域の信号伝播も困難であることから、このようなタングステン,モリブデン等の金属に代えて銅,銀,金等の低抵抗金属を使用することが必要である。
【0010】
このため、最近では、ガラスとセラミックス(無機質フィラー)との混合物を焼成して得られるガラスセラミックスを絶縁基体として用いることが注目されている。ガラスセラミックスは、誘電率が低いため高周波用絶縁基体として好適であり、また800℃乃至1000℃の低温で焼成することができることから、銅,銀,金等の低抵抗金属を配線層として使用できるという利点がある。
【0011】
なお、配線層として使用される低抵抗金属としては、高周波特性に優れた銅を主成分とした導体を用いることが主流となっている。
【0012】
しかしながら、これらガラスセラミックスに使用される銅を主成分とする導体は、めっき層が被着形成されにくいガラス成分を多量に含有し、そのガラス成分が表面に多数露出して表面が粗面となっており、かつ、焼成の際に絶縁基体の上面に設置され絶縁基体に反りが生ずることを防ぐ役目を果たすセッターの成分が配線層の表面に付着していることが多く、そのため配線層の表面全体にニッケルめっき層を均一に被着させることができないという問題点があった。
【0013】
そこで、配線層の表面のガラスおよび付着物を、フッ化物を主成分としたガラスエッチング液に浸漬して化学的に除去したり、ブラスト装置等で物理的に除去したりすることが行なわれ、外観的には配線層の表面の全面にニッケルめっき層を均一に被着させることが行なわれている。
【0014】
ところが、これらの化学的や物理的なガラスおよび付着物の除去においても、その処理条件には絶縁基体や配線層の強度低下を避ける必要性があるため制限があることから、ガラスおよび付着物を完全に除去することができなかった。そのため、配線層の表面には微量のガラスや付着物が残留することになり、この微量の残留したガラスや付着物は、特に初期のめっき析出を阻害することから、ニッケルめっき層に応力の高い部分を形成してしまい、そのため、走査型電子顕微鏡でニッケルめっき層の表面を観察すると斑点状に微細なクラック状の異常析出部を形成してしまうという問題点があった。
【0015】
この微細なクラック状の異常析出部には、めっき液が残留し易く、ここに残留しためっき液が電子部品を配線層に半田等を介して接続させる際の熱によってニッケルめっき層上の金めっき層の表面にしみ出し、斑点状のしみを形成して外観不良を生じるという問題点があった。
【0016】
この異常析出部を抑制するためには、例えば熱処理を加えることが考えられるが、ニッケルめっき層の結晶成長に必要な800℃乃至1000℃の熱処理を加えると、銅から成る配線層にフクレ等の問題が誘発されるという問題点があった。このため、低い融点で結晶成長させることのできる錫めっきや半田めっきもしくは鉛代替半田等を施した後、熱処理することで欠陥の無い皮膜を形成し、しみ出しや斑点状のしみの発生を防止するといった手法が一般的にとられるが、半田等の低融点ロウ材実装時の熱や、再実装(リペア)時の熱により、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散し接合性を劣化させるという不具合があった。
【0017】
本発明は以上のような従来の技術における問題点に鑑みて案出されたものであり、その目的は、配線層が半田等の低融点ロウ材を介して接続される領域以外の表面にしみ出しや斑点状のしみを形成して外観不良を生じることを防止するため、配線層の表面にニッケルよりも低い温度で粒成長する皮膜を形成した場合においても、電子部品を配線層に半田等の低融点ロウ材を介して接続させる際の熱によって銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散することを防止できる配線基板およびその製造方法を提供することにある。
【0018】
【課題を解決するための手段】
本発明の配線基板は、ガラスセラミックスから成る絶縁基体に、電子部品の電極が低融点ロウ材を介して接続される、銅を主成分とした配線層を形成して成る配線基板であって、前記配線層のうち前記電極が前記低融点ロウ材を介して接続される領域の表面に、熱処理された銅錫合金層および熱処理された銀または金と錫との合金層が順次形成されていることを特徴とするものである。
【0019】
また、本発明の配線基板は、上記構成において、前記銅錫合金層は、前記配線層の表面に被着された錫めっき層に前記配線層の前記銅が熱処理によって拡散して形成され、前記銀または金と錫との合金層は、前記錫めっき層の表面に被着された銀めっき層または金めっき層に前記錫めっき層の錫が熱処理によって拡散して形成されたものであることを特徴とするものである。
【0020】
さらに、本発明の配線基板の製造方法は、ガラスセラミックスから成る絶縁基体に銅を主成分とした配線層を形成する工程と、前記配線層のうち電子部品の電極が低融点ロウ材を介して接続される領域の表面に、錫めっき層と銀めっき層または金めっき層とを順次被着する工程と、しかる後、前記低融点ロウ材の融点より50℃乃至100℃高い温度で前記錫めっき層と前記銀めっき層または前記金めっき層とに熱処理を施す工程とを具備することを特徴とするものである。
【0021】
本発明の配線基板によれば、配線層のうち電極が低融点ロウ材を介して接続される領域の表面に、熱処理された銅錫合金層および熱処理された銀または金と錫との合金層が順次形成されていることから、銅錫合金層と銀または金と錫との合金層の融点が実装温度より高いことにより、実装温度では銅錫合金層および銀または金と錫との合金層が熱による化学変化を伴わないため、低融点ロウ材を配線層に接続する際、銅を主成分とする配線層中の銅成分が低融点ロウ材中に拡散することを効果的に防止することが可能となる。その結果、半田等の低融点ロウ材実装時の熱や、再実装(リペア)時の熱により、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散し接合性を劣化させることを効果的に防止することが可能となる。また、銅錫合金層の上に銀または金と錫との合金層が形成されていることから、低融点ロウ材で実装するのに対して、低融点ロウ材,銀または金と錫との合金層,銅錫合金層,配線層中の銅と順次融点が高くなる構成とすることができる。その結果、銅を主成分とする配線層中の銅成分の拡散をより効果的に抑えることが可能となる。
【0022】
ここで実装温度とは、銅を主成分とする配線層上に電極が低融点ロウ材を介して接続される領域の表面に、順次熱処理された銅錫合金層と熱処理された銀または金と錫との合金層が形成された配線基板に、電子部品を配線層に半田等の低融点ロウ材を介して実装する際の配線基板の温度のことである。
【0023】
また、本発明の配線基板によれば、銅錫合金層は、配線層の表面に被着された錫めっき層に配線層の銅が熱処理によって拡散して形成され、銀または金と錫との合金層は、錫めっき層の表面に被着された銀めっき層または金めっき層に錫めっき層の錫が熱処理によって拡散して形成されたものであるときには、低融点ロウ材で実装するのに対して、低融点ロウ材,銀または金と錫との合金層,銅錫合金層,配線層中の銅と順次融点が高くなる構成とすることが可能となり、銅を主成分とする配線層中の銅成分の拡散を効果的に抑えることが可能となる。その結果、半田等の低融点ロウ材実装時の熱や、再実装(リペア)時の熱により、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散し接合性を劣化させることを効果的に防止することが可能となる。
【0024】
また、本発明の配線基板の製造方法によれば、ガラスセラミックスから成る絶縁基体に銅を主成分とした配線層を形成する工程と、配線層のうち電極が低融点ロウ材を介して接続される領域の表面に、錫めっき層と銀めっき層または金めっき層とを順次被着形成した後、前記低融点ロウ材の実装温度より50℃乃至100℃高い温度で錫めっき層と銀めっき層または金めっき層とに熱処理を施す工程とを具備することから、銀めっき層または金めっき層が錫と合金化する過程において、ピンホール等の欠陥の発生を抑えたより一層緻密な金属層が形成されることによって、また銀または金と錫との合金層よりもより一層融点の高い銅錫合金層が形成されることによって、配線層の電極が半田等の低融点ロウ材を介して接合される領域以外の表面にしみ出しや斑点状のしみを形成して外観不良を生じることを効果的に防止することが可能となるうえ、電子部品を配線層に低融点ロウ材を介して接合する際に、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に熱拡散することを効果的に防止することが可能となる。
【0025】
以上により、本発明の配線基板およびその製造方法によれば、配線層が半田等の低融点ロウ材を介して接続される領域以外の表面にしみ出しや斑点状のしみを形成して外観不良を生じることを防止するため、配線層の表面にニッケルよりも低い温度で粒成長する皮膜を形成した場合においても、電子部品を配線層に半田等の低融点ロウ材を介して接続させる際の熱によって銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散することを防止できる配線基板を得ることが可能となる。
【0026】
【発明の実施の形態】
次に、本発明の配線基板およびその製造方法を添付図面に基づき詳細に説明する。
【0027】
図1は、本発明の配線基板を半導体素子を収容する半導体素子収納用パッケージに適用した場合の実施の形態の一例を示し、1は絶縁基体、2は配線層、3は電子部品、4は絶縁基体1と配線層2とで構成された、半導体素子等の電子部品3を搭載するための配線基板、5は低融点ロウ材、8は蓋体である。
【0028】
絶縁基体1は、ガラス粉末,フィラー粉末(セラミック粉末)、さらに有機バインダ,可塑剤,有機溶剤等を混合したガラスセラミックグリーンシートを焼結することで形成される。
【0029】
ガラス成分としては、例えばSiO2−B23系,SiO2−B23−Al23系,SiO2−B23−Al23−MO系(但し、MはCa,Sr,Mg,BaまたはZnを示す),SiO2−Al23−M1O−M2O系(但し、M1およびM2は同一または異なってCa,Sr,Mg,BaまたはZnを示す),SiO2−B23−Al23−M1O−M2O系(但し、M1およびM2は前記と同じである),SiO2−B23−M3 2O系(但し、M3はLi,NaまたはKを示す),SiO2−B23−Al23−M3 2O系(但し、M3は前記と同じである),Pb系ガラス,Bi系ガラス等が挙げられる。
【0030】
また、フィラーとしては、例えばAl23,SiO2,ZrO2とアルカリ土類金属酸化物との複合酸化物,TiO2とアルカリ土類金属酸化物との複合酸化物,Al23およびSiO2から選ばれる少なくとも1種を含む複合酸化物(例えばスピネル,ムライト,コージェライト)等が挙げられる。
【0031】
これらガラスとフィラーとの混合割合は質量比で40:60〜99:1であるのが好ましい。
【0032】
ガラスセラミックグリーンシートに配合される有機バインダとしては、従来からセラミックグリーンシートに使用されているものが使用可能であり、例えばアクリル系(アクリル酸,メタクリル酸またはそれらのエステルの単独重合体または共重合体、具体的にはアクリル酸エステル共重合体,メタクリル酸エステル共重合体,アクリル酸エステル−メタクリル酸エステル共重合体等),ポリビニルブチラール系,ポリビニルアルコール系,アクリル−スチレン系,ポリプロピレンカーボネート系,セルロース系等の単独重合体または共重合体が挙げられる。
【0033】
ガラスセラミックグリーンシートは、上記ガラス粉末,フィラー粉末,有機バインダに必要に応じて所定量の可塑剤,溶剤(有機溶剤,水等)を加えてスラリーを得て、これをドクターブレード,圧延,カレンダーロール,金型プレス等により厚さ約50μm乃至500μmに成形することによって得られる。
【0034】
