JP2004165085A - Heating device and manufacturing method of the same - Google Patents

Heating device and manufacturing method of the same Download PDF

Info

Publication number
JP2004165085A
JP2004165085A JP2002331955A JP2002331955A JP2004165085A JP 2004165085 A JP2004165085 A JP 2004165085A JP 2002331955 A JP2002331955 A JP 2002331955A JP 2002331955 A JP2002331955 A JP 2002331955A JP 2004165085 A JP2004165085 A JP 2004165085A
Authority
JP
Japan
Prior art keywords
sheath
plate member
plate
distal end
heater plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002331955A
Other languages
Japanese (ja)
Other versions
JP3716249B2 (en
Inventor
Makoto Sakurai
誠 桜井
Daisuke Hashimoto
大輔 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2002331955A priority Critical patent/JP3716249B2/en
Publication of JP2004165085A publication Critical patent/JP2004165085A/en
Application granted granted Critical
Publication of JP3716249B2 publication Critical patent/JP3716249B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heating device capable of improving the accuracy of temperature measurement at a heater plate made of aluminum. <P>SOLUTION: The heating device 11 comprises a heater plate 13 made of aluminum having a heating element 12 and a sheathed thermocouple 14 for measuring the temperature of the heater plate 13. The tip 26 of the sheath 25 made of aluminum is closed by the end of a wall 30, and the end surface 26a of the tip 26 is finished flat by machining. The heater plate 13 is composed of a first plate member 21 and a second plate member 22. A sheath mounting hole 40 is formed in the first plate member 21. The first plate member 21 and the second plate member 22 are brazed to each other, and the end surface 26a of the sheath 25 and the second plate member 22 are also brazed to each other. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、例えば半導体基板等を加熱するためのヒータプレートとシース熱電対を備えた加熱装置と、その製造方法に関する。
【0002】
【従来の技術】
例えば半導体の製造プロセスにおいて、半導体基板を加熱するためにプロセスチャンバが使用されている(例えば下記特許文献1参照)。プロセスチャンバの内部にヒータプレートが収容されている。このヒータプレートには抵抗発熱体が内蔵され、抵抗発熱体の電流制御を行なうためにヒータプレートの温度が測定される。
【0003】
ヒータプレートの温度を測定するための温度測定器は、プロセスチャンバ内に印加される高周波やプラズマ等による電気信号上の影響を受けないことが望まれる。また、温度測定器の測温部や電気絶縁物がプロセスチャンバ内に導入されるガス等と反応すると、腐食やコンタミネーション(汚染物)の原因となるため、測温部や電気絶縁物がガスと反応することも避けなければならない。
【0004】
このような要求を満たす温度測定器として、シース熱電対が適している。従来のシース熱電対は、例えばNi合金であるインコネルやステンレス鋼からなる金属管(シース)の内部に、測温部が収容されている。
【0005】
シース熱電対をヒータプレートに取付ける手段として、例えば、シース熱電対に連結用の部材を取付け、シースの先端部をヒータプレートのシース取付穴に挿入しシースの先端部をヒータプレートに接触させた状態で、ねじ部材あるいは溶接によって前記連結用の部材を介してヒータプレートに固定することが行なわれている。
【0006】
あるいは、下記特許文献2に記載されているように、シース先端をヒータプレート等の金属体の測温部に溶接する方法も提案されている。
【0007】
【特許文献1】
特開平6−260687号公報
【0008】
【特許文献1】
特開平11−281498号公報
【0009】
【発明が解決しようとする課題】
シース熱電対のシースには、材料の強度、耐食性、耐久性などの観点から、インコネルあるいはステンレス鋼などが用いられている。しかしこれらの材料は、アルミニウム製のヒータプレートとの間に無視することができない熱膨張差がある。
【0010】
プロセスチャンバ内で半導体基板を処理する工程では、加熱と冷却が繰返し行なわれる。このためヒータプレートとシース熱電対との間に熱膨張差があると、常温ではヒータプレートとシース熱電対とが隙間無く接触していても、半導体基板の処理中の熱により、ヒータプレートとシース熱電対との間に隙間が生じてしまう。
【0011】
しかもプロセスチャンバ内では、半導体基板の処理に伴い、雰囲気ガスや真空度が繰返し変化することがある。このためヒータプレートとシース熱電対との間に隙間が存在すると、ヒータプレートとシース熱電対との間の熱伝達媒体の物性変化が生じることにより、熱電対による温度測定の結果に影響が生じるおそれがある。
【0012】
シース熱電対はシースの側面からシース内部の測温部(測温接点)への伝熱も測定結果に影響を及ぼす。このため、前記特許文献2のようにシース先端をヒータプレート等の金属体に溶接する場合でも、シースの側面とヒータプレートとの間に隙間が存在すると、熱伝達媒体の物性変化が生じることにより、熱電対による温度測定結果に悪影響がでる。
【0013】
前記熱膨張差によってヒータプレートとシース熱電対との間に生じる隙間は、温度が上がれば上がるほど大きくなる。プロセスチャンバ内に導入されるガスはヒータプレートとシース熱電対との間の熱伝達媒体となるが、隙間の大きさによって熱伝達のレスポンスが影響されるため、温度によってレスポンスが変化することになり、好ましくない。
【0014】
さらに、ヒータプレートとシース熱電対との間に隙間があると、プロセスチャンバに真空度の変化が生じたときに熱伝達の度合いが著しく変化する。あるいは熱伝達媒体を失って真空断熱のような状態になることから、温度測定のレスポンスに大きな影響を及ぼし、温度測定の精度が悪化するという問題もある。
【0015】
従ってこの発明の目的は、温度測定の精度が向上する加熱装置と、その製造方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明の加熱装置は、内部に発熱体を備えたアルミニウム製のヒータプレートと、前記ヒータプレートの温度を測定するための測温部および該測温部を覆うシースを有しかつ先端部が閉じているシース熱電対とを有し、前記シースがアルミニウム製であり、該シースの先端部が前記ヒータプレートに形成されたシース取付穴に挿入されかつ前記ヒータプレートに接合されていることを特徴とする。この明細書で言うアルミニウムとは、純粋なアルミニウムと、アルミニウム合金とを含む概念である。
【0017】
この発明の好ましい形態では、前記シースの先端部に、端面が平坦に機械加工された端壁を有し、該先端部が前記シース取付穴に挿入されかつ該ヒータプレートにろう付けされている。
【0018】
前記ヒータプレートの一例は、その厚み方向に接合される第1プレート部材と第2プレート部材とを含み、第1プレート部材に前記シース取付穴が形成され、かつ、前記シースの先端部の前記端面と前記第2プレートが互いにろう付けされている。この発明の好ましい形態では、前記シースの先端部の側面と前記シース取付穴の内面とがろう付けされている。
【0019】
本発明の加熱装置の製造方法は、前記第1プレート部材にシース取付穴を形成し、該シース取付穴に挿入された前記シースの先端部と前記第1プレート部材とを前記シースの先端部外周の溶接部において溶接し、前記第1プレート部材の前記第2プレート部材に対する接合面を前記溶接部および前記シースの先端部の端面とともに機械加工によって平坦に仕上げたのち、前記第1プレート部材と第2プレート部材を重ねてろう付けするとともに、前記シースの先端部の端面を前記第2プレート部材にろう付けすることを特徴とする。
【0020】
この発明において、前記第1プレート部材と第2プレート部材をろう付けする際に、前記シースの先端部の側面と前記シース取付穴の内面をろう付けするとよい。
【0021】
【発明の実施の形態】
以下に本発明の第1の実施形態について、図1〜図3を参照して説明する。
図1に、半導体製造プロセスに用いるプロセスチャンバ10が示されている。プロセスチャンバ10の内部に、加熱装置11が収容されている。
【0022】
加熱装置11は、抵抗発熱体12を内蔵したヒータプレート13と、抵抗発熱体12の発熱量をコントロールするためのシース熱電対14を備えている。発熱体の一例である抵抗発熱体12は、ヒータプレート13に形成された溝15に収容されている。
【0023】
ヒータプレート13上に、例えば半導体基板等の被加熱物(ワーク)Wが載置される。プロセスチャンバ10の内部空間の温度、雰囲気、真空度等は、被加熱物Wの処理に応じてコントローラ(図示せず)によって制御される。
【0024】
円板形のヒータプレート13は、互いに厚み方向に積層されるアルミニウム製の第1プレート部材21と、第2プレート部材22とを含んでいる。ここで言うアルミニウムはアルミニウム合金も含む概念である。これらプレート部材21,22は、互いにろう付けによって接合されている。
