JP2004164934A - Surface treatment method of anode active material for secondary battery and secondary battery using the same - Google Patents

Surface treatment method of anode active material for secondary battery and secondary battery using the same Download PDF

Info

Publication number
JP2004164934A
JP2004164934A JP2002327335A JP2002327335A JP2004164934A JP 2004164934 A JP2004164934 A JP 2004164934A JP 2002327335 A JP2002327335 A JP 2002327335A JP 2002327335 A JP2002327335 A JP 2002327335A JP 2004164934 A JP2004164934 A JP 2004164934A
Authority
JP
Japan
Prior art keywords
active material
secondary battery
negative electrode
electrode active
surface treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002327335A
Other languages
Japanese (ja)
Inventor
Akimasa Tasaka
明政 田坂
Zenhachi Okumi
善八 小久見
Tatsuhiro Kurasawa
辰博 倉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Priority to JP2002327335A priority Critical patent/JP2004164934A/en
Publication of JP2004164934A publication Critical patent/JP2004164934A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of an anode active material for a secondary battery and a secondary battery using the same which can attain a high capacity and high energy density at discharge, even if high-load charging is carried out. <P>SOLUTION: The surface treatment method of the anode active material for the secondary battery includes a process of exposing the anode active material for the secondary battery capable of inserting and separating a lithium ion in plasma generated from gas containing NF3. A charging time can be shortened since a high capacity can be obtained even at the high-load charging of a lithium ion battery by the use of the surface treatment method of the anode active material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオンを挿入脱離することのできる二次電池用負極活物質の表面処理方法、前記表面処理を施された負極活物質および前記負極活物質を用いた二次電池に関する。
【0002】
【従来の技術】
携帯電話やノート型パソコン等の携帯型電子機器の需要増加に伴い、充電可能な二次電池の需要が急増している。前記二次電池としては、例えば、Ni水素電池、Ni−Cd電池、リチウムイオン二次電池などがあるが、とくにリチウムイオン二次電池は、高電圧かつ高エネルギー密度であるため、携帯電子機器には必須の電池となっている。
【0003】
リチウムイオン二次電池は、一般に、結着剤により正極活物質、導電剤等を正極集電体に結着した正極、結着剤により負極活物質、導電剤等を負極集電体に結着した負極、リチウムイオンを電離する電解質を含む非水電解液から構成されている。リチウムイオン二次電池の正極活物質には、リチウムイオンを挿入脱離することのできる酸化物、例えば、LiCoO、LiMn等のリチウムと遷移金属の複合酸化物が用いられる。一方、リチウムイオン二次電池の負極活物質には、リチウムイオンを挿入脱離することのできる炭素材料、例えば、天然黒鉛、メソカーボンマイクロビーズ等が用いられる。また、電解液には、LiPF等の電解質を溶解したプロピレンカーボネート、エチレンカーボネート等の非水溶媒が用いられる。
リチウムイオン二次電池は、充電時に正極活物質からリチウムイオンが脱離し、負極活物質にリチウムイオンが挿入される。放電時には、逆に、正極活物質にリチウムイオンが挿入され、負極活物質にリチウムイオンが脱離する。
リチウムイオン二次電池は、高エネルギー密度であるが、充電時の充電時間を長くしなければ、高容量を引き出すことができないという問題がある。
リチウムイオン二次電池の充電は、定電流充電で所定電圧まで充電する方法、定電流充電で所定電圧まで充電後、更に定電圧充電を行う方法があり、充電時間を短縮する方法として、例えば定電流充電の充電電流値を上げること(高負荷充電)が考えられる。しかし、高負荷充電をすると、所定の電池容量に達する前に充電カット電圧に達してしまい、本来の電池容量が確保できず、放電時の高容量、高エネルギー密度を達成できないという問題がある。