このようにして得られたガラスセラミックグリーンシートに切断加工や打ち抜き加工等を施して適当な形状にするとともに、これを複数枚積層した後、有機成分の除去および焼成を行なう。有機成分の除去は、100℃乃至800℃の温度範囲でこの積層体を加熱することによって行ない、有機成分を分解,揮散させる。また、焼成温度はガラスセラミック組成により異なるが、通常は約800℃乃至1100℃の範囲内である。焼成は通常、大気中で行なうが、導体材料に銅を使用する場合には100℃乃至700℃の水蒸気を含む窒素雰囲気中で有機成分の除去を行なった後、窒素雰囲気中で焼成を行なう。
【0035】
また、絶縁基体1は、上面の搭載部から下面にかけて多数の配線層2が被着形成されており、配線層2の搭載部に露出した部位には電子部品3の電極が半田等の低融点ロウ材5を介して電気的に接続され、下面に導出された部位は外部電気回路と半田等の低融点ロウ材を介して電気的に接続される。
【0036】
配線層2は、例えば銅粉末および1重量%以下のガラスから成り、これに適当な有機バインダや溶剤を添加混合して得た金属ペーストを絶縁基体1となるセラミックグリーンシートに予め従来周知のスクリーン印刷法により所定パターンに印刷塗布しておくことによって、絶縁基体1の上面から下面にかけて被着される。
【0037】
なお、配線層2は焼成の際に絶縁基体1から配線層2へ移動拡散したガラスを含有しており、配線層2の表面には、このようにして移動拡散したガラスが多く存在している。さらに、配線層2の表面には、焼成の際に付着したセッター等の焼成付着物が微量に存在する。
【0038】
また、配線層2には、図2に要部拡大断面図で示すように、その表面のうち少なくとも電子部品3の電極が低融点ロウ材5を介して接続される領域の表面に、熱処理された銅錫合金層6および熱処理された銀または金と錫との合金層7が順次被着形成されている。
【0039】
なお、ここで低融点ロウ材5とは、配線層2と、電子部品3および外部電気回路とを電気的,機械的に接続する役割を有する200℃乃至300℃程度の温度で溶融する共晶合金をいう。
【0040】
本発明の配線基板4によれば、ガラスセラミックスから成る絶縁基体1に、電子部品3の電極が低融点ロウ材5を介して接続される、銅を主成分とした配線層2を形成して成る配線基板4において、配線層2のうち電極が低融点ロウ材5を介して接続される領域の表面に、熱処理された銅錫合金層6および熱処理された銀または金と錫との合金層7が順次形成されていることが重要である。
【0041】
これは、熱処理された銅錫合金層6を形成するのは、低融点ロウ材5を配線層2に接続する際の熱により銅を主成分とする配線層2中の銅成分が低融点ロウ材5中に拡散することを効果的に防止することが可能となることから、半田等の低融点ロウ材実装時の熱や、再実装(リペア)時の熱により、銅を主成分とする配線層2中の銅成分が半田等の低融点ロウ材5中に拡散し接合性を劣化させることを効果的に防止することができ、電子部品3を配線層2に半田等を介して接続させることが可能となるからである。
【0042】
また、熱処理された銅錫合金層6の表面に熱処理された銀または金と錫との合金層7を形成するのは、低融点ロウ材で実装するのに対して、低融点ロウ材,銀または金と錫との合金層,銅錫合金層,配線層中の銅と順次融点が高くなる構成とすることができ、その結果、銅を主成分とする配線層中の銅成分の拡散を効果的に抑えることが可能となるからである。
【0043】
さらに、本発明の配線基板4においては、銅錫合金層6は、配線層2の表面に被着された錫めっき層に配線層2の銅が熱処理によって拡散して形成され、銀または金と錫との合金層7は、錫めっき層の表面に被着された銀めっき層または金めっき層に錫めっき層の錫が熱処理によって拡散して形成されたものであることが望ましい。
【0044】
これは、低融点ロウ材で実装するのに対して、低融点ロウ材,銀または金と錫との合金層,銅錫合金層,配線層中の銅と順次融点が高くなる構成とすることができ、その結果、銅を主成分とする配線層中の銅成分の拡散を効果的に抑えることが可能となることにより、低融点ロウ材5を配線層2に接続する際に、銅を主成分とする配線層2中の銅成分が低融点ロウ材5中に拡散することを効果的に防止することが可能となり、その結果、半田等の低融点ロウ材実装時の熱や、再実装(リペア)時の熱により、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散し接合性を劣化させることを効果的に防止することが可能となるからである。
【0045】
なお、銀または金と錫との合金層7のうち、錫銀合金層によれば、銀の融点が高いため、比較的少量の銀で効果的に、銅を主成分とする配線層2中の銅成分が低融点ロウ材5中に拡散することを防止するバリヤ層を形成することができる。また、錫金合金層によれば、金の半田性および耐食性が極めて優れているため、合金化した後も半田性および耐食性に優れたものとなる。
【0046】
また、本発明の配線基板の製造方法によれば、ガラスセラミックスから成る絶縁基体1に銅を主成分とした配線層2を形成する工程と、配線層2のうち電子部品3の電極が低融点ロウ材5を介して接続される領域の表面に、錫めっき層と銀めっき層または金めっき層とを順次被着する工程と、しかる後、低融点ロウ材5の融点より50℃乃至100℃高い温度で錫めっき層と銀めっき層または金めっき層とに熱処理を施す工程とを具備することが重要である。
【0047】
これは、銅錫合金層6および銀または金と錫との合金層7は、図3に要部拡大断面図で示すように、配線層2の表面のうち少なくとも電子部品3の電極が低融点ロウ材5を介して接続される領域の表面に、錫めっき層9と銀めっき層または金めっき層10を順次被着形成した後、例えば窒素雰囲気中で低融点ロウ材5の融点より50℃乃至100℃高い温度でめっき皮膜を合金化することにより、配線層2の銅が錫めっき層9に拡散して形成された銅錫合金層6と、錫めっき層9の錫が銀めっき層または金めっき層10に拡散して形成された銀または金と錫との合金層7とが得られる。その際、錫めっき層9と銀めっき層または金めっき層10の膜厚比率は、銅錫合金層6および銀または金と錫との合金層7を形成する温度(以下合金化温度と呼ぶ)に応じて種々選択することができる。この合金化温度は、配線基板4に電子部品3を低融点ロウ材5を介して搭載する際の低融点ロウ材5の融点より50℃乃至100℃高い温度として選択される。
【0048】
例えば、低融点ロウ材5の融点が250℃の場合であれば、合金化温度を融点より50℃以上乃至100℃高い温度である300℃乃至350℃に設定すると良い。このことから300℃乃至350℃で形成された銅錫合金層6および銀または金と錫との合金層7の融点は、低融点ロウ材5よりも高くなるため、熱処理された銅錫合金層6および熱処理された銀または金と錫との合金層7が配線層2中の銅に対してバリヤ層として効果的に機能することとなり、この銀または金と錫との合金層7の表面に250℃の温度で実装される低融点ロウ材5中に銅を主成分とする配線層2中の銅成分が拡散することを効果的に防止することが可能となるからである。
【0049】
また、同様の作用により、低融点ロウ材5の成分が配線層2中へ拡散することも効果的に防止することが可能となる。
【0050】
これに対して、合金化温度を低融点ロウ材5の融点より50℃未満で高い温度とした場合は、熱処理された銅錫合金層6および熱処理された銀または金と錫との合金層7と低融点ロウ材5との融点の差が小さくなるため、電子部品3の実装時に低融点ロウ材5中へ銅を主成分とする配線層2中の銅成分の拡散を効果的に防止することができないという不具合を生じる。また、合金化温度を低融点ロウ材5の融点より100℃を超えて高い温度とした場合は、絶縁基体1に熱負荷をかけることにより、配線層2中の銅成分と銅錫合金層6となるはずの錫めっき層9中の錫が絶縁基体1に拡散することによる絶縁基体1の絶縁性を劣化させてしまうという不具合を生じる。
【0051】
さらに、合金化温度を決定した後、錫めっき層9と銀めっき層または金めっき層10の膜厚を決定する。この膜厚比率は、選択した合金化温度で錫めっき層9と銀めっき層または金めっき層10がそれぞれ銅錫合金層6および銀または金と錫との合金層7へと完全に合金化するために、例えば錫めっき層9と銀めっき層10とから錫銀合金層7を形成する場合を例にとると、合金化温度が350℃の場合であれば、錫めっき層9および銀めっき層10の膜厚をそれぞれ4:1の比率にすることで、銅錫合金層6および錫銀合金層7を連続的に形成することができる。
【0052】
なお、錫めっき層9は、その厚みが0.5μm未満であると、銅を主成分とする配線層2中の銅成分が低融点ロウ材5中に拡散することを防止する効果が得られなくなり、他方、5μmを超えて析出させようとした場合はめっきに長時間を要してしまうこととなる。そのため、錫めっき層9の厚みは0.5μm乃至5μm、好ましくは1μm乃至2μmが良い。また銀めっき層または金めっき層10の厚みは、めっき皮膜が合金化する温度に応じて、錫めっき層9の厚みとの比率で決定することができる。例えば錫めっき層9と銀めっき層10とから錫銀合金層7を形成する場合を例にとると、合金化温度が350℃の場合であれば、錫めっき層9および銀めっき層10の膜厚をそれぞれ4:1の比率にすることで、銅錫合金層6および錫銀合金層7を連続的に形成することができる。
【0053】
本発明の配線基板の製造方法においては、錫めっき層6は無電解法によって配線層2の表面に被着される。無電解法により錫めっき層6を被着させる無電解錫めっき液としては、特に限定はなく、種々のものが使用できる。具体的には、錫イオン濃度が1g/L乃至50g/Lであるシアンを用いた置換錫めっき液や不均化反応を利用した無電解錫めっき液等を使用することができる。また、銀めっき層または金めっき層7は無電解法によって錫めっき層6の表面に被着される。無電解法により銀めっき層または金めっき層7を被着させる無電解銀めっき液または無電解金めっき液としても、特に限定はなく、種々のものが使用できる。具体的には、銀イオン濃度が5g/L乃至50g/Lであるシアン浴やチオ硫酸浴等または金イオン濃度が1g/L乃至10g/Lであるシアン浴等を使用することができる。
【0054】
かくして、本発明の配線基板4によれば、絶縁基体1の上面に形成した配線層2に電子部品3の電極を低融点ロウ材5を介して電気的および機械的に接続し、しかる後、絶縁基体1の上面に金属やセラミックスから成る蓋体8をガラスや樹脂,ロウ材等の封止材を介して接合させ、絶縁基体1と蓋体8とから成る容器内部に電子部品3を気密に収容することによって、半導体装置となる。
【0055】
なお、本発明は上述の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば種々の変更は可能である。例えば、上述の例では本発明の配線基板を半導体素子を収容する半導体素子収納用パッケージに適用したが、混成集積回路基板等の他の用途に適用してもよい。
【0056】
【実施例】
以下、本発明を具体例によって詳細に説明するが、本発明は以下の具体例に限定されるものではない。
【0057】
ガラスセラミックスから成る絶縁基体上に形成された銅を主成分とした配線層から成る電極にシアンを用いた置換錫めっき液を用いて錫の薄層を形成した後、不均化反応を利用した無電解錫めっき液を用いて錫めっき層を2μmの膜厚で形成し、次いで、シアン浴を用いて銀めっき層を0.5μmの膜厚で形成した後、合金化温度とこの電極に接続される低融点ロウ材の融点との差が表1に示すように0〜150℃である各合金化温度で、それぞれ30秒間熱処理を施した。このようにして作製した試作番号1〜7の配線基板に、融点が245℃の90%Sn−7.5%Bi−2%Ag−0.5%Cuはんだボールを低融点ロウ材として用いて電子部品である半導体素子を実装し、この半導体素子を引き剥がした際の強度および剥がれ面のモードから接合性を判定した。また、リペア性として、一度実装した半導体素子をリペア(再実装)した場合のはんだ性も評価した。
【0058】
さらに、配線基板上の配線層から成る独立した配線パターン間に電圧を印加し、配線基板の絶縁性も評価した。その結果を表1に示す。
【0059】
【表1】