【0025】
図2に示すようにシース熱電対14は、先端が閉じたアルミニウム製の円筒状のシース25と、シース25の先端部26付近の内側に収容された測温部として機能する測温接点27と、測温接点27に接続されたリード線28などを備えている。
【0026】
シース25の先端部26は、端壁30によって閉塞されている。この端壁30は、後述する機械加工を行なう際の削り代ΔT(図3に示す)を確保するに足る肉厚を有している。シース25の先端部26の端面26aは、旋盤等の機械加工によって平坦な形状に加工されている。
【0027】
図2に示すようにシース熱電対14の先端部すなわちシース25の先端部26は、第1プレート部材21に形成されたシース取付穴40に挿入されている。シース25の先端部26の端面26aの外周部と第1プレート部材21とが電子ビーム溶接等によって溶接され、溶接部41が形成されている。
【0028】
また、シース25の先端部26の端面26aが、ろう材45によって第2プレート部材22にろう付け接合されている。シース25の先端部26の側面(外周面)26bとシース取付穴40の内面との間も、ろう材46によって互いに接合されている。
【0029】
アルミニウム製のシース25は、インコネルやステンレス鋼と比較して熱伝導性が良く、しかもアルミニウム製ヒータプレート13との間に熱膨張差が無いため、ヒータプレート13の温度測定のレスポンスが優れている。また、被加熱物Wを加熱する際に、ヒータプレート13とシース25との間に熱膨張差による隙間が生じない。このことにより、ヒータプレート13とシース熱電対14との間の熱伝達が外部環境の変化に影響されにくくなり、温度測定のレスポンスに及ぼす影響を小さくできるという利点がある。
【0030】
シース25の先端部26を閉じている端壁30はヒータプレート13と同じ材質(アルミニウム)であり、しかも溶接とろう付けによってヒータプレート13と金属的に一体化しているため、端壁30の熱容量が従来のシース熱電対よりも大きくても、温度測定のレスポンスに悪影響を与えることがない。
【0031】
旋盤等の機械加工によってシース25の先端部26の端面26aを平坦に仕上げれば、シース25の先端部26の周囲とヒートプレート13との間の隙間を実質的に無くすことができる。
【0032】
シース25の外径は、シース熱電対14の絶縁抵抗を充分に確保し、かつ、製造上および使用上の耐久性も勘案して、φ5mm以上とする。但し、シース25の外径が大きくなり過ぎると温度測定のレスポンスに悪影響を与えるため、シース25の外径はφ12mm以下とする。
【0033】
次に、前記加熱装置11の製造方法について説明する。
第1プレート部材21と第2プレート部材22とを重ねる前に、第1プレート部材21の所定位置に機械加工によってシース取付穴40を形成する。第2プレート部材22には、抵抗発熱体12を収容するための溝15が形成される。
【0034】
図3に示すようにシース25の先端部26をシース取付穴40に挿入し、シース25の端面26aの外周部と第1プレート部材21とを電子ビーム溶接等によって溶接することにより、端面26aの周りに環状の溶接部41を形成する。
【0035】
第1プレート部材21の上面すなわち第2プレート部材22との接合面21aを、旋盤等の機械加工によって、溶接部41およびシース25の端面26aと共に平坦に仕上げる。図3にその削り代ΔTが示されている。
【0036】
この実施形態のように、シース25の先端部26を第1プレート部材21に溶接し、その溶接部41を含むプレート部材21,22どうしの接合面21aを平坦に機械加工することにより、シース25の端面26aとヒータプレート13との間の隙間を最小限にすることができる。
【0037】
第1プレート部材21の接合面21aとシース25の端面26aを平坦に機械加工したのち、第1プレート部材21に第2プレート部材22を重ねる。このとき、第1プレート部材21と第2プレート部材22との間に、ろう材45を設ける。シース25の端面26aと第2プレート部材22との間にも、ろう材45を設ける。また、シース25の側面26bとシース取付穴40の内面との間にろう材46を設ける。
【0038】
ろう材45,46が溶融する温度にプレート部材21,22を加熱したのち、冷却することにより、プレート部材21,22が互いにろう付けされ、かつ、シース25の端面26aと第2プレート部材22がろう付けされる。さらに、シース25の側面26bとシース取付穴40の内面との間もろう付けされる。
【0039】
このように、ヒータプレート13のシース取付穴40にシース25の先端部26を挿入し、両者を互いにろう付けすることにより、ヒータプレート13とシース25が一体化して金属の一体物となるため、ヒータプレート13の温度測定のレスポンスが向上する。また、第1プレート部材21と第2プレート部材22とをろう付けする際に、シース25の先端部26とヒータプレート13とのろう付けを同時に行なうことができる。
【0040】
この実施形態の場合、シース25の端面26aだけでなく、シース25の側面26bとシース取付穴40の内面もろう付けされる。このため、ヒータプレート13からシース25内の測温接点27への熱伝達経路が外部環境の変化に左右されなくなり、外部環境が温度測定のレスポンスに及ぼす影響をさらに小さくすることができる。
【0041】
なお、シース25の先端部26をプレート部材21,22の双方に溶接してもよいし、シース25の先端部26をプレート部材21,22のいずれか一方に溶接あるいはろう付けしてもよい。
【0042】
図4と図5は本発明の第2の実施形態の加熱装置50を示している。この加熱装置50は、前記第1の実施形態の加熱装置11と同様にプロセスチャンバに収容される。この加熱装置50において、前記加熱装置11と共通の部位には両者に共通の符号を付して説明を省略し、異なる点について以下に説明する。
【0043】
この加熱装置50は、円筒形の中空の支持構造物51を有している。支持構造物51の内側に、抵抗発熱体12の一部12aとシース熱電対14の一部14aが挿通されている。支持構造物51の内部空間は、半導体基板の処理中に例えば真空雰囲気となる。
【0044】
ヒータプレート13は、第1プレート部材21と、第2プレート部材22と、第3プレート部材55とを含んでいる。各プレート部材21,22,55は、第1の実施形態と同様にアルミニウム製である。ここで言うアルミニウムも、アルミニウム合金を含む概念である。プレート部材21,22,55は互いに厚み方向に積層され、ろう付けされる。
【0045】
シース熱電対14は、第1の実施形態と同様に、アルミニウム製のシース25と、シース25の内部に収容された測温部などを備えている。第2プレート部材22に、抵抗発熱体12を収容するための溝15が形成されている。第1プレート部材21と第2プレート部材22に、シース取付穴40が形成されている。
【0046】
シース25の先端部26がシース取付穴40に挿入されている。シース25の先端部26の端面26aの外周部が第2プレート部材22に溶接されることにより、端面26aの周りに溶接部41が形成されている。
【0047】
第2プレート部材22の上面すなわち第3プレート部材55との接合面22aは、溶接部41とシース25の端面26aを含めて、旋盤等の機械加工によって平坦に仕上げられている。そしてシース25の端面26aが第3プレート部材55にろう付けされている。この場合も、シース25の側面26bとシース取付穴40の内面がろう付けされるとよい。
【0048】
この実施形態の加熱装置50は、第1の実施形態の加熱装置11と同様に、シース取付穴40に挿入されたシース25の先端部26とヒータプレート13が、ろう付けによって溶接部41と一体化している。このためヒータプレート13からシース熱電対14の測温部への熱伝達の経路が外部環境の変化に左右されず、レスポンスが向上する。
【0049】
【発明の効果】
請求項1に記載した発明によれば、アルミニウム製のヒータプレートと、ヒータプレートの温度を測定するためのシース熱電対とを備えた加熱装置において、温度測定の精度を高めることができる。
【0050】
請求項2に記載した発明によれば、シースの先端部がヒータプレートにろう付けされることにより、ヒータプレートとシースとの熱伝達経路が外部環境の影響を受けにくくなり、温度測定の精度とレスポンスが改善される。
【0051】
請求項3に記載した発明によれば、互いに積層される第1プレート部材と第2プレート部材とを有するヒータプレートにおいて、シースの先端部とヒータプレートが一体化され、外部環境の影響を受けにくい熱伝達経路が確保される。
【0052】
請求項4に記載した発明によれば、シースの先端部の側面とヒータプレートとがろう付けされることによって、外部環境の影響をさらに受けにくくなり、温度測定の精度とレスポンスが向上する。
【0053】
請求項5に記載した製造方法によれば、本発明の目的にかなう加熱装置を製造することができる。
請求項6に記載した発明によれば、第1プレート部材と第2プレート部材とをろう付けする際に、シースの先端部とヒータプレートとのろう付けを行なうことができるため、製造工程が簡略化する。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す加熱装置を備えたプロセスチャンバの断面図。
【図2】図1に示された加熱装置の一部を拡大して示す断面図。
【図3】図2に示されたヒータプレートとシースの端面を機械加工する前の状態を示す断面図。
【図4】本発明の第2の実施形態を示す加熱装置の平面図。
【図5】図4中のV−V線に沿う加熱装置の断面図。
【符号の説明】
11…加熱装置
12…抵抗発熱体
13…ヒータプレート
14…シース熱伝対
21…第1プレート部材
22…第2プレート部材
25…シース
26…先端部
26a…端面
26b…側面
30…端壁
40…シース取付穴
41…溶接部
50…加熱装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a heating device provided with a heater plate and a sheath thermocouple for heating, for example, a semiconductor substrate or the like, and a method of manufacturing the same.
[0002]
[Prior art]
For example, in a semiconductor manufacturing process, a process chamber is used to heat a semiconductor substrate (for example, see Patent Document 1 below). A heater plate is housed inside the process chamber. The heater plate has a built-in resistance heating element, and the temperature of the heater plate is measured to control the current of the resistance heating element.