【0004】
電極活物質の表面処理の例としては、例えば、特開平7−312218には、フッ素化剤で処理され、C−F結合を実質的に有しない炭素材をリチウム電池の負極材に用いることが記述されている。また、特開平9−289019には、負極のホスト材料の表面にフッ素等の周期表第7A族の元素を結合した電極を用いることが記述されている。しかし、これらの発明は、単純に電池の高容量化を目指したものであり、高負荷充電の影響や充電時間の短縮については、何ら言及していない。
【0005】
【発明が解決しようとする課題】
本発明の課題は、高負荷充電を行っても、放電時の高容量、高エネルギー密度を達成でき、充電時間の短縮が可能な二次電池用負活物質の製造方法、およびそれを用いた二次電池を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、高負荷充電による電池容量減少の原因として、リチウムイオンを挿入脱離可能な負極活物質の表面構造が関与しており、低負荷充電では表面構造の影響がないが、高負荷充電では負極活物質の表面構造がリチウムイオンの負極活物質への挿入に大きく影響すると考えた。したがって、負極活物質の表面構造をリチウムイオンが挿入しやすいように改質してやれば、負極活物質へのリチウムの挿入を容易にすることができると考え、負極活物質の表面処理について鋭意検討を行った結果、NFを含むプラズマ中にリチウムイオンを挿入脱離可能な負極活物質を曝すことによって、高負荷充電条件において、リチウムイオンの負極活物質への挿入を容易にすることを見出し、本発明に至った。
【0007】
すなわち、本発明は、
(1) リチウムイオンを挿入脱離できる二次電池用負極活物質をNFを含有するガスから生成させたプラズマ中に曝す工程を含むことを特徴とする二次電池用負極活物質の表面処理方法。
(2)負極活物質が炭素材料であることを特徴とする(1)に記載の表面処理方法。
(3) (1)または(2)に記載の方法により表面処理を施したことを特徴とする二次電池用負極活物質。
(4) (3)に記載の負極活物質を負極に用いることを特徴とする二次電池。に関する。
【0008】
【発明の実施の形態】
以下に本発明について詳細に説明する。
本発明に用いられる負極活物質には、リチウムイオンを挿入、脱離することが可能な炭素材料、リチウムイオンを挿入、脱離することが可能な酸化スズ、リチウムイオンを挿入、脱離することが可能な酸化チタン、またはリチウムイオンを挿入、脱離することが可能なシリコンなどを用いることができる。これらの中でも特に炭素材料が好ましい。炭素材料は、結晶性炭素であっても非晶質炭素であってもよく、例えば活性炭、炭素繊維、カーボンブラック、メソカーボンマイクロビーズ、天然黒鉛などが挙げられる。
負極活物質として、特にX線解析で測定した(002)面の面間隔(d002)が0.340nm以下の炭素材料を用いることが好ましい。このような炭素材料を使用すると、電池のエネルギー密度を高くすることができる。
NFは、単独で用いることもできるし、プラズマの生成を補助するために、例えば、窒素、酸素、水素、アルゴン、ヘリウム、キセノン、クリプトン等と混合して用いることもできる。その混合比率はとくに限定されない。
負極活物質の表面処理には、少なくともNFを含有するガスから生成させたプラズマ雰囲気が用いられる。
【0009】
プラズマを生成するガスの圧力は、ガスの組成等により適宜選択されるが、プラズマが安定に生成しやすい0.001〜1000Paの減圧下が好ましい。
プラズマの生成法としては、反応系内に前記ガスが存在する条件において、直流、高周波、マイクロ波等により放電をかける方法などがあるが、とくに限定されない。
負極活物質の表面処理温度は、とくに限定されないが、取り扱いの観点から、常温〜200℃程度で行うのが好ましい。
負極活物質の表面処理時間は、ガスの組成や圧力・温度条件等により適宜選択されるが、通常、2秒〜20時間、好ましくは、10秒から30分が望ましい。プラズマ雰囲気に負極活物質を曝す方法としては、あらかじめプラズマ発生装置内に負極活物質を静置し、ガス雰囲気を前記条件にした後、プラズマ雰囲気を生成させ表面処理する方法、あらかじめプラズマを生成させた雰囲気に負極活物質を導入する方法、反応系内とは別の部分であらかじめ前記ガスのプラズマを生成させ負極活物質を静置した系にプラズマを送りこむ方法などがあるが、とくに限定されるものではない。
【0010】
本発明の製造方法により得られた負極活物質はリチウムイオン二次電池の負極として好ましく使用できる。
リチウムイオン二次電池は、負極と、正極と、非水電解液とを基本的に含んで構成されており、通常負極と正極との間にセパレータが設けられている。
【0011】
正極を構成する正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物または遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1−X)などのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール/ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。
【0012】
非水電解液は、非水溶媒と電解質とからなっており、非水溶媒に電解質を溶解してなるものである。
使用される電解質としては、通常、非水電解液用電解質として使用されているものであれば、いずれも使用することができる。
【0013】
電解質の具体例としては、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiCSO、LiC17SOなどのリチウム塩が挙げられる。また、次の一般式で示されるリチウム塩も使用することができる。LiOSO、LiN(SO)(SO10)、LiC(SO11)(SO12)(SO13)、LiN(SOOR14)(SOOR15)(ここで、R〜R15は、互いに同一であっても異なっていてもよく、炭素数1〜6のパーフルオロアルキル基である)。これらのリチウム塩は単独で使用してもよく、また2種以上を混合して使用してもよい。これらのうち、特に、LiPF、LiBF、LiOSO、LiN(SO)(SO10)、LiC(SO11)(SO12)(SO13)、LiN(SOOR14)(SOOR15)が好ましい。