Figure 2004165505
【0060】
表1における接合性について「○」は、半田ボールシェア試験において破壊界面が半田内部にあって半田内部で100%破断していることから、半田/めっき界面が非常に強固で半田接合性に優れていることを示す。また、「△」は、半田ボールシェア試験において破壊界面に下地の銅錫合金層の一部が露出するものの強度的に問題はなく、実用上問題の無いレベルであることを示す。また、「×」は、半田ボールシェア試験において破壊界面に銅錫合金層が露出し、かつ強度的にも弱いことから、実用上使用できないレベルにあることを示す。
【0061】
また、リペア性については、再実装を3回繰り返した後に半田ボールシェア試験の評価を実施し、初期の接合状態に対しての比較をするとともに破断モードを確認した。この破断モードの評価基準は接合性と同様とした。
【0062】
また、絶縁性については、配線基板上の独立したL/S(L:線幅,S:線幅間の間隔)が100μm/100μmの配線層から成る配線パターン間に10Vの電圧を印加し、パターン間の絶縁性を絶縁抵抗器を用いて測定し、実測値で106Ω以上の実用上問題ないレベルにあるものを「○」、106Ω未満のレベルにあるものを「×」とした。
【0063】
表1の結果から明らかなように、合金化温度と低融点ロウ材の融点との差が0℃の試料No.1は、接合性およびリペア性に問題があった(表中の接合性およびリペア性の欄に×で示す)。また、合金化温度と低融点ロウ材の融点との差が25℃の試料No.2は、接合性およびリペア性に問題があった。(表中の接合性およびリペア性の欄に△で示す)。また、合金化温度と低融点ロウ材の融点との差が150℃の試料No.7は、接合性およびリペア性は良かったが、絶縁性が劣化し問題があった(表中の接合性およびリペア性の欄に△で、絶縁性の欄に×で示す)。また、合金化温度と低融点ロウ材の融点との差が125℃の試料No.6は、接合性およびリペア性は良好であったが、絶縁性が劣化していた(表中の絶縁性の欄に△で示す)。
【0064】
これに対して、本発明の配線基板の製造方法によって作製された配線基板である、合金化温度と低融点ロウ材の融点との差が50℃,75℃および100℃の試料No.3,4および5は、接合性および絶縁性ともに良好な優れたものであった。また、リペア性については、破断モードも優れたものであり、接合状態も初期と変化がなく優れたものであった(表中の接合性,リペア性および絶縁性の欄に○で示す)。
【0065】
次に、試作番号8〜17の配線基板として、ガラスセラミックスから成る絶縁基体上に形成された銅を主成分とする配線層から成る電極にメタンスルホン酸浴を用いて錫めっき層を0.1〜6μmの膜厚で形成し、次いで、シアン浴を用いて銀めっき層を0.025〜1.5μmの膜厚で形成した後、合金化温度と低融点ロウ材の融点との差が75℃となる温度で、30秒間熱処理を施した。このようにして作製した配線基板に、試作番号1〜7の配線基板と同様の評価を行なった。その結果を表2に示す。
【0066】
【表2】
Figure 2004165505
【0067】
表2の結果から分かるように、錫めっき層の膜厚が0.1μmの試料No.8は、接合性およびリペア性に問題が見られた(表中の接合性およびリペア性の欄に△〜×で示す)。また、錫めっき層の膜厚が0.3μmの試料No.9は、破壊界面に下地の銅錫合金層の一部が露出するものの強度的に問題はなく、実用上問題の無いレベルであった(表中の接合性およびリペア性の欄に△で示す)。また、錫めっき層の膜厚が5.5,6.0μmの試料No.16,17は、接合性およびリペア性ともに良好なものであったが、錫めっき層の形成に3乃至4時間と多くの時間が必要であった。
【0068】
これに対して、錫めっき層の膜厚が0.5,1,2,3,4および5μmの試料No.10,11,12,13,14および15は、接合性およびリペア性ともに問題なく優れたものであった(表中の接合性およびリペア性の欄に○で示す)。
【0069】
なお、以上の実施例および比較例の配線基板の全てについて、低融点ロウ材として融点が245℃の90%Sn−7.5%Bi−2%Ag−0.5%Cuはんだを用いて、ディッピングにより濡れ性を評価した結果、何れの配線基板も半田濡れ性は良好であった。さらに、何れの配線基板もウイスカの発生は無かった。
【0070】
次に、ガラスセラミックスから成る絶縁基体上に形成された銅を主成分とした配線層から成る電極にシアンを用いた置換錫めっき液を用いて錫の薄層を形成した後、不均化反応を利用した無電解錫めっき液を用いて錫めっき層を2μmの膜厚で形成し、次いで、シアン浴を用いて金めっき層を1.6μmの膜厚で形成した後、合金化温度とこの電極に接続される低融点ロウ材の融点との差が表3に示すように0〜150℃である各合金化温度で、それぞれ30秒間熱処理を施した。このようにして作製した試作番号18〜24の配線基板に、試作番号1〜7の配線基板と同様の評価を行なった。その結果を表3に示す。
【0071】
【表3】
Figure 2004165505
【0072】
表3の結果から明らかなように、合金化温度と低融点ロウ材の融点との差が0℃の試料No.18は、接合性およびリペア性に問題があった(表中の接合性およびリペア性の欄に×で示す)。また、合金化温度と低融点ロウ材の融点との差が25℃の試料No.19は、接合性およびリペア性に問題があった。(表中の接合性およびリペア性の欄に△で示す)。また、合金化温度と低融点ロウ材の融点との差が150℃の試料No.24は、接合性およびリペア性は良かったが、絶縁性が劣化し問題があった(表中の接合性およびリペア性の欄に△で、絶縁性の欄に×で示す)。また、合金化温度と低融点ロウ材の融点との差が125℃の試料No.23は、接合性およびリペア性は良好であったが、絶縁性が劣化していた(表中の絶縁性の欄に△で示す)。
【0073】
これに対して、本発明の配線基板の製造方法によって作製された配線基板である、合金化温度と低融点ロウ材の融点との差が50℃,75℃および100℃の試料No.20,21および22は、接合性および絶縁性ともに良好な優れたものであった。また、リペア性については、破断モードも優れたものであり、接合状態も初期と変化がなく優れたものであった(表中の接合性,リペア性および絶縁性の欄に○で示す)。
【0074】
また、試作番号25〜34の配線基板として、ガラスセラミックスから成る絶縁基体上に形成された銅を主成分とする配線層から成る電極にシアンを用いた置換錫めっき液を用いて錫の薄層を形成した後、不均化反応を利用した無電解錫めっき液を用いて錫めっき層を0.1〜6μmの膜厚で形成し、次いで、シアン浴を用いて金めっき層を0.08〜4.9μmの膜厚で形成した後、合金化温度と低融点ロウ材の融点との差が75℃となる温度で、30秒間熱処理を施した。このようにして作製した配線基板に、試作番号1〜7の配線基板と同様の評価を行なった。その結果を表4に示す。
【0075】
【表4】
Figure 2004165505
【0076】
表4の結果から分かるように、錫めっき層の膜厚が0.1μmの試料No.25は、接合性およびリペア性に問題が見られた(表中の接合性およびリペア性の欄に△〜×で示す)。また、錫めっき層の膜厚が0.3μmの試料No.26は、破壊界面に下地の銅錫合金層の一部が露出するものの強度的に問題はなく、実用上問題の無いレベルであった(表中の接合性およびリペア性の欄に△で示す)。また、錫めっき層の膜厚が5.5,6μmの試料No.33,34は、接合性およびリペア性ともに良好なものであったが、錫めっき層の形成に3乃至4時間と多くの時間が必要であった。
【0077】
これに対して、錫めっき層の膜厚が0.5,1,2,3,4および5μmの試料No.27,28,29,30,31および32は、接合性およびリペア性ともに問題なく優れたものであった(表中の接合性およびリペア性の欄に○で示す)。
【0078】
なお、以上の実施例および比較例の配線基板の全てについて、低融点ロウ材として融点が245℃の90%Sn−7.5%Bi−2%Ag−0.5%Cuはんだを用いて、ディッピングにより濡れ性を評価した結果、何れの配線基板も半田濡れ性は良好であった。さらに、何れの配線基板もウイスカの発生は無かった。
【0079】
【発明の効果】
本発明の配線基板によれば、ガラスセラミックスから成る絶縁基体に、電子部品の電極が低融点ロウ材を介して接続される、銅を主成分とした配線層を形成して成る配線基板であって、前記配線層のうち前記電極が前記低融点ロウ材を介して接続される領域の表面に、熱処理された銅錫合金層および熱処理された銀または金と錫との合金層が順次形成されていることから、銅錫合金層と銀または金と錫との合金層の融点が実装温度より高いことにより、実装温度では銅錫合金層および銀または金と錫との合金層が熱による化学変化を伴わないため、低融点ロウ材を配線層に接続する際に、銅を主成分とする配線層中の銅成分が低融点ロウ材中に拡散することを効果的に防止することが可能となる。その結果、半田等の低融点ロウ材実装時の熱や、再実装(リペア)時の熱により、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散し接合性を劣化させることを効果的に防止することが可能となる。また、銅錫合金層の上に銀または金と錫との合金層が形成されていることから、低融点ロウ材で実装するのに対して、低融点ロウ材,銀または金と錫との合金層,銅錫合金層,配線層中の銅と順次融点が高くなる構成とすることができる。その結果、銅を主成分とする配線層中の銅成分の拡散をより効果的に抑えることが可能となる。
【0080】
また、本発明の配線基板によれば、銅錫合金層は、配線層の表面に被着された錫めっき層に配線層の銅が熱処理によって拡散して形成され、銀または金と錫との合金層は、錫めっき層の表面に被着された銀めっき層または金めっき層に錫めっき層の錫が熱処理によって拡散して形成されたものであるときには、低融点ロウ材で実装するのに対して、低融点ロウ材,銀または金と錫との合金層,銅錫合金層,配線層中の銅と順次融点が高くなる構成とすることが可能となり、銅を主成分とする配線層中の銅成分の拡散を効果的に抑えることが可能となる。その結果、半田等の低融点ロウ材実装時の熱や、再実装(リペア)時の熱により、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散し接合性を劣化させることを効果的に防止することが可能となる。
【0081】
また、本発明の配線基板の製造方法によれば、ガラスセラミックスから成る絶縁基体に銅を主成分とした配線層を形成する工程と、前記配線層のうち電子部品の電極が低融点ロウ材を介して接続される領域の表面に、錫めっき層と銀めっき層または金めっき層とを順次被着する工程と、しかる後、前記低融点ロウ材の融点より50℃乃至100℃高い温度で錫めっき層と銀めっき層または金めっき層とに熱処理を施す工程とを具備することから、銀めっき層または金めっき層が錫と合金化する過程において、ピンホール等の欠陥の発生を抑えたより一層緻密な金属層が形成されることによって、また銀または金と錫との合金層よりもより一層融点の高い銅錫合金層が形成されることによって、配線層の電極が半田等の低融点ロウ材を介して接合される領域以外の表面にしみ出しや斑点状のしみを形成して外観不良を生じることを効果的に防止することが可能となるうえ、電子部品を配線層に低融点ロウ材を介して接合する際に、銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に熱拡散することを効果的に防止することが可能となる。
【0082】
以上により、本発明の配線基板およびその製造方法によれば、配線層が半田等の低融点ロウ材を介して接続される領域以外の表面にしみ出しや斑点状のしみを形成して外観不良を生じることを防止するため、配線層の表面にニッケルよりも低い温度で粒成長する皮膜を形成した場合においても、電子部品を配線層に半田等の低融点ロウ材を介して接続させる際の熱によって銅を主成分とする配線層中の銅成分が半田等の低融点ロウ材中に拡散することを防止できる配線基板およびその製造方法を提供することができた。
【図面の簡単な説明】
【図1】本発明の配線基板の実施の形態の一例を示す断面図である。
【図2】図1に示す配線基板の要部拡大断面図である。
【図3】本発明の配線基板の製造方法を説明するための配線基板の要部拡大断面図である。
【符号の説明】
1・・・・絶縁基体
2・・・・配線層
3・・・・電子部品
4・・・・配線基板
5・・・・低融点ロウ材
6・・・・銅錫合金層
7・・・・銀または金と錫との合金層
8・・・・蓋体
9・・・・錫めっき層
10・・・・銀めっき層または金めっき層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a wiring board on which electronic components such as a semiconductor element, a capacitance element, and a resistor are mounted via a low-melting-point brazing material such as solder, and a plating layer is applied to a wiring layer on the surface thereof. The present invention relates to a wiring board.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a wiring board on which electronic components such as a semiconductor element, a capacitance element, and a resistor are mounted generally includes an insulating base made of an aluminum oxide sintered body, and tungsten and molybdenum formed from the upper surface to the lower surface of the insulating base. And a plurality of wiring layers made of a high melting point metal material such as a semiconductor element, a capacitor element, a resistor, and the like. The wiring layer is electrically connected to the wiring layer via a low melting point brazing material such as solder.
[0003]
Such a wiring board is mounted on the external electric circuit board by connecting a portion of the wiring layer led out to the lower surface of the insulating base to a wiring conductor of the external electric circuit board via a low melting point brazing material such as solder. At the same time, each electrode of the electronic component mounted on the wiring board is electrically connected to a predetermined external electric circuit.
[0004]
The above-mentioned wiring board has a nickel plating layer and a gold plating layer made of a nickel-phosphorus alloy or a nickel-boron alloy at least in a region of the wiring layer where electronic components are connected via a low melting point brazing material such as solder. The nickel plating layer improves the bonding of solder and the like to the wiring layer made of a high melting point metal material such as tungsten, and the gold plating layer forms a nickel oxide on the surface of the nickel plating layer. This prevents solder jointability and the like from deteriorating.
[0005]
In addition, as a method of applying the nickel plating layer and the gold plating layer, it is difficult to form a lead wire for supplying plating power to the wiring layer due to the high density of the wiring layer accompanying the miniaturization of the wiring board. The electroless method is being used frequently.
[0006]
On the other hand, the nickel plating layer, which is the base plating layer of the gold plating layer, is firmly adhered to a wiring layer made of a refractory metal material such as tungsten or molybdenum, and cracks or pinholes due to stress inherent in the nickel plating layer are formed. For example, a heat treatment at 800 ° C. to 1000 ° C. is applied for the purpose of suppressing plating film defects such as the above by crystal growth of nickel. As a result, cracks and pinholes in which the plating solution is likely to remain are extremely reduced in the nickel plating layer, so that the plating solution that has remained due to heat when the electronic component is connected to the wiring layer via solder or the like is removed from the gold plating layer. The problem of exuding on the top and forming spot-like stains to cause poor appearance is unlikely to occur.
[0007]
[Patent Document 1]
JP-A-10-102266
[Patent Document 2]
JP 2001-131774 A
[0008]
[Problems to be solved by the invention]
With the recent era of advanced information technology, the frequency band used for signals is shifting to higher and higher frequency bands. In a high-frequency wiring board for transmitting such a high-frequency signal, in order to transmit a high-frequency signal at a high speed, the resistance of a conductor forming a wiring layer is required to be small, and the insulating base is required to have a lower dielectric constant. Rate is required.
[0009]
However, high-melting metals such as tungsten and molybdenum used in conventional wiring layers have a large conductor resistance, so that the signal propagation speed is slow and the signal propagation in a high frequency region of 30 GHz or more is difficult. It is necessary to use a low-resistance metal such as copper, silver or gold instead of such a metal as tungsten or molybdenum.
[0010]
Therefore, recently, attention has been paid to using glass ceramics obtained by firing a mixture of glass and ceramics (inorganic filler) as an insulating base. Glass ceramics are suitable as high-frequency insulating substrates because of their low dielectric constant, and can be fired at a low temperature of 800 to 1000 ° C., so that low-resistance metals such as copper, silver, and gold can be used as wiring layers. There is an advantage.
[0011]
Note that as a low-resistance metal used as a wiring layer, a conductor mainly composed of copper excellent in high-frequency characteristics is mainly used.
[0012]
However, copper-based conductors used in these glass ceramics contain a large amount of glass components on which the plating layer is difficult to adhere and are formed, and the glass components are exposed to the surface in large numbers, resulting in a rough surface. In addition, a component of a setter, which is disposed on the upper surface of the insulating substrate during firing and serves to prevent the insulating substrate from warping, often adheres to the surface of the wiring layer. There has been a problem that the nickel plating layer cannot be uniformly applied to the whole.
[0013]
Therefore, the glass and the deposits on the surface of the wiring layer are chemically removed by dipping in a glass etching solution containing fluoride as a main component, or physically removed by a blast device or the like. Externally, a nickel plating layer is uniformly applied over the entire surface of the wiring layer.
[0014]
However, even in the removal of these chemical and physical glasses and deposits, the processing conditions are limited because it is necessary to avoid a decrease in the strength of the insulating substrate and the wiring layer. It could not be completely removed. Therefore, a trace amount of glass and deposits remain on the surface of the wiring layer, and the trace residual glass and deposits particularly inhibit initial plating deposition. Therefore, when the surface of the nickel plating layer is observed with a scanning electron microscope, there is a problem that a fine crack-like abnormal deposition portion is formed in a spot-like shape.
[0015]
The plating solution is apt to remain in the fine crack-like abnormal deposition portion, and the plating solution remaining there is used to heat the gold plating on the nickel plating layer by heat when connecting the electronic component to the wiring layer via solder or the like. There is a problem in that it exudes to the surface of the layer to form spot-like stains, resulting in poor appearance.
[0016]
In order to suppress this abnormal precipitation portion, for example, it is conceivable to add a heat treatment. However, if a heat treatment of 800 ° C. to 1000 ° C. necessary for crystal growth of the nickel plating layer is applied, a wiring layer made of copper, such as blister, etc. There was a problem that a problem was induced. For this reason, after applying tin plating or solder plating that can grow crystals at a low melting point, or soldering instead of lead, heat treatment is performed to form a film without defects, preventing the occurrence of exudation and spot-like spots In general, the heat of soldering low-melting point brazing material such as solder and the heat of re-mounting (repair) cause the copper component in the wiring layer mainly composed of copper to There is a problem in that it diffuses into the low melting point brazing material and deteriorates the bonding property.
[0017]
The present invention has been devised in view of the above-described problems in the related art, and has as its object to stain a surface other than a region where a wiring layer is connected via a low melting point brazing material such as solder. Even if a film that grows at a lower temperature than nickel is formed on the surface of the wiring layer to prevent appearance defects due to projections and spot-like stains, the electronic components may be soldered to the wiring layer. Provided is a wiring board and a method for manufacturing the same, which can prevent a copper component in a wiring layer containing copper as a main component from being diffused into a low melting point brazing material such as solder by heat generated when the connection is made via the low melting point brazing material Is to do.
[0018]
[Means for Solving the Problems]
The wiring board of the present invention is a wiring board formed by forming a wiring layer mainly composed of copper, to which an electrode of an electronic component is connected via a low melting point brazing material, to an insulating base made of glass ceramic, A heat-treated copper-tin alloy layer and a heat-treated alloy layer of silver or gold and tin are sequentially formed on a surface of a region of the wiring layer where the electrodes are connected via the low melting point brazing material. It is characterized by the following.