[0003]
It is desired that the temperature measuring device for measuring the temperature of the heater plate is not affected by an electric signal due to a high frequency or a plasma applied to the process chamber. In addition, if the temperature measuring section of the temperature measuring device or the electrical insulator reacts with a gas or the like introduced into the process chamber, it may cause corrosion or contamination (contaminants). You must also avoid reacting with
[0004]
A sheath thermocouple is suitable as a temperature measuring device satisfying such requirements. In a conventional sheath thermocouple, a temperature measuring unit is accommodated in a metal tube (sheath) made of, for example, inconel or stainless steel, which is a Ni alloy.
[0005]
As a means for attaching the sheath thermocouple to the heater plate, for example, a member for connection is attached to the sheath thermocouple, the tip of the sheath is inserted into the sheath mounting hole of the heater plate, and the tip of the sheath is brought into contact with the heater plate. Then, fixing to the heater plate via the connecting member by a screw member or welding is performed.
[0006]
Alternatively, as described in Patent Literature 2 below, a method of welding a sheath tip to a temperature measuring portion of a metal body such as a heater plate has also been proposed.
[0007]
[Patent Document 1]
JP-A-6-260687 [0008]
[Patent Document 1]
JP-A-11-281498
[Problems to be solved by the invention]
For the sheath of the sheath thermocouple, Inconel, stainless steel, or the like is used from the viewpoint of material strength, corrosion resistance, durability, and the like. However, these materials have a non-negligible difference in thermal expansion with the heater plate made of aluminum.
[0010]
In a process of processing a semiconductor substrate in a process chamber, heating and cooling are repeatedly performed. Therefore, if there is a difference in thermal expansion between the heater plate and the sheath thermocouple, even if the heater plate and the sheath thermocouple are in close contact with each other at room temperature, the heat during processing of the semiconductor substrate causes the heater plate and the sheath thermocouple to contact each other. A gap is created between the thermocouple and the thermocouple.
[0011]
Moreover, in the process chamber, the atmosphere gas and the degree of vacuum may change repeatedly as the semiconductor substrate is processed. For this reason, if there is a gap between the heater plate and the sheath thermocouple, a change in the physical properties of the heat transfer medium between the heater plate and the sheath thermocouple may occur, which may affect the result of the temperature measurement by the thermocouple. There is.
[0012]
In the sheath thermocouple, the heat transfer from the side surface of the sheath to the temperature measuring section (temperature measuring junction) inside the sheath also affects the measurement result. For this reason, even when the distal end of the sheath is welded to a metal body such as a heater plate as in Patent Document 2, if there is a gap between the side surface of the sheath and the heater plate, the physical properties of the heat transfer medium change. As a result, the temperature measurement result by the thermocouple is adversely affected.
[0013]
The gap created between the heater plate and the sheath thermocouple due to the difference in thermal expansion increases as the temperature increases. The gas introduced into the process chamber acts as a heat transfer medium between the heater plate and the sheath thermocouple, but the size of the gap affects the heat transfer response. Is not preferred.
[0014]
Further, if there is a gap between the heater plate and the sheath thermocouple, the degree of heat transfer will change significantly when the degree of vacuum changes in the process chamber. Alternatively, since the heat transfer medium is lost and the state becomes a state like vacuum insulation, there is a problem that the response of the temperature measurement is greatly affected and the accuracy of the temperature measurement is deteriorated.
[0015]
Accordingly, an object of the present invention is to provide a heating device with improved accuracy of temperature measurement and a method of manufacturing the same.
[0016]
[Means for Solving the Problems]
The heating device of the present invention includes an aluminum heater plate having a heating element therein, a temperature measurement unit for measuring the temperature of the heater plate, and a sheath that covers the temperature measurement unit, and the distal end is closed. A sheath thermocouple, wherein the sheath is made of aluminum, and a distal end of the sheath is inserted into a sheath mounting hole formed in the heater plate and joined to the heater plate. I do. In this specification, aluminum is a concept including pure aluminum and an aluminum alloy.