【0014】
このような電解質は、通常、0.1〜3モル/リットル、好ましくは0.5〜2モル/リットルの濃度で非水電解液中に含まれていることが好ましい。
本発明に係る非水電解液の非水溶媒としては、具体的には、蟻酸メチル、蟻酸エチル、蟻酸プロピル、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、吉草酸メチルなどの鎖状エステル;リン酸トリメチルなどのリン酸エステル;1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、ジメチルエーテル、メチルエチルエーテル、ジプロピルエーテルなどの鎖状エーテル;1,4−ジオキサン、1,3−ジオキソラン、テトラヒドロフラン、2−メチルテトラヒドロフラン、3−メチル−1,3−ジオキソラン、2−メチル−1,3−ジオキソランなどの環状エーテル;ジメチルホルムアミドなどのアミド;メチル‐N,N‐ジメチルカーバメートなどの鎖状カーバメート;γ−ブチロラクトン、γ−バレロラクトン、3−メチル−γ−ブチロラクトン、2−メチル−γ−ブチロラクトンなどの環状エステル;スルホランなどの環状スルホン;N‐メチルオキサゾリジノンなどの環状カーバメート;N‐メチルピロリドンなどの環状アミド;N,N‐ジメチルイミダゾリジノンなどの環状ウレア;4,4−ジメチル−5−メチレンエチレンカーボネート、4−メチル−4−エチル−5−メチレンエチレンカーボネート、4−メチル−4−プロピル− 5−メチレンエチレンカーボネート、4−メチル−4−ブチル−5−メチレンエチレンカーボネート、4,4−ジエチル−5−メチレンエチレンカーボネート、4−エチル−4−プロピル−5−メチレンエチレンカーボネート、4−エチル−4−ブチル−5−メチレンエチレンカーボネート、4,4−ジプロピル−5−メチレンエチレンカーボネート、4−プロピル−4−ブチル−5−メチレンエチレンカーボネート、4,4−ジブチル−5−メチレンエチレンカーボネート、4,4−ジメチル−5−エチリデンエチレンカーボネート、4−メチル−4−エチル−5−エチリデンエチレンカーボネート、4−メチル−4−プロピル− 5−エチリデンエチレンカーボネート、4−メチル−4−ブチル−5−エチリデンエチレンカーボネート、4,4−ジエチル−5−エチリデンエチレンカーボネート、4−エチル−4−プロピル−5−エチリデンエチレンカーボネート、4−エチル−4−ブチル−5−エチリデンエチレンカーボネート、4,4−ジプロピル−5−エチリデンエチレンカーボネート、4−プロピル−4−ブチル−5−エチリデンエチレンカーボネート、4,4−ジブチル−5−エチリデンエチレンカーボネート、4−メチル−4−ビニル−5−メチレンエチレンカーボネート、4−メチル−4−アリル−5−メチレンエチレンカーボネート、4−メチル−4−メトキシメチル−5−メチレンエチレンカーボネート、4−メチル−4−アクリルオキシメチル−5−メチレンエチレンカーボネート、4−メチル−4−アリルオキシメチル−5−メチレンエチレンカーボネートなどの環状炭酸エステル;4−ビニルエチレンカーボネート、4,4−ジビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネートなどのビニルエチレンカーボネート誘導体;4−ビニル−4−メチルエチレンカーボネート、4−ビニル−5−メチルエチレンカーボネート、4−ビニル−4,5−ジメチルエチレンカーボネート、4−ビニル−5,5−ジメチルエチレンカーボネート、4−ビニル−4,5,5−トリメチルエチレンカーボネートなどのアルキル置換ビニルエチレンカーボネート誘導体;4−アリルオキシメチルエチレンカーボネート、4,5−ジアリルオキシメチルエチレンカーボネートなどのアリルオキシメチルエチレンカーボネート誘導体;4−メチル−4−アリルオキシメチルエチレンカーボネート、4−メチル−5−アリルオキシメチルエチレンカーボネートなどのアルキル置換アリルオキシメチルエチレンカーボネート誘導体;4−アクリルオキシメチルエチレンカーボネート、4,5−アクリルオキシメチルエチレンカーボネートなどのアクリルオキシメチルエチレンカーボネート誘導体;4−メチル−4−アクリルオキシメチルエチレンカーボネート、4−メチル−5−アクリルオキシメチルエチレンカーボネートなどのアルキル置換アクリルオキシメチルエチレンカーボネート誘導体;スルホラン、硫酸ジメチルなどのような含イオウ化合物;トリメチルリン酸、トリエチルリン酸などの含リン化合物;および下記一般式で表わされる化合物などを挙げることができる。HO(CHCHO)H、HO{CHCH(CH)O}H、CHO(CHCHO) H、CHO{CHCH(CH)O}H、CHO(CHCHO) CH、CHO{CHCH(CH)O}CH、C19PhO(CHCHO){CH(CH)O}h CH(Phはフェニル基)、CHO{CHCH(CH)O}CO{O(CH)CHCHOCH(前記の式中、a〜fは5〜250の整数、g〜jは2〜249の整数、5≦g+h≦250、5≦i+j≦250である。)
セパレータは多孔性の膜であって、通常微多孔性ポリマーフィルムが好適に使用される。特に、多孔性ポリオレフィンフィルムが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、または多孔性のポリエチレンフィルムとポリプロピレンとの多層フィルムを例示することができる。
【0015】
このようなリチウムイオン二次電池は、円筒型、コイン型、角型、その他任意の形状に形成することができる。しかし、電池の基本構造は形状によらず同じであり、目的に応じて設計変更を施すことができる。次に、円筒型およびコイン型電池の構造について説明するが、各電池を構成する負極活物質、正極活物質およびセパレータは、前記したものが共通して使用される。