[0019]
Further, in the wiring board according to the present invention, in the above structure, the copper-tin alloy layer is formed by diffusing the copper of the wiring layer by a heat treatment on a tin plating layer adhered to a surface of the wiring layer, The alloy layer of silver or gold and tin is formed by diffusing tin of the tin plating layer by heat treatment on a silver plating layer or a gold plating layer adhered to the surface of the tin plating layer. It is a feature.
[0020]
Further, in the method for manufacturing a wiring board according to the present invention, a step of forming a wiring layer containing copper as a main component on an insulating base made of glass ceramics, and an electrode of an electronic component in the wiring layer through a low melting point brazing material. A step of sequentially applying a tin plating layer and a silver plating layer or a gold plating layer on the surface of the region to be connected, and thereafter, the tin plating at a temperature 50 ° C. to 100 ° C. higher than the melting point of the low melting point brazing material. Performing a heat treatment on the layer and the silver plating layer or the gold plating layer.
[0021]
According to the wiring substrate of the present invention, a heat-treated copper-tin alloy layer and a heat-treated silver or gold-tin alloy layer are formed on the surface of the region of the wiring layer where the electrodes are connected via the low melting point brazing material. Are sequentially formed, the melting point of the copper-tin alloy layer and the alloy layer of silver or gold and tin is higher than the mounting temperature, so that the copper-tin alloy layer and the alloy layer of silver or gold and tin at the mounting temperature Does not involve a chemical change due to heat, so that when the low melting point brazing material is connected to the wiring layer, the copper component in the wiring layer containing copper as a main component is effectively prevented from diffusing into the low melting point brazing material. It becomes possible. As a result, due to heat at the time of mounting a low melting point brazing material such as solder or heat at the time of remounting (repairing), the copper component in the wiring layer mainly composed of copper diffuses into the low melting point brazing material such as solder. It is possible to effectively prevent the bondability from deteriorating. In addition, since an alloy layer of silver or gold and tin is formed on the copper-tin alloy layer, mounting with a low-melting brazing material, while using a low-melting brazing material, silver or gold and tin, The structure may be such that the melting point of the alloy layer, the copper-tin alloy layer, and the copper in the wiring layer are sequentially increased. As a result, it is possible to more effectively suppress the diffusion of the copper component in the wiring layer containing copper as a main component.
[0022]
Here, the mounting temperature refers to a surface of a region where electrodes are connected via a low-melting brazing material on a wiring layer mainly composed of copper, a copper-tin alloy layer that has been sequentially heat-treated, and silver or gold that has been heat-treated. This refers to the temperature of the wiring board when the electronic component is mounted on the wiring board on which the alloy layer with tin is formed via the low melting point brazing material such as solder on the wiring layer.
[0023]
Further, according to the wiring board of the present invention, the copper-tin alloy layer is formed by diffusing copper of the wiring layer by heat treatment on the tin plating layer adhered to the surface of the wiring layer. When the tin of the tin plating layer is diffused by heat treatment on the silver plating layer or the gold plating layer adhered to the surface of the tin plating layer, the alloy layer can be mounted with a low melting point brazing material. On the other hand, it is possible to adopt a structure in which the melting point is gradually increased with the melting point of the low melting point brazing material, the alloy layer of silver or gold and tin, the copper-tin alloy layer, and the copper in the wiring layer. It becomes possible to effectively suppress the diffusion of the copper component therein. As a result, due to heat at the time of mounting a low melting point brazing material such as solder or heat at the time of remounting (repairing), the copper component in the wiring layer mainly composed of copper diffuses into the low melting point brazing material such as solder. It is possible to effectively prevent the bondability from deteriorating.
[0024]
Further, according to the method for manufacturing a wiring board of the present invention, a step of forming a wiring layer containing copper as a main component on an insulating base made of glass ceramics, and connecting an electrode of the wiring layer via a low melting point brazing material. A tin plating layer and a silver plating layer or a gold plating layer are sequentially formed on the surface of the region to be plated, and then the tin plating layer and the silver plating layer are heated at a temperature 50 ° C. to 100 ° C. higher than the mounting temperature of the low melting point brazing material. Or a step of subjecting the gold plating layer to a heat treatment, so that in the process of silver alloying layer or gold plating layer being alloyed with tin, a more dense metal layer is formed which suppresses the occurrence of defects such as pinholes. By forming a copper-tin alloy layer having a higher melting point than that of an alloy layer of silver or gold and tin, the electrodes of the wiring layer are joined via a low melting point brazing material such as solder. On the surface other than the area In addition to effectively preventing appearance defects due to formation of spots and spots, copper is the main component when joining electronic components to the wiring layer via a low melting point brazing material. It is possible to effectively prevent the copper component in the wiring layer from thermally diffusing into the low melting point brazing material such as solder.
[0025]
As described above, according to the wiring substrate and the method of manufacturing the same of the present invention, the wiring layer forms an exudation or a spot-like stain on the surface other than the region connected via the low-melting-point brazing material such as solder, resulting in poor appearance. Even when a film that grows at a temperature lower than nickel is formed on the surface of the wiring layer to prevent the occurrence of the problem, even when the electronic component is connected to the wiring layer via a low melting point brazing material such as solder. It is possible to obtain a wiring board capable of preventing a copper component in a wiring layer containing copper as a main component from being diffused into a low melting point brazing material such as solder by heat.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, a wiring board and a method of manufacturing the same according to the present invention will be described in detail with reference to the accompanying drawings.
[0027]
FIG. 1 shows an example of an embodiment in which the wiring board of the present invention is applied to a semiconductor element housing package for housing a semiconductor element, 1 is an insulating base, 2 is a wiring layer, 3 is an electronic component, and 4 is an electronic component. A wiring board 5 for mounting an electronic component 3 such as a semiconductor element, which is composed of an insulating base 1 and a wiring layer 2, has a low-melting point brazing material 5, and a lid 8 has.
[0028]
The insulating substrate 1 is formed by sintering a glass ceramic green sheet obtained by mixing a glass powder, a filler powder (ceramic powder), an organic binder, a plasticizer, an organic solvent, and the like.
[0029]
As the glass component, for example, SiO 2Two-BTwoOThreeSystem, SiOTwo-BTwoOThree-AlTwoOThreeSystem, SiOTwo-BTwoOThree-AlTwoOThree-MO system (however, M represents Ca, Sr, Mg, Ba or Zn), SiOTwo-AlTwoOThree-M1OMTwoO type (however, M1And MTwoRepresent the same or different Ca, Sr, Mg, Ba or Zn), SiOTwo-BTwoOThree-AlTwoOThree-M1OMTwoO type (however, M1And MTwoIs the same as above), SiOTwo-BTwoOThree-MThree TwoO type (however, MThreeRepresents Li, Na or K), SiOTwo-BTwoOThree-AlTwoOThree-MThree TwoO type (however, MThreeIs the same as described above), Pb-based glass, Bi-based glass and the like.
[0030]
As the filler, for example, AlTwoOThree, SiOTwo, ZrOTwoOxide of TiO2 and alkaline earth metal oxide, TiOTwoOxide of aluminum and alkaline earth metal oxide, AlTwoOThreeAnd SiOTwoAnd complex oxides containing at least one selected from the group consisting of spinel, mullite, cordierite, and the like.
[0031]
The mixing ratio of these glass and filler is preferably from 40:60 to 99: 1 by mass.
[0032]
As the organic binder compounded in the glass ceramic green sheet, those conventionally used in ceramic green sheets can be used. For example, acrylic binders (homopolymers or copolymers of acrylic acid, methacrylic acid or their esters) can be used. Coalescing, specifically acrylic ester copolymers, methacrylic ester copolymers, acrylic ester-methacrylic ester copolymers, etc.), polyvinyl butyral, polyvinyl alcohol, acrylic-styrene, polypropylene carbonate, Cellulose-based homopolymers and copolymers are exemplified.
[0033]
A glass ceramic green sheet is obtained by adding a predetermined amount of a plasticizer and a solvent (organic solvent, water, etc.) to the above glass powder, filler powder, and organic binder, if necessary, to obtain a slurry. It can be obtained by molding to a thickness of about 50 μm to 500 μm by a roll, a mold press or the like.
[0034]
The glass-ceramic green sheet thus obtained is subjected to cutting or punching to obtain an appropriate shape, and after laminating a plurality of the sheets, organic components are removed and baked. The removal of the organic component is performed by heating the laminate in a temperature range of 100 ° C. to 800 ° C. to decompose and volatilize the organic component. The firing temperature varies depending on the glass ceramic composition, but is usually in the range of about 800 ° C. to 1100 ° C. The sintering is usually performed in the air. However, when copper is used as the conductor material, the organic components are removed in a nitrogen atmosphere containing water vapor at 100 ° C. to 700 ° C., and then sintering is performed in a nitrogen atmosphere.
[0035]
In addition, the insulating base 1 has a large number of wiring layers 2 formed thereon from the mounting portion on the upper surface to the lower surface. The electrical connection is made via the brazing material 5, and the portion led out to the lower surface is electrically connected to an external electric circuit via a low melting point brazing material such as solder.
[0036]
The wiring layer 2 is made of, for example, copper powder and glass of 1% by weight or less, and a metal paste obtained by adding and mixing an appropriate organic binder and a solvent to a ceramic green sheet serving as the insulating substrate 1 is formed on a ceramic green sheet which is conventionally known. By printing and applying a predetermined pattern by a printing method, the insulating substrate 1 is applied from the upper surface to the lower surface.
[0037]
Note that the wiring layer 2 contains glass that has migrated and diffused from the insulating substrate 1 to the wiring layer 2 during firing, and a large amount of glass that has migrated and diffused in this way exists on the surface of the wiring layer 2. . Further, on the surface of the wiring layer 2, there is a very small amount of fired deposits such as setters that have been deposited during firing.
[0038]
As shown in FIG. 2, the wiring layer 2 is subjected to a heat treatment on at least the surface of a region where the electrodes of the electronic component 3 are connected via the low melting point brazing material 5. A copper-tin alloy layer 6 and a heat-treated alloy layer 7 of silver or gold and tin are sequentially formed.
[0039]
Here, the low melting point brazing material 5 is a eutectic that melts at a temperature of about 200 ° C. to 300 ° C. which has a role of electrically and mechanically connecting the wiring layer 2 to the electronic component 3 and an external electric circuit. An alloy.
[0040]
According to the wiring board 4 of the present invention, the wiring layer 2 mainly composed of copper, to which the electrodes of the electronic component 3 are connected via the low melting point brazing material 5, is formed on the insulating base 1 made of glass ceramic. In the wiring board 4 formed, the heat-treated copper-tin alloy layer 6 and the heat-treated alloy layer of silver or gold and tin are provided on the surface of the region of the wiring layer 2 where the electrodes are connected via the low melting point brazing material 5. It is important that 7 are sequentially formed.
[0041]
This is because the heat treatment for connecting the low melting point brazing material 5 to the wiring layer 2 causes the copper component in the wiring layer 2 containing copper as a main component to form the heat treated copper-tin alloy layer 6. Since diffusion into the material 5 can be effectively prevented, copper is used as a main component due to heat at the time of mounting a low melting point brazing material such as solder or heat at the time of remounting (repairing). It is possible to effectively prevent the copper component in the wiring layer 2 from diffusing into the low melting point brazing material 5 such as solder and deteriorating the bondability, and connect the electronic component 3 to the wiring layer 2 via solder or the like. This is because it becomes possible.
[0042]
Forming the heat-treated alloy layer 7 of silver or gold and tin on the surface of the heat-treated copper-tin alloy layer 6 is performed by using a low melting point brazing material, silver Alternatively, the melting point of the alloy layer of gold and tin, the copper-tin alloy layer, and the copper in the wiring layer can be sequentially increased so that the diffusion of the copper component in the wiring layer containing copper as a main component can be prevented. This is because it can be suppressed effectively.
[0043]