[0017]
In a preferred embodiment of the present invention, the distal end of the sheath has an end wall whose end face is machined flat, and the distal end is inserted into the sheath mounting hole and brazed to the heater plate.
[0018]
One example of the heater plate includes a first plate member and a second plate member joined in a thickness direction thereof, the sheath mounting hole is formed in the first plate member, and the end face of a distal end portion of the sheath. And the second plate are brazed to each other. In a preferred aspect of the present invention, the side surface of the distal end portion of the sheath and the inner surface of the sheath mounting hole are brazed.
[0019]
In the method of manufacturing a heating device according to the present invention, a sheath mounting hole is formed in the first plate member, and the distal end portion of the sheath inserted into the sheath mounting hole and the first plate member are connected to the outer periphery of the distal end portion of the sheath. After welding at the welded portion, the joining surface of the first plate member to the second plate member is flattened by machining with the welded portion and the end surface of the distal end of the sheath, and then the first plate member and the second plate member are finished. It is characterized in that the two plate members are overlapped and brazed, and the end face of the distal end of the sheath is brazed to the second plate member.
[0020]
In the present invention, when brazing the first plate member and the second plate member, the side surface of the distal end of the sheath and the inner surface of the sheath mounting hole may be brazed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows a process chamber 10 used for a semiconductor manufacturing process. A heating device 11 is housed inside the process chamber 10.
[0022]
The heating device 11 includes a heater plate 13 having a built-in resistance heating element 12 and a sheath thermocouple 14 for controlling the amount of heat generated by the resistance heating element 12. The resistance heating element 12, which is an example of the heating element, is housed in a groove 15 formed in the heater plate 13.
[0023]
An object to be heated (work) W such as a semiconductor substrate is placed on the heater plate 13. The temperature, atmosphere, degree of vacuum, and the like in the internal space of the process chamber 10 are controlled by a controller (not shown) according to the processing of the object to be heated W.
[0024]
The disc-shaped heater plate 13 includes a first plate member 21 and a second plate member 22 made of aluminum and stacked in the thickness direction. The aluminum mentioned here is a concept including an aluminum alloy. These plate members 21 and 22 are joined together by brazing.
[0025]
As shown in FIG. 2, the sheath thermocouple 14 includes a cylindrical sheath 25 made of aluminum having a closed end, and a temperature measuring contact 27 functioning as a temperature measuring unit housed inside the vicinity of the distal end 26 of the sheath 25. , A lead wire 28 connected to the temperature measuring contact 27 and the like.
[0026]
The distal end 26 of the sheath 25 is closed by an end wall 30. The end wall 30 has a thickness sufficient to secure a cutting allowance ΔT (shown in FIG. 3) when performing a machining process described later. The end surface 26a of the distal end portion 26 of the sheath 25 is processed into a flat shape by machining such as a lathe.
[0027]
As shown in FIG. 2, the distal end of the sheath thermocouple 14, that is, the distal end 26 of the sheath 25 is inserted into a sheath mounting hole 40 formed in the first plate member 21. The outer peripheral portion of the end surface 26a of the distal end portion 26 of the sheath 25 and the first plate member 21 are welded by electron beam welding or the like, thereby forming a welded portion 41.
[0028]
Further, the end surface 26 a of the distal end portion 26 of the sheath 25 is brazed to the second plate member 22 by the brazing material 45. The side surface (outer peripheral surface) 26b of the distal end portion 26 of the sheath 25 and the inner surface of the sheath mounting hole 40 are also joined to each other by the brazing material 46.
[0029]
The aluminum sheath 25 has better thermal conductivity than Inconel or stainless steel, and has no difference in thermal expansion with the aluminum heater plate 13, so that the response of the temperature measurement of the heater plate 13 is excellent. . Further, when heating the object to be heated W, there is no gap between the heater plate 13 and the sheath 25 due to a difference in thermal expansion. Thus, there is an advantage that the heat transfer between the heater plate 13 and the sheath thermocouple 14 is hardly affected by changes in the external environment, and the effect on the temperature measurement response can be reduced.