【0016】
例えば、円筒型リチウムイオン二次電池の場合には、負極集電体に負極活物質を塗布してなる負極と、正極集電体に正極活物質を塗布してなる正極とを、非水電解液を注入したセパレータを介して巻回し、巻回体の上下に絶縁板を載置した状態で電池缶に収納される。
また、本発明に係るリチウムイオン二次電池は、コイン型リチウムイオン二次電池にも適用することができる。コイン型電池では、円盤状負極、セパレータ、円盤状正極、およびステンレスの板が、この順序に積層された状態でコイン型電池缶に収納される。
【0017】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0018】
(実施例)
<負極活物質の表面処理>
リチウムイオンの挿入脱離が可能である天然黒鉛(中越黒鉛製LF−18A)10gを平行平板型プラズマ装置チャンバー内の下部電極上に平坦に静置し、チャンバーを0.005Paまで真空ポンプで減圧にした。NFを流量5sccmで導入し、内圧を60Paに制御した後、90Wの印加電力をかけてチャンバー内にプラズマを発生させ、20分間、天然黒鉛の表面処理を行った。
<負極の作製>
前記表面処理を行った天然黒鉛87重量部と結着剤のポリフッ化ビニリデン(PVDF)13重量部を混合し、溶剤のN−メチルピロリジノンに分散させ、天然黒鉛合剤スラリーを調製した。次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し、乾燥させた後、圧縮成型し、これを14mmの円盤状に打ち抜いて、コイン状の天然黒鉛電極を得た。この天然黒鉛電極合剤の厚さは110ミクロン、重量は20mg/Φ14mmになった。
<非水電解液の調製>
エチレンカーボネート(EC)とメチルエチルカーボネート(MEC)を、EC:MEC=4:6(重量比)の割合で混合し、次に電解質であるLiPF6を非水溶媒に溶解し、電解質濃度が1.0モル/リットルとなるように非水電解液を調製した。
<LiCoO電極の作製>
LiCoO(本荘FMCエナジーシステムズ(株)製 HLC−22)84重量部と、導電剤の黒鉛9.5重量部及びアセチレンブラック0.5重量部と結着剤のポリフッ化ビニリデン3重量部を混合し、溶剤のN−メチルピロリドンに分散させ、LiCoO合剤スラリーを調製した。このLiCoO合剤スラリーを厚さ20ミクロンのアルミ箔に塗布、乾燥させてから圧縮成型し、これをΦ13mmに打ち抜いてLiCoO電極を作製した。このLiCoO合剤の厚さは90ミクロン、重量は35mg/Φ13mmになった。
<リチウムイオン二次電池の作製>
直径14mmの表面処理天然黒鉛電極、直径13mmのLiCoO電極、厚さ25μm、直径16mmの微多孔性ポリプロピレンフィルムからできたセパレータを、ステンレス製の2032サイズの電池缶内に、表面処理天然黒鉛、電極セパレーター、LiCoO電極の順序で積層した。その後、セパレータに前記非水電解液0.03mlを注入し、アルミニウム製の板(厚さ1.2mm、直径16mm)、およびバネを収納した。最後に、ポリプロピレン製のガスケットを介して、電池缶蓋をしめることにより、電池内の気密性を保持し、直径20mm、高さ3.2mmのコイン型電池を作製した。
【0019】
(比較例)
前記実施例の負極の作製において、表面処理を行った天然黒鉛の代わりに、表面処理を施さない天然黒鉛を用いた以外は、実施例と同様の操作を行い、コイン電池を作製した。
2.電池特性の評価
(1)評価方法
<充電容量の比較>
前述の実施例で作製したコイン電池を使用し、0.5mA定電流条件で、4.2Vになるまで充電し、その充電時間を測定した。その後、10.0mA定電流条件で、3.0Vになるまで放電した。この操作を2回繰り返した。初期の充放電では電解液の還元等が起きるため、2回目の充電時間を0.5mA充電での充電時間とした。次に、この電池を10.0mA定電流条件で、4.2Vになるまで充電し、その充電時間を測定した。充電時間と充電電流の積から、各電流条件における電池の充電容量(mAh)を算出し、10.0mAでの充電容量を0.5mAでの充電容量で除した値を、高負荷充電指標(高負荷充電指標=10.0mAでの充電容量/0.5mAでの2サイクル目の充電容量)とした。高負荷充電指標の値を表1に示す。
【0020】
【表1】

Figure 2004164934
【0021】
表面処理を施さない天然黒鉛では、高負荷充電で明白な容量低下が起きるため、表1に示すように高負荷充電指標が1をかなり下回る。したがって、表面処理を施さない天然黒鉛は、電池の高容量を維持するためには低負荷での充電が必要であり、充電時間を短縮できない。一方、表面処理を施した天然黒鉛を負極活物質に用いたリチウムイオン電池では、驚くべきことに、充電電流を20倍に上げた高負荷充電でも容量劣化がほとんどなかった。したがって、表面処理を施すことにより、高負荷充電での容量低下を極めて小さくすることができる。すなわち、充電時間を短縮することができる。
【0022】
【発明の効果】
本発明の負極活物質の表面処理方法を用いることによって、リチウムイオン電池の高負荷充電でも高容量が得られるため、充電時間を短縮することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a surface treatment method for a negative electrode active material for a secondary battery capable of inserting and removing lithium ions, a negative electrode active material subjected to the surface treatment, and a secondary battery using the negative electrode active material.
[0002]
[Prior art]