Furthermore, in the wiring board 4 of the present invention, the copper-tin alloy layer 6 is formed by diffusing copper of the wiring layer 2 by a heat treatment into a tin plating layer adhered to the surface of the wiring layer 2, and forming a layer of silver or gold. The alloy layer 7 with tin is preferably formed by diffusing tin of the tin plating layer by heat treatment on a silver plating layer or a gold plating layer adhered to the surface of the tin plating layer.
[0044]
This is a structure in which the melting point is gradually increased with low melting point brazing material, low melting point brazing material, silver or alloy layer of gold and tin, copper tin alloy layer, and copper in wiring layer. As a result, it becomes possible to effectively suppress the diffusion of the copper component in the wiring layer containing copper as a main component, so that when the low melting point brazing material 5 is connected to the wiring layer 2, the copper is removed. It is possible to effectively prevent the copper component in the wiring layer 2 as a main component from diffusing into the low melting point brazing material 5, and as a result, heat at the time of mounting the low melting point brazing material such as solder, The heat at the time of mounting (repair) can effectively prevent the copper component in the wiring layer containing copper as a main component from diffusing into the low melting point brazing material such as solder and deteriorating the bondability. Because.
[0045]
According to the tin-silver alloy layer of the alloy layer 7 of silver or gold and tin, since the melting point of silver is high, a relatively small amount of silver can be effectively used in the wiring layer 2 mainly containing copper. Can be formed to prevent the copper component from diffusing into the low melting point brazing material 5. In addition, according to the tin-gold alloy layer, the solderability and corrosion resistance of gold are extremely excellent, so that even after alloying, the solderability and corrosion resistance are excellent.
[0046]
Further, according to the method for manufacturing a wiring board of the present invention, a step of forming a wiring layer 2 containing copper as a main component on an insulating base 1 made of glass ceramic, A step of sequentially depositing a tin plating layer and a silver plating layer or a gold plating layer on the surface of a region connected via the brazing material 5, and thereafter, 50 ° C. to 100 ° C. higher than the melting point of the low melting point brazing material 5. It is important to include a step of performing a heat treatment on the tin plating layer and the silver plating layer or the gold plating layer at a high temperature.
[0047]
This is because the copper-tin alloy layer 6 and the alloy layer 7 of silver or gold and tin have at least electrodes of the electronic component 3 on the surface of the wiring layer 2 having a low melting point, as shown in an enlarged sectional view of a main part in FIG. After a tin plating layer 9 and a silver plating layer or a gold plating layer 10 are sequentially formed on the surface of the region connected via the brazing material 5, the melting point of the low melting point brazing material 5 is increased by 50 ° C. in a nitrogen atmosphere, for example. By alloying the plating film at a temperature higher by about 100 ° C., the copper-tin alloy layer 6 formed by diffusing the copper of the wiring layer 2 into the tin plating layer 9 and the tin of the tin plating layer 9 become the silver plating layer or An alloy layer 7 of silver or gold and tin formed by diffusing into the gold plating layer 10 is obtained. At this time, the thickness ratio of the tin plating layer 9 to the silver plating layer or the gold plating layer 10 is determined by the temperature at which the copper-tin alloy layer 6 and the alloy layer 7 of silver or gold and tin are formed (hereinafter referred to as alloying temperature). Can be variously selected according to. This alloying temperature is selected as a temperature 50 ° C. to 100 ° C. higher than the melting point of the low melting point brazing material 5 when the electronic component 3 is mounted on the wiring board 4 via the low melting point brazing material 5.
[0048]
For example, when the melting point of the low melting point brazing material 5 is 250 ° C., the alloying temperature may be set to 300 ° C. to 350 ° C., which is 50 ° C. to 100 ° C. higher than the melting point. From this, the melting point of the copper-tin alloy layer 6 and the alloy layer 7 of silver or gold and tin formed at 300 ° C. to 350 ° C. is higher than that of the low melting point brazing material 5. 6 and the heat-treated alloy layer 7 of silver or gold and tin effectively function as a barrier layer for the copper in the wiring layer 2, and the surface of the alloy layer 7 of silver or gold and tin This is because it is possible to effectively prevent the copper component in the wiring layer 2 containing copper as a main component from diffusing into the low melting point brazing material 5 mounted at a temperature of 250 ° C.
[0049]
Further, by the same operation, it is possible to effectively prevent the components of the low melting point brazing material 5 from diffusing into the wiring layer 2.
[0050]
On the other hand, when the alloying temperature is higher than the melting point of the low melting point brazing material 5 by less than 50 ° C., the heat-treated copper-tin alloy layer 6 and the heat-treated silver or gold-tin alloy layer 7 Since the difference in melting point between the low melting point brazing material 5 and the low melting point brazing material 5 is reduced, the diffusion of the copper component in the wiring layer 2 containing copper as a main component into the low melting point brazing material 5 during mounting of the electronic component 3 is effectively prevented. This causes a problem that it cannot be performed. When the alloying temperature is higher than the melting point of the low melting point brazing material 100 by more than 100 ° C., a heat load is applied to the insulating base 1 to thereby make the copper component in the wiring layer 2 and the copper tin alloy layer 6 The tin in the tin plating layer 9, which is supposed to be diffused into the insulating base 1, deteriorates the insulating property of the insulating base 1.
[0051]
Further, after determining the alloying temperature, the thickness of the tin plating layer 9 and the silver plating layer or the gold plating layer 10 is determined. This film thickness ratio is such that at the selected alloying temperature, the tin plating layer 9 and the silver plating layer or the gold plating layer 10 are completely alloyed into the copper-tin alloy layer 6 and the silver or gold-tin alloy layer 7, respectively. Therefore, for example, when the tin-silver alloy layer 7 is formed from the tin plating layer 9 and the silver plating layer 10, if the alloying temperature is 350 ° C., the tin plating layer 9 and the silver plating layer The copper-tin alloy layer 6 and the tin-silver alloy layer 7 can be continuously formed by setting the thicknesses of the layers 10 to 4: 1.
[0052]
If the thickness of the tin plating layer 9 is less than 0.5 μm, the effect of preventing the copper component in the wiring layer 2 containing copper as a main component from diffusing into the low melting point brazing material 5 cannot be obtained. On the other hand, if it is attempted to deposit the particles exceeding 5 μm, a long time is required for plating. Therefore, the thickness of the tin plating layer 9 is preferably 0.5 μm to 5 μm, and more preferably 1 μm to 2 μm. The thickness of the silver plating layer or the gold plating layer 10 can be determined by the ratio with the thickness of the tin plating layer 9 according to the temperature at which the plating film is alloyed. For example, when the tin-silver alloy layer 7 is formed from the tin plating layer 9 and the silver plating layer 10, if the alloying temperature is 350 ° C., the film of the tin plating layer 9 and the silver plating layer 10 is formed. By setting the thicknesses at a ratio of 4: 1 respectively, the copper-tin alloy layer 6 and the tin-silver alloy layer 7 can be continuously formed.
[0053]
In the method of manufacturing a wiring board according to the present invention, the tin plating layer 6 is applied to the surface of the wiring layer 2 by an electroless method. The electroless tin plating solution for applying the tin plating layer 6 by the electroless method is not particularly limited, and various types can be used. Specifically, a substituted tin plating solution using cyanide having a tin ion concentration of 1 g / L to 50 g / L, an electroless tin plating solution utilizing a disproportionation reaction, or the like can be used. Further, the silver plating layer or the gold plating layer 7 is applied to the surface of the tin plating layer 6 by an electroless method. The electroless silver plating solution or the electroless gold plating solution for depositing the silver plating layer or the gold plating layer 7 by the electroless method is not particularly limited, and various types can be used. Specifically, a cyan bath or a thiosulfate bath having a silver ion concentration of 5 g / L to 50 g / L or a cyan bath having a gold ion concentration of 1 g / L to 10 g / L can be used.
[0054]
Thus, according to the wiring board 4 of the present invention, the electrodes of the electronic component 3 are electrically and mechanically connected to the wiring layer 2 formed on the upper surface of the insulating base 1 via the low melting point brazing material 5, and thereafter, A lid 8 made of metal or ceramics is bonded to the upper surface of the insulating base 1 via a sealing material such as glass, resin, brazing material or the like, and the electronic component 3 is hermetically sealed inside a container formed of the insulating base 1 and the lid 8. By being accommodated in the semiconductor device, a semiconductor device is obtained.
[0055]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in the above-described example, the wiring board of the present invention is applied to a semiconductor element housing package for housing a semiconductor element, but may be applied to other uses such as a hybrid integrated circuit board.
[0056]
【Example】
Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to the following specific examples.
[0057]
After forming a thin layer of tin using a substitution tin plating solution using cyan on an electrode consisting of a wiring layer containing copper as a main component formed on an insulating substrate made of glass ceramics, a disproportionation reaction was used. A tin plating layer is formed to a thickness of 2 μm using an electroless tin plating solution, and then a silver plating layer is formed to a thickness of 0.5 μm using a cyan bath. The heat treatment was performed for 30 seconds at each of the alloying temperatures at which the difference from the melting point of the low melting point brazing material was 0 to 150 ° C. as shown in Table 1. An electronic component is obtained by using the 90% Sn-7.5% Bi-2% Ag-0.5% Cu solder ball having a melting point of 245 ° C. as a low melting point brazing material on the wiring boards of prototype numbers 1 to 7 manufactured in this manner. The semiconductor element was mounted, and the bonding property was determined from the strength when the semiconductor element was peeled off and the mode of the peeled surface. Further, as the repairability, the solderability when the semiconductor element once mounted was repaired (remounted) was also evaluated.
[0058]
Further, a voltage was applied between independent wiring patterns composed of wiring layers on the wiring board, and the insulation properties of the wiring board were also evaluated. Table 1 shows the results.
[0059]
[Table 1]
Figure 2004165505
[0060]
Regarding the bondability in Table 1, "O" indicates that the solder / plating interface is very strong and the solder bondability is excellent because the fracture interface is inside the solder and 100% is broken inside the solder in the solder ball shear test. To indicate that Further, “△” indicates that although a part of the underlying copper-tin alloy layer was exposed at the fracture interface in the solder ball shear test, there was no problem in strength, and there was no practical problem. Further, "x" indicates that the copper-tin alloy layer was exposed at the fracture interface in the solder ball shear test and was weak in strength, so that it was at a level that could not be used practically.
[0061]
Regarding the repairability, after the remounting was repeated three times, the evaluation of the solder ball shear test was performed, and a comparison was made with respect to the initial bonding state, and the fracture mode was confirmed. The evaluation criteria for this fracture mode were the same as for the bondability.
[0062]
Regarding the insulating property, a voltage of 10 V is applied between wiring patterns formed of wiring layers having independent L / S (L: line width, S: interval between line widths) of 100 μm / 100 μm on the wiring board, Measure the insulation between the patterns using an insulation resistor.6○ or higher, which is at a practically acceptable level higher than Ω, 106Those having a level of less than Ω were rated “x”.
[0063]
As is evident from the results in Table 1, the difference between the alloying temperature and the melting point of the low melting point brazing material was 0 ° C. No. 1 had a problem in the bonding property and the repairability (indicated by X in the column of the bonding property and the repairability in the table). Sample No. having a difference between the alloying temperature and the melting point of the low melting point brazing material of 25 ° C. Sample No. 2 had problems in bonding and repairability. (Indicated by △ in the column of bonding and repairability in the table). Further, the difference between the alloying temperature and the melting point of the low-melting brazing material was 150 ° C. Sample No. 7 had good bondability and repairability, but had a problem in that the insulation was deteriorated (indicated by Δ in the column of bondability and repairability and by X in the column of insulation). In addition, the difference between the alloying temperature and the melting point of the low-melting-point brazing material was 125 ° C. in Sample No. In No. 6, the bondability and the repairability were good, but the insulation was deteriorated (indicated by △ in the column of insulation in the table).
[0064]