[0030]
The end wall 30 closing the distal end portion 26 of the sheath 25 is made of the same material (aluminum) as the heater plate 13 and is metallically integrated with the heater plate 13 by welding and brazing. Is larger than a conventional sheath thermocouple without adversely affecting the temperature measurement response.
[0031]
If the end face 26a of the distal end portion 26 of the sheath 25 is finished flat by machining such as a lathe, a gap between the periphery of the distal end portion 26 of the sheath 25 and the heat plate 13 can be substantially eliminated.
[0032]
The outer diameter of the sheath 25 is φ5 mm or more in consideration of the insulation resistance of the sheath thermocouple 14 and the durability in manufacturing and use. However, if the outer diameter of the sheath 25 becomes too large, the response of the temperature measurement is adversely affected. Therefore, the outer diameter of the sheath 25 is set to 12 mm or less.
[0033]
Next, a method for manufacturing the heating device 11 will be described.
Before the first plate member 21 and the second plate member 22 are overlapped, the sheath mounting hole 40 is formed at a predetermined position of the first plate member 21 by machining. A groove 15 for accommodating the resistance heating element 12 is formed in the second plate member 22.
[0034]
As shown in FIG. 3, the distal end portion 26 of the sheath 25 is inserted into the sheath mounting hole 40, and the outer peripheral portion of the end surface 26a of the sheath 25 and the first plate member 21 are welded by electron beam welding or the like. An annular weld 41 is formed therearound.
[0035]
The upper surface of the first plate member 21, that is, the joint surface 21a with the second plate member 22 is flattened together with the welded portion 41 and the end surface 26a of the sheath 25 by machining such as a lathe. FIG. 3 shows the cutting allowance ΔT.
[0036]
As in this embodiment, the distal end portion 26 of the sheath 25 is welded to the first plate member 21, and the joining surface 21 a of the plate members 21 and 22 including the welded portion 41 is machined to be flat, thereby forming the sheath 25. Of the heater plate 13 can be minimized.
[0037]
After the joining surface 21a of the first plate member 21 and the end surface 26a of the sheath 25 are machined flat, the second plate member 22 is overlaid on the first plate member 21. At this time, a brazing material 45 is provided between the first plate member 21 and the second plate member 22. A brazing material 45 is also provided between the end surface 26 a of the sheath 25 and the second plate member 22. In addition, a brazing material 46 is provided between the side surface 26 b of the sheath 25 and the inner surface of the sheath mounting hole 40.
[0038]
After heating the plate members 21 and 22 to a temperature at which the brazing materials 45 and 46 melt, the plate members 21 and 22 are brazed to each other by cooling, and the end surface 26a of the sheath 25 and the second plate member 22 are separated from each other. Brazed. Furthermore, the space between the side surface 26b of the sheath 25 and the inner surface of the sheath mounting hole 40 is also brazed.
[0039]
As described above, by inserting the distal end portion 26 of the sheath 25 into the sheath mounting hole 40 of the heater plate 13 and brazing the two together, the heater plate 13 and the sheath 25 are integrated into a single metal object. The response of the temperature measurement of the heater plate 13 is improved. Further, when brazing the first plate member 21 and the second plate member 22, the brazing between the distal end portion 26 of the sheath 25 and the heater plate 13 can be performed simultaneously.
[0040]
In this embodiment, not only the end surface 26a of the sheath 25 but also the side surface 26b of the sheath 25 and the inner surface of the sheath mounting hole 40 are brazed. Therefore, the heat transfer path from the heater plate 13 to the temperature measuring contact 27 in the sheath 25 is not affected by changes in the external environment, and the effect of the external environment on the response of the temperature measurement can be further reduced.
[0041]
The distal end 26 of the sheath 25 may be welded to both of the plate members 21 and 22, or the distal end 26 of the sheath 25 may be welded or brazed to one of the plate members 21 and 22.
[0042]
4 and 5 show a heating device 50 according to a second embodiment of the present invention. The heating device 50 is housed in a process chamber similarly to the heating device 11 of the first embodiment. In the heating device 50, the same portions as those of the heating device 11 are denoted by the same reference numerals, and description thereof will be omitted. Differences will be described below.