With the increase in demand for portable electronic devices such as mobile phones and notebook computers, the demand for rechargeable secondary batteries has increased rapidly. Examples of the secondary battery include a Ni hydrogen battery, a Ni-Cd battery, a lithium ion secondary battery, and the like. Particularly, a lithium ion secondary battery has a high voltage and a high energy density, and thus is used in portable electronic devices. Is an essential battery.
[0003]
In general, a lithium ion secondary battery has a positive electrode in which a positive electrode active material and a conductive agent are bound to a positive electrode current collector with a binder, and a negative electrode active material and a conductive agent are bound to a negative electrode current collector with a binder. And a non-aqueous electrolyte containing an electrolyte for ionizing lithium ions. As the positive electrode active material of the lithium ion secondary battery, an oxide capable of inserting and removing lithium ions, for example, a composite oxide of lithium and a transition metal such as LiCoO 2 and LiMn 2 O 4 is used. On the other hand, as a negative electrode active material of a lithium ion secondary battery, a carbon material into which lithium ions can be inserted and desorbed, such as natural graphite and mesocarbon microbeads, is used. In addition, a non-aqueous solvent such as propylene carbonate or ethylene carbonate in which an electrolyte such as LiPF 6 is dissolved is used as the electrolytic solution.
In a lithium ion secondary battery, lithium ions are desorbed from a positive electrode active material during charging, and lithium ions are inserted into a negative electrode active material. Conversely, at the time of discharging, lithium ions are inserted into the positive electrode active material, and lithium ions are desorbed into the negative electrode active material.
The lithium ion secondary battery has a high energy density, but has a problem that a high capacity cannot be obtained unless the charging time during charging is lengthened.
Lithium ion secondary batteries can be charged by a method of charging up to a predetermined voltage by constant current charging, or a method of charging to a predetermined voltage by constant current charging, and then by further charging at a constant voltage. Increasing the charging current value of current charging (high-load charging) can be considered. However, when charging under a high load, the charge cutoff voltage is reached before reaching a predetermined battery capacity, and the original battery capacity cannot be secured, and there is a problem that a high capacity and a high energy density at the time of discharging cannot be achieved.