On the other hand, the sample No. having a difference between the alloying temperature and the melting point of the low melting point brazing material of 50 ° C., 75 ° C., and 100 ° C., which is a wiring board manufactured by the method for manufacturing a wiring board of the present invention. Samples Nos. 3, 4 and 5 were excellent in both bonding property and insulating property. As for the repairability, the fracture mode was also excellent, and the bonding condition was excellent without being changed from the initial state (indicated by ○ in the columns of bonding, repairability and insulation in the table).
[0065]
Next, as a wiring substrate of prototype Nos. 8 to 17, a tin plating layer was formed on an insulating substrate made of glass ceramics by using a methanesulfonic acid bath to form a tin plating layer of 0.1 to 6 μm on an electrode composed of a wiring layer containing copper as a main component. After forming a silver plating layer with a thickness of 0.025 to 1.5 μm using a cyan bath, at a temperature at which the difference between the alloying temperature and the melting point of the low melting point brazing material is 75 ° C. Heat treatment for 30 seconds. The same evaluation as the wiring boards of prototype numbers 1 to 7 was performed on the wiring boards thus manufactured. Table 2 shows the results.
[0066]
[Table 2]
Figure 2004165505
[0067]
As can be seen from the results in Table 2, Sample No. having a tin plating layer thickness of 0.1 μm was used. In No. 8, a problem was found in the bonding property and the repairability (shown by Δ to × in the column of the bonding property and the repairability in the table). Sample No. having a tin plating layer thickness of 0.3 μm. In No. 9, although a part of the underlying copper-tin alloy layer was exposed at the fracture interface, there was no problem in strength, and there was no problem in practical use (indicated by a triangle in the column of bonding and repairability in the table). ). Sample No. having a tin plating layer thickness of 5.5 or 6.0 μm was used. In Nos. 16 and 17, both the bonding property and the repairability were good, but the formation of the tin plating layer required a long time of 3 to 4 hours.
[0068]
On the other hand, Sample Nos. In which the thickness of the tin plating layer was 0.5, 1, 2, 3, 4 and 5 μm. 10, 11, 12, 13, 14, and 15 were excellent in both the joining property and the repairing property without any problem (indicated by a circle in the column of the joining property and the repairing property in the table).
[0069]
It should be noted that all of the wiring boards of the above Examples and Comparative Examples were made of 90% Sn-7.5% Bi-2% Ag-0.5% Cu solder having a melting point of 245 ° C. as a low melting point brazing material, and wetted by dipping. As a result, the solder wettability of all the wiring boards was good. Further, no whiskers were generated in any of the wiring boards.
[0070]
Next, after forming a thin layer of tin using a substitution tin plating solution using cyan on an electrode composed of a wiring layer mainly composed of copper formed on an insulating substrate composed of glass ceramic, a disproportionation reaction is performed. After forming a tin plating layer with a thickness of 2 μm by using an electroless tin plating solution utilizing the above method, then forming a gold plating layer with a thickness of 1.6 μm using a cyan bath, the alloying temperature and this electrode Each of the alloys was subjected to a heat treatment for 30 seconds at each alloying temperature having a difference from the melting point of the low melting point brazing material connected to the alloy as shown in Table 3. The same evaluation as the wiring boards of prototype numbers 1 to 7 was performed on the wiring boards of prototype numbers 18 to 24 manufactured in this manner. Table 3 shows the results.
[0071]
[Table 3]
Figure 2004165505
[0072]
As is clear from the results in Table 3, the difference between the alloying temperature and the melting point of the low melting point brazing material was 0 ° C. No. 18 had a problem in bonding and repairability (indicated by X in the column of bonding and repairability in the table). Sample No. having a difference between the alloying temperature and the melting point of the low melting point brazing material of 25 ° C. No. 19 had a problem in bonding and repairability. (Indicated by △ in the column of bonding and repairability in the table). Further, the difference between the alloying temperature and the melting point of the low-melting brazing material was 150 ° C. Sample No. 24 had good bondability and repairability, but had a problem in that the insulation was deteriorated (indicated by Δ in the column of bondability and repairability and by X in the column of insulation). In addition, the difference between the alloying temperature and the melting point of the low-melting-point brazing material was 125 ° C. in Sample No. In No. 23, the bonding property and the repairability were good, but the insulating property was deteriorated (indicated by a triangle in the insulating property column in the table).
[0073]
On the other hand, the sample No. having a difference between the alloying temperature and the melting point of the low melting point brazing material of 50 ° C., 75 ° C., and 100 ° C., which is a wiring board manufactured by the method for manufacturing a wiring board of the present invention. 20, 21, and 22 were excellent in both bonding property and insulation property. As for the repairability, the fracture mode was also excellent, and the bonding condition was excellent without being changed from the initial state (indicated by ○ in the columns of bonding, repairability and insulation in the table).
[0074]
In addition, as a wiring board having a prototype number of 25 to 34, a thin tin layer is formed by using a substitution tin plating solution using cyan for an electrode formed of a wiring layer containing copper as a main component formed on an insulating base made of glass ceramic. After forming, a tin plating layer is formed to a thickness of 0.1 to 6 μm using an electroless tin plating solution utilizing a disproportionation reaction, and then a gold plating layer is formed to a thickness of 0.08 to 4.9 μm using a cyan bath. After being formed into a film thickness, a heat treatment was performed for 30 seconds at a temperature at which the difference between the alloying temperature and the melting point of the low melting point brazing material was 75 ° C. The same evaluation as the wiring boards of prototype numbers 1 to 7 was performed on the wiring boards thus manufactured. Table 4 shows the results.
[0075]
[Table 4]
Figure 2004165505
[0076]
As can be seen from the results in Table 4, the sample No. in which the thickness of the tin plating layer was 0.1 μm. For No. 25, problems were found in the bondability and the repairability (shown by Δ to × in the column of the bondability and the repairability in the table). Sample No. having a tin plating layer thickness of 0.3 μm. 26 was a level where there was no problem in strength although there was a portion of the underlying copper-tin alloy layer exposed at the fracture interface, and there was no problem in practice (indicated by a triangle in the column of bonding and repairability in the table). ). Sample No. 5 having a tin plating layer thickness of 5.5 or 6 μm was used. In Nos. 33 and 34, both the bondability and the repairability were good, but the formation of the tin plating layer required a long time of 3 to 4 hours.
[0077]
On the other hand, Sample Nos. In which the thickness of the tin plating layer was 0.5, 1, 2, 3, 4 and 5 μm. 27, 28, 29, 30, 31, and 32 were excellent in both the joining property and the repairing property without any problem (indicated by ○ in the joining and repairing properties column in the table).
[0078]
It should be noted that, for all of the wiring boards of the above Examples and Comparative Examples, 90% Sn-7.5% Bi-2% Ag-0.5% Cu solder having a melting point of 245 ° C. was used as a low melting point brazing material, and wettability was obtained by dipping. As a result, the solder wettability of all the wiring boards was good. Further, no whiskers were generated in any of the wiring boards.
[0079]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the wiring board of this invention, it is a wiring board which forms the wiring layer which mainly contains copper to which the electrode of an electronic component is connected via the low melting point brazing material to the insulating base material which consists of glass ceramics. A heat-treated copper-tin alloy layer and a heat-treated alloy layer of silver or gold and tin are sequentially formed on a surface of a region of the wiring layer where the electrodes are connected via the low-melting brazing material. Since the melting point of the copper-tin alloy layer and the alloy layer of silver or gold and tin is higher than the mounting temperature, the copper-tin alloy layer and the alloy layer of silver or gold and tin are chemically bonded at the mounting temperature. Since no change occurs, it is possible to effectively prevent the copper component in the wiring layer containing copper as a main component from diffusing into the low melting point brazing material when connecting the low melting point brazing material to the wiring layer. It becomes. As a result, due to heat at the time of mounting a low melting point brazing material such as solder or heat at the time of remounting (repairing), the copper component in the wiring layer mainly composed of copper diffuses into the low melting point brazing material such as solder. It is possible to effectively prevent the bondability from deteriorating. In addition, since an alloy layer of silver or gold and tin is formed on the copper-tin alloy layer, mounting with a low-melting brazing material, while using a low-melting brazing material, silver or gold and tin, The structure may be such that the melting point of the alloy layer, the copper-tin alloy layer, and the copper in the wiring layer are sequentially increased. As a result, it is possible to more effectively suppress the diffusion of the copper component in the wiring layer containing copper as a main component.
[0080]
Further, according to the wiring board of the present invention, the copper-tin alloy layer is formed by diffusing copper of the wiring layer by heat treatment on the tin plating layer adhered to the surface of the wiring layer. When the tin of the tin plating layer is diffused by heat treatment on the silver plating layer or the gold plating layer adhered to the surface of the tin plating layer, the alloy layer can be mounted with a low melting point brazing material. On the other hand, it is possible to adopt a structure in which the melting point is gradually increased with the melting point of the low melting point brazing material, the alloy layer of silver or gold and tin, the copper-tin alloy layer, and the copper in the wiring layer. It becomes possible to effectively suppress the diffusion of the copper component therein. As a result, due to heat at the time of mounting a low melting point brazing material such as solder or heat at the time of remounting (repairing), the copper component in the wiring layer mainly composed of copper diffuses into the low melting point brazing material such as solder. It is possible to effectively prevent the bondability from deteriorating.
[0081]
Further, according to the method for manufacturing a wiring board of the present invention, a step of forming a wiring layer containing copper as a main component on an insulating base made of glass ceramics, and an electrode of an electronic component in the wiring layer is made of a low melting point brazing material. A step of sequentially depositing a tin plating layer and a silver plating layer or a gold plating layer on the surface of the region to be connected through the intermediary, and then tinning at a temperature 50 ° C. to 100 ° C. higher than the melting point of the low melting point brazing material. A step of subjecting the plating layer and the silver plating layer or the gold plating layer to a heat treatment, thereby further suppressing the occurrence of defects such as pinholes in the process of alloying the silver plating layer or the gold plating layer with tin. The formation of the dense metal layer and the formation of the copper-tin alloy layer having a higher melting point than the alloy layer of silver or gold and tin allow the electrodes of the wiring layer to have a low melting point solder such as solder. Joined through the material It is possible to effectively prevent bleeding or spot-like spots from forming on the surface other than the area to cause poor appearance, and to join electronic components to a wiring layer via a low melting point brazing material. In addition, it is possible to effectively prevent the copper component in the wiring layer containing copper as a main component from thermally diffusing into a low-melting-point brazing material such as solder.
[0082]
As described above, according to the wiring substrate and the method of manufacturing the same of the present invention, the wiring layer forms an exudation or a spot-like stain on the surface other than the region connected via the low-melting-point brazing material such as solder, resulting in poor appearance. Even when a film that grows at a temperature lower than nickel is formed on the surface of the wiring layer to prevent the occurrence of the problem, even when the electronic component is connected to the wiring layer via a low melting point brazing material such as solder. It is possible to provide a wiring board and a method of manufacturing the same, which can prevent the copper component in the wiring layer containing copper as a main component from being diffused into low-melting-point brazing material such as solder by heat.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a wiring board of the present invention.
FIG. 2 is an enlarged sectional view of a main part of the wiring board shown in FIG.
FIG. 3 is an enlarged cross-sectional view of a main part of the wiring board for describing the method of manufacturing a wiring board according to the present invention.
[Explanation of symbols]
1 ... Insulating substrate
2. Wiring layer
3 .... Electronic components
4. Wiring board
5 ... Low melting point brazing material
6 Copper-tin alloy layer
7 ... Silver layer of silver or gold and tin
8 Lid
9 Tin plating layer
10 ... Silver plating layer or gold plating layer