[0043]
The heating device 50 has a cylindrical hollow support structure 51. Inside the support structure 51, a part 12a of the resistance heating element 12 and a part 14a of the sheath thermocouple 14 are inserted. The internal space of the support structure 51 becomes, for example, a vacuum atmosphere during processing of the semiconductor substrate.
[0044]
The heater plate 13 includes a first plate member 21, a second plate member 22, and a third plate member 55. Each of the plate members 21, 22, 55 is made of aluminum as in the first embodiment. The aluminum mentioned here is also a concept including an aluminum alloy. The plate members 21, 22, 55 are stacked in the thickness direction and brazed.
[0045]
As in the first embodiment, the sheath thermocouple 14 includes an aluminum sheath 25 and a temperature measuring unit housed inside the sheath 25. A groove 15 for accommodating the resistance heating element 12 is formed in the second plate member 22. A sheath mounting hole 40 is formed in the first plate member 21 and the second plate member 22.
[0046]
The distal end 26 of the sheath 25 is inserted into the sheath mounting hole 40. The outer peripheral portion of the end surface 26a of the distal end portion 26 of the sheath 25 is welded to the second plate member 22, so that a welded portion 41 is formed around the end surface 26a.
[0047]
The upper surface of the second plate member 22, that is, the joint surface 22a with the third plate member 55, including the welded portion 41 and the end surface 26a of the sheath 25, is finished to be flat by machining such as a lathe. The end surface 26a of the sheath 25 is brazed to the third plate member 55. Also in this case, the side surface 26b of the sheath 25 and the inner surface of the sheath mounting hole 40 may be brazed.
[0048]
In the heating device 50 of this embodiment, similarly to the heating device 11 of the first embodiment, the distal end portion 26 of the sheath 25 inserted into the sheath mounting hole 40 and the heater plate 13 are integrated with the welding portion 41 by brazing. Is becoming Therefore, the path of heat transfer from the heater plate 13 to the temperature measuring section of the sheath thermocouple 14 is not affected by changes in the external environment, and the response is improved.
[0049]
【The invention's effect】
According to the first aspect of the present invention, in a heating apparatus including an aluminum heater plate and a sheath thermocouple for measuring the temperature of the heater plate, the accuracy of temperature measurement can be improved.
[0050]
According to the second aspect of the present invention, since the distal end portion of the sheath is brazed to the heater plate, the heat transfer path between the heater plate and the sheath is less likely to be affected by the external environment. Response is improved.
[0051]
According to the third aspect of the present invention, in the heater plate having the first plate member and the second plate member stacked on each other, the distal end portion of the sheath and the heater plate are integrated, and are not easily affected by the external environment. A heat transfer path is secured.
[0052]
According to the fourth aspect of the present invention, by brazing the side surface of the distal end portion of the sheath and the heater plate, the influence of the external environment is further reduced, and the accuracy and response of the temperature measurement are improved.
[0053]
According to the manufacturing method described in claim 5, it is possible to manufacture a heating device that meets the object of the present invention.
According to the invention described in claim 6, when the first plate member and the second plate member are brazed, the distal end portion of the sheath and the heater plate can be brazed, so that the manufacturing process is simplified. Become
[Brief description of the drawings]
FIG. 1 is a sectional view of a process chamber provided with a heating device according to a first embodiment of the present invention.
FIG. 2 is an enlarged sectional view showing a part of the heating device shown in FIG. 1;
FIG. 3 is a sectional view showing a state before machining the end faces of the heater plate and the sheath shown in FIG. 2;
FIG. 4 is a plan view of a heating device according to a second embodiment of the present invention.
FIG. 5 is a sectional view of the heating device taken along line VV in FIG. 4;
[Explanation of symbols]
Reference Signs List 11 heating device 12 resistance heating element 13 heater plate 14 sheath thermocouple 21 first plate member 22 second plate member 25 sheath 26 distal end 26a end surface 26b side surface 30 end wall 40 Sheath mounting hole 41 ... welding part 50 ... heating device