[0004]
As an example of the surface treatment of the electrode active material, for example, Japanese Patent Application Laid-Open No. 7-313218 discloses that a carbon material treated with a fluorinating agent and having substantially no CF bond is used for a negative electrode material of a lithium battery. It has been described. Japanese Patent Application Laid-Open No. 9-289019 describes the use of an electrode in which an element of Group 7A of the periodic table such as fluorine is bonded to the surface of a host material of a negative electrode. However, these inventions simply aim at increasing the capacity of a battery, and do not mention at all the effects of high-load charging or shortening of charging time.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a negative active material for a secondary battery capable of achieving a high capacity at the time of discharging and a high energy density even when performing high-load charging, and shortening the charging time, and using the same. An object of the present invention is to provide a secondary battery.
[0006]
[Means for Solving the Problems]
The present inventors consider that the surface structure of a negative electrode active material capable of inserting and desorbing lithium ions is involved as a cause of a decrease in battery capacity due to high-load charging. It was considered that the surface structure of the negative electrode active material greatly affected the insertion of lithium ions into the negative electrode active material during load charging. Therefore, if the surface structure of the negative electrode active material is modified so that lithium ions can be easily inserted, it is considered that lithium can be easily inserted into the negative electrode active material. As a result, it was found that by exposing a negative electrode active material capable of inserting and desorbing lithium ions into plasma containing NF 3 , insertion of lithium ions into the negative electrode active material under high load charging conditions was facilitated. The present invention has been reached.
[0007]
That is, the present invention
(1) A surface treatment of a negative electrode active material for a secondary battery, comprising a step of exposing a negative electrode active material for a secondary battery capable of inserting and removing lithium ions to plasma generated from a gas containing NF 3. Method.
(2) The surface treatment method according to (1), wherein the negative electrode active material is a carbon material.
(3) A negative electrode active material for a secondary battery, which has been subjected to a surface treatment by the method according to (1) or (2).
(4) A secondary battery using the negative electrode active material according to (3) for a negative electrode. About.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The negative electrode active material used in the present invention includes a carbon material capable of inserting and removing lithium ions, a tin oxide capable of inserting and removing lithium ions, and inserting and removing lithium ions. Titanium oxide which can be used, or silicon which can insert and desorb lithium ions can be used. Among them, carbon materials are particularly preferable. The carbon material may be crystalline carbon or amorphous carbon, and examples thereof include activated carbon, carbon fiber, carbon black, mesocarbon microbeads, and natural graphite.
As the negative electrode active material, it is preferable to use a carbon material having a (002) plane spacing (d002) of 0.340 nm or less, particularly as measured by X-ray analysis. When such a carbon material is used, the energy density of the battery can be increased.
NF 3 can be used alone, or can be used in combination with, for example, nitrogen, oxygen, hydrogen, argon, helium, xenon, krypton, or the like to assist in plasma generation. The mixing ratio is not particularly limited.
For the surface treatment of the negative electrode active material, a plasma atmosphere generated from a gas containing at least NF 3 is used.
[0009]
The pressure of the gas for generating the plasma is appropriately selected depending on the composition of the gas and the like, but is preferably under a reduced pressure of 0.001 to 1000 Pa in which the plasma is easily generated stably.
Examples of a method for generating plasma include, but are not particularly limited to, a method in which discharge is performed by using a direct current, a high frequency, a microwave, or the like under the conditions where the gas is present in the reaction system.
The surface treatment temperature of the negative electrode active material is not particularly limited, but is preferably from room temperature to about 200 ° C. from the viewpoint of handling.
The surface treatment time of the negative electrode active material is appropriately selected depending on the composition of the gas, pressure and temperature conditions, and the like, but is usually 2 seconds to 20 hours, preferably 10 seconds to 30 minutes. As a method of exposing the negative electrode active material to the plasma atmosphere, a method in which the negative electrode active material is allowed to stand in a plasma generator in advance, the gas atmosphere is adjusted to the above conditions, a plasma atmosphere is generated, and a surface treatment is performed. A method of introducing a negative electrode active material into a heated atmosphere, a method of generating plasma of the gas in advance in a part different from the reaction system and sending the plasma to a system in which the negative electrode active material is allowed to stand, and the like. Not something.
[0010]
The negative electrode active material obtained by the production method of the present invention can be preferably used as a negative electrode of a lithium ion secondary battery.
A lithium ion secondary battery basically includes a negative electrode, a positive electrode, and a non-aqueous electrolyte, and a separator is usually provided between the negative electrode and the positive electrode.
[0011]
As the positive electrode active material constituting the positive electrode, transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , V 2 O 5 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , LiNi X Co (1-X) composite oxide comprising lithium such as O 2 and transition metals, polyaniline, polythiophene, polypyrrole, polyacetylene, polyacene, a conductive polymer material or the like, such as dimercaptothiadiazole / polyaniline complex . Among these, a composite oxide composed of lithium and a transition metal is particularly preferable.