Claims (3)

ガラスセラミックスから成る絶縁基体に、電子部品の電極が低融点ロウ材を介して接続される、銅を主成分とした配線層を形成して成る配線基板であって、前記配線層のうち前記電極が前記低融点ロウ材を介して接続される領域の表面に、熱処理された銅錫合金層および熱処理された銀または金と錫との合金層が順次形成されていることを特徴とする配線基板。A wiring board, comprising: a wiring layer mainly composed of copper, wherein an electrode of an electronic component is connected to an insulating base made of glass ceramic through a low-melting brazing material, wherein the electrode of the wiring layer Wherein a heat-treated copper-tin alloy layer and a heat-treated alloy layer of silver or gold and tin are sequentially formed on a surface of a region connected via the low melting point brazing material. . 前記銅錫合金層は、前記配線層の表面に被着された錫めっき層に前記配線層の前記銅が熱処理によって拡散して形成され、前記銀または金と錫との合金層は、前記錫めっき層の表面に被着された銀めっき層または金めっき層に前記錫めっき層の錫が熱処理によって拡散して形成されたものであることを特徴とする請求項1記載の配線基板。The copper-tin alloy layer is formed by diffusing the copper of the wiring layer by a heat treatment on a tin plating layer adhered to the surface of the wiring layer, and the alloy layer of silver or gold and tin is formed of the tin 2. The wiring board according to claim 1, wherein tin of the tin plating layer is formed by diffusing tin by heat treatment on a silver plating layer or a gold plating layer attached to a surface of the plating layer. ガラスセラミックスから成る絶縁基体に銅を主成分とした配線層を形成する工程と、前記配線層のうち電子部品の電極が低融点ロウ材を介して接続される領域の表面に、錫めっき層と銀めっき層または金めっき層とを順次被着する工程と、しかる後、前記低融点ロウ材の融点より50℃乃至100℃高い温度で前記錫めっき層と前記銀めっき層または前記金めっき層とに熱処理を施す工程とを具備することを特徴とする配線基板の製造方法。Forming a wiring layer containing copper as a main component on an insulating base made of glass ceramics; and forming a tin plating layer on a surface of a region of the wiring layer to which an electrode of an electronic component is connected via a low melting point brazing material. A step of sequentially applying a silver plating layer or a gold plating layer, and thereafter, the tin plating layer and the silver plating layer or the gold plating layer at a temperature 50 ° C. to 100 ° C. higher than the melting point of the low melting point brazing material. Subjecting the substrate to a heat treatment.
JP2002331239A 2002-09-25 2002-11-14 Wiring board and manufacturing method thereof Expired - Fee Related JP3792642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331239A JP3792642B2 (en) 2002-09-25 2002-11-14 Wiring board and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002279128 2002-09-25
JP2002331239A JP3792642B2 (en) 2002-09-25 2002-11-14 Wiring board and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006050956A Division JP4264091B2 (en) 2002-09-25 2006-02-27 Wiring board manufacturing method