Claims (6)

内部に発熱体を備えたアルミニウム製のヒータプレートと、
前記ヒータプレートの温度を測定するための測温部および該測温部を覆うシースを有しかつ先端部が閉じているシース熱電対とを有し、
前記シースがアルミニウム製であり、
該シースの先端部が前記ヒータプレートに形成されたシース取付穴に挿入されかつ前記ヒータプレートに接合されていることを特徴とする加熱装置。
An aluminum heater plate with a heating element inside,
A sheath thermocouple having a temperature measuring section for measuring the temperature of the heater plate and a sheath covering the temperature measuring section and having a closed end portion,
The sheath is made of aluminum,
A heating device, wherein a distal end of the sheath is inserted into a sheath mounting hole formed in the heater plate and is joined to the heater plate.
前記シースの先端部に、端面が平坦に機械加工された端壁を有し、該先端部が前記シース取付穴に挿入されかつ該ヒータプレートにろう付けされていることを特徴とする請求項1に記載の加熱装置。2. The sheath according to claim 1, further comprising an end wall having a flat machined end face at a distal end thereof, wherein the distal end is inserted into the sheath mounting hole and brazed to the heater plate. The heating device according to claim 1. 前記ヒータプレートは、その厚み方向に接合される第1プレート部材と第2プレート部材とを含み、第1プレート部材に前記シース取付穴が形成され、かつ、前記シースの先端部の前記端面と前記第2プレートが互いにろう付けされていることを特徴とする請求項2に記載の加熱装置。The heater plate includes a first plate member and a second plate member joined in a thickness direction thereof, the sheath mounting hole is formed in the first plate member, and the end face of the distal end portion of the sheath and the end face of the sheath plate are formed. 3. The heating device according to claim 2, wherein the second plates are brazed to each other. 前記シースの先端部の側面と前記シース取付穴の内面とがろう付けされていることを特徴とする請求項3に記載の加熱装置。The heating device according to claim 3, wherein a side surface of a distal end portion of the sheath and an inner surface of the sheath mounting hole are brazed. 厚み方向に積層される第1プレート部材および第2プレート部材を含むアルミニウム製のヒータプレートと、
先端部が閉じているアルミニウム製のシースを有するシース熱電対と、
を具備する加熱装置、の製造方法において、
前記第1プレート部材にシース取付穴を形成し、
該シース取付穴に挿入された前記シースの先端部と前記第1プレート部材とを前記シースの先端部外周の溶接部において溶接し、
前記第1プレート部材の前記第2プレート部材に対する接合面を前記溶接部および前記シースの先端部の端面とともに機械加工によって平坦に仕上げたのち、
前記第1プレート部材と第2プレート部材を重ねてろう付けするとともに、
前記シースの先端部の端面を前記第2プレート部材にろう付けすることを特徴とする加熱装置の製造方法。
An aluminum heater plate including a first plate member and a second plate member stacked in a thickness direction;
A sheath thermocouple having an aluminum sheath whose tip is closed,
In a method of manufacturing a heating device comprising:
Forming a sheath mounting hole in the first plate member;
Welding the distal end of the sheath inserted into the sheath mounting hole and the first plate member at a welding portion on the outer periphery of the distal end of the sheath;
After finishing the joining surface of the first plate member to the second plate member together with the welding portion and the end surface of the distal end portion of the sheath by machining,
The first plate member and the second plate member are overlapped and brazed,
A method of manufacturing a heating device, comprising brazing an end surface of a distal end portion of the sheath to the second plate member.
前記第1プレート部材と第2プレート部材をろう付けする際に、前記シースの先端部の側面と前記シース取付穴の内面をろう付けすることを特徴とする請求項5に記載の加熱装置の製造方法。6. The heating apparatus according to claim 5, wherein, when brazing the first plate member and the second plate member, a side surface of a distal end portion of the sheath and an inner surface of the sheath mounting hole are brazed. Method.
JP2002331955A 2002-11-15 2002-11-15 Heating device and manufacturing method thereof Expired - Lifetime JP3716249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002331955A JP3716249B2 (en) 2002-11-15 2002-11-15 Heating device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002331955A JP3716249B2 (en) 2002-11-15 2002-11-15 Heating device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004165085A true JP2004165085A (en) 2004-06-10
JP3716249B2 JP3716249B2 (en) 2005-11-16