[0012]
The non-aqueous electrolyte comprises a non-aqueous solvent and an electrolyte, and is obtained by dissolving the electrolyte in the non-aqueous solvent.
As the electrolyte to be used, any electrolyte which is generally used as an electrolyte for a non-aqueous electrolyte can be used.
[0013]
Specific examples of the electrolyte include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiC 4 F 9 SO 3 , and LiC 8 F 17 SO 3 . Further, a lithium salt represented by the following general formula can also be used. LiOSO 2 R 8 , LiN (SO 2 R 9 ) (SO 2 R 10 ), LiC (SO 2 R 11 ) (SO 2 R 12 ) (SO 2 R 13 ), LiN (SO 2 OR 14 ) (SO 2 OR 15 ) (here, R 8 to R 15 may be the same or different from each other and are perfluoroalkyl groups having 1 to 6 carbon atoms). These lithium salts may be used alone or in combination of two or more. Among these, LiPF 6 , LiBF 4 , LiOSO 2 R 8 , LiN (SO 2 R 9 ) (SO 2 R 10 ), LiC (SO 2 R 11 ) (SO 2 R 12 ) (SO 2 R 13 ) , LiN (SO 2 OR 14 ) (SO 2 OR 15 ) is preferable.
[0014]
Such an electrolyte is usually preferably contained in the non-aqueous electrolyte at a concentration of 0.1 to 3 mol / l, preferably 0.5 to 2 mol / l.
As the nonaqueous solvent of the nonaqueous electrolyte according to the present invention, specifically, methyl formate, ethyl formate, propyl formate, methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl butyrate Chain esters such as methyl valerate; phosphate esters such as trimethyl phosphate; chain ethers such as 1,2-dimethoxyethane, 1,2-diethoxyethane, diethyl ether, dimethyl ether, methyl ethyl ether, dipropyl ether; Cyclic ethers such as 1,4-dioxane, 1,3-dioxolan, tetrahydrofuran, 2-methyltetrahydrofuran, 3-methyl-1,3-dioxolan, 2-methyl-1,3-dioxolan; amides such as dimethylformamide; methyl -Chain such as -N, N-dimethylcarbamate G; cyclic esters such as γ-butyrolactone, γ-valerolactone, 3-methyl-γ-butyrolactone, 2-methyl-γ-butyrolactone; cyclic sulfones such as sulfolane; cyclic carbamates such as N-methyloxazolidinone; N-methylpyrrolidone Cyclic urea such as N, N-dimethylimidazolidinone; 4,4-dimethyl-5-methyleneethylene carbonate, 4-methyl-4-ethyl-5-methyleneethylene carbonate, 4-methyl-4- Propyl-5-methyleneethylene carbonate, 4-methyl-4-butyl-5-methyleneethylene carbonate, 4,4-diethyl-5-methyleneethylene carbonate, 4-ethyl-4-propyl-5-methyleneethylene carbonate, 4- Ethyl-4-butyl-5-methyl Ethylene carbonate, 4,4-dipropyl-5-methyleneethylene carbonate, 4-propyl-4-butyl-5-methyleneethylene carbonate, 4,4-dibutyl-5-methyleneethylene carbonate, 4,4-dimethyl-5- Ethylidene ethylene carbonate, 4-methyl-4-ethyl-5-ethylidene ethylene carbonate, 4-methyl-4-propyl-5-ethylidene ethylene carbonate, 4-methyl-4-butyl-5-ethylidene ethylene carbonate, 4,4- Diethyl-5-ethylidene ethylene carbonate, 4-ethyl-4-propyl-5-ethylidene ethylene carbonate, 4-ethyl-4-butyl-5-ethylidene ethylene carbonate, 4,4-dipropyl-5-ethylidene ethylene carbonate, 4- Step Pill-4-butyl-5-ethylideneethylene carbonate, 4,4-dibutyl-5-ethylideneethylene carbonate, 4-methyl-4-vinyl-5-methyleneethylene carbonate, 4-methyl-4-allyl-5-methyleneethylene Carbonate, 4-methyl-4-methoxymethyl-5-methyleneethylene carbonate, 4-methyl-4-acryloxymethyl-5-methyleneethylene carbonate, 4-methyl-4-allyloxymethyl-5-methyleneethylene carbonate and the like Cyclic carbonate; vinyl ethylene carbonate derivatives such as 4-vinylethylene carbonate, 4,4-divinylethylene carbonate, and 4,5-divinylethylene carbonate; 4-vinyl-4-methylethylene carbonate, 4-vinyl-5-methyl Alkyl-substituted vinyl ethylene carbonate derivatives such as ethylene carbonate, 4-vinyl-4,5-dimethylethylene carbonate, 4-vinyl-5,5-dimethylethylene carbonate, 4-vinyl-4,5,5-trimethylethylene carbonate; -Allyloxymethylethylene carbonate derivatives such as allyloxymethylethylene carbonate and 4,5-diallyloxymethylethylene carbonate; 4-methyl-4-allyloxymethylethylene carbonate, 4-methyl-5-allyloxymethylethylene carbonate and the like Alkyl-substituted allyloxymethylethylene carbonate derivatives; acryloxymethyl such as 4-acryloxymethylethylene carbonate and 