Publications (2)

Publication Number Publication Date
JP2004165505A true JP2004165505A (en) 2004-06-10
JP3792642B2 JP3792642B2 (en) 2006-07-05

Family

ID=32827764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331239A Expired - Fee Related JP3792642B2 (en) 2002-09-25 2002-11-14 Wiring board and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3792642B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303345A (en) * 2005-04-25 2006-11-02 Hitachi Kyowa Engineering Co Ltd Electronic part and board for carrying same
JP2009218615A (en) * 2009-06-22 2009-09-24 Hitachi Kyowa Engineering Co Ltd Electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303345A (en) * 2005-04-25 2006-11-02 Hitachi Kyowa Engineering Co Ltd Electronic part and board for carrying same
JP4490861B2 (en) * 2005-04-25 2010-06-30 日立協和エンジニアリング株式会社 substrate
US7842889B2 (en) 2005-04-25 2010-11-30 Hitachi Kyowa Engineering Co., Ltd. Substrate for mounting electronic part and electronic part
JP2009218615A (en) * 2009-06-22 2009-09-24 Hitachi Kyowa Engineering Co Ltd Electronic component

Also Published As

Publication number Publication date
JP3792642B2 (en) 2006-07-05

Similar Documents

Publication Publication Date Title
US8609256B2 (en) Nickel-gold plateable thick film silver paste
JPH04169002A (en) Conductive paste and manufacture of multilayer ceramic wiring substrate using it
US5928568A (en) Thick film circuit having conductor composition with coated metallic particles
JP4264091B2 (en) Wiring board manufacturing method
JP3792642B2 (en) Wiring board and manufacturing method thereof
JP2009224651A (en) Wiring board and manufacturing process therefor
JP3857219B2 (en) Wiring board and manufacturing method thereof
JP3866164B2 (en) Wiring board
JP2003109838A (en) Ceramic electronic part
JP3686687B2 (en) Low temperature fired ceramic circuit board
JP2008112786A (en) Multilayer ceramic substrate, and manufacturing method thereof
JP2627509B2 (en) Electronic component having conductive layer
JP2004140005A (en) Wiring board
JP2002084051A (en) Metallized copper composition, low-temperature sintered ceramic wiring board, and method of manufacturing the same
JPH0737420A (en) Conductive paste composition and circuit board using conductive paste composition
JP2002076609A (en) Circuit board
JP3554195B2 (en) Wiring board
JP4570190B2 (en) Wiring board
JP2006203163A (en) Wiring board
JP2004281426A (en) Glass ceramic wiring board
JP2000022294A (en) Electronic component circuit board
JP3652184B2 (en) Conductive paste, glass-ceramic wiring board and manufacturing method thereof
JP2004087831A (en) Wiring board
JPH06302927A (en) Ceramic wiring board, its manufacture and electrode paste
JP2001068830A (en) Circuit board

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051202

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051228

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20060227

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060320

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120414

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20120414

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20130414

LAPS Cancellation because of no payment of annual fees