Family

ID=32809170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002331955A Expired - Lifetime JP3716249B2 (en) 2002-11-15 2002-11-15 Heating device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3716249B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146793A (en) * 2007-12-17 2009-07-02 Nhk Spring Co Ltd Heater unit and its manufacturing method
KR20220032107A (en) 2019-08-02 2022-03-15 닛폰 하츠죠 가부시키가이샤 Temperature sensor and heater unit
CN114234270A (en) * 2021-12-31 2022-03-25 拓荆科技股份有限公司 Heating device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009146793A (en) * 2007-12-17 2009-07-02 Nhk Spring Co Ltd Heater unit and its manufacturing method
KR20220032107A (en) 2019-08-02 2022-03-15 닛폰 하츠죠 가부시키가이샤 Temperature sensor and heater unit
US12000737B2 (en) 2019-08-02 2024-06-04 Nhk Spring Co., Ltd. Temperature sensor and heater unit
CN114234270A (en) * 2021-12-31 2022-03-25 拓荆科技股份有限公司 Heating device and manufacturing method thereof

Also Published As

Publication number Publication date
JP3716249B2 (en) 2005-11-16

Similar Documents

Publication Publication Date Title
JP4889385B2 (en) Heater unit and shaft
KR101486253B1 (en) Ceramic heater and method of securing a thermocouple thereto
US7173219B2 (en) Ceramic heaters
JP4640842B2 (en) Heating device
JP4026761B2 (en) Ceramic heater
KR20120040631A (en) Thermo-couple for temperature measurement and method of manufacturing the same
JP2008243990A (en) Substrate heating device
WO2016163558A1 (en) Heater
JP4496428B2 (en) Contact temperature measuring probe and method
JP4098112B2 (en) Heater unit
JP2004165085A (en) Heating device and manufacturing method of the same
WO1992014686A1 (en) Method of bonding ceramics together and insert material for heat bonding
JPS61296676A (en) Foil heater, bobbin assembly using the same and manufacture thereof
JP6704821B2 (en) Holding device
JP3207147B2 (en) Substrate holding device for semiconductor processing
JP3985072B2 (en) Liquid level switch
JP6694787B2 (en) Holding device
JP2002184844A (en) Mounting structure of susceptor to chamber and support member of the susceptor to the chamber
JP7257211B2 (en) ceramic heater
TWI831143B (en) Wafer support table and RF pole
JP2001289715A (en) Temperature-sensing substrate
JP2002267546A (en) Temperature sensor
JP7129587B1 (en) Wafer support and RF rod
JP2017045669A (en) heater
JP2004125431A (en) Sensor and sensor-manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3716249

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080902

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090902

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100902

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110902

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120902

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130902

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term