4,5-acryloxymethylethylene carbonate Alkylene-substituted acryloxymethylethylene carbonate derivatives such as 4-methyl-4-acryloxymethylethylene carbonate and 4-methyl-5-acryloxymethylethylene carbonate; sulfur-containing compounds such as sulfolane and dimethyl sulfate; Phosphorus-containing compounds such as trimethylphosphoric acid and triethylphosphoric acid; and compounds represented by the following general formula. HO (CH 2 CH 2 O) a H, HO {CH 2 CH (CH 3 ) O} b H, CH 3 O (CH 2 CH 2 O) c H, CH 3 O {CH 2 CH (CH 3 ) O } D H, CH 3 O (CH 2 CH 2 O) e CH 3 , CH 3 O {CH 2 CH (CH 3 ) O} f CH 3 , C 9 H 19 PhO (CH 2 CH 2 O) g {CH (CH 3 ) O} h CH 3 (Ph is a phenyl group), CH 3 O {CH 2 CH (CH 3 ) O} i CO {O (CH 3 ) CHCH 2j OCH 3 (in the above formula, a F is an integer of 5-250, gj is an integer of 2-249, 5 ≦ g + h ≦ 250, 5 ≦ i + j ≦ 250.)
The separator is a porous membrane, and usually a microporous polymer film is suitably used. In particular, a porous polyolefin film is preferable, and specific examples thereof include a porous polyethylene film, a porous polypropylene film, and a multilayer film of a porous polyethylene film and polypropylene.
[0015]
Such a lithium ion secondary battery can be formed in a cylindrical shape, a coin shape, a square shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose. Next, the structures of the cylindrical and coin-type batteries will be described. The negative electrode active material, the positive electrode active material, and the separator constituting each battery are commonly used.
[0016]
For example, in the case of a cylindrical lithium ion secondary battery, a negative electrode obtained by applying a negative electrode active material to a negative electrode current collector and a positive electrode obtained by applying a positive electrode active material to a positive electrode current collector are subjected to nonaqueous electrolysis. It is wound through a separator into which the liquid has been injected, and is housed in a battery can in a state where insulating plates are placed above and below the wound body.
Further, the lithium ion secondary battery according to the present invention can be applied to a coin-type lithium ion secondary battery. In a coin-type battery, a disc-shaped negative electrode, a separator, a disc-shaped positive electrode, and a stainless steel plate are stored in a coin-shaped battery can in a state of being stacked in this order.
[0017]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited to these Examples.
[0018]
(Example)
<Surface treatment of negative electrode active material>
10 g of natural graphite (LF-18A made by Chuetsu Graphite), into which lithium ions can be inserted and desorbed, is allowed to stand flat on the lower electrode in a parallel plate type plasma device chamber, and the pressure in the chamber is reduced to 0.005 Pa by a vacuum pump. I made it. After NF 3 was introduced at a flow rate of 5 sccm and the internal pressure was controlled to 60 Pa, plasma was generated in the chamber by applying an applied power of 90 W, and the surface treatment of natural graphite was performed for 20 minutes.
<Preparation of negative electrode>
87 parts by weight of the surface-treated natural graphite and 13 parts by weight of polyvinylidene fluoride (PVDF) as a binder were mixed and dispersed in N-methylpyrrolidinone as a solvent to prepare a natural graphite mixture slurry. Next, this negative electrode mixture slurry was applied to a 18 μm thick negative electrode current collector made of strip-shaped copper foil, dried, compression-molded, and punched into a 14 mm disk shape to form a coin-shaped natural graphite. An electrode was obtained. This natural graphite electrode mixture had a thickness of 110 microns and a weight of 20 mg / Φ14 mm.
<Preparation of non-aqueous electrolyte>
Ethylene carbonate (EC) and methyl ethyl carbonate (MEC) are mixed in a ratio of EC: MEC = 4: 6 (weight ratio), and then LiPF6, which is an electrolyte, is dissolved in a non-aqueous solvent. A non-aqueous electrolyte was prepared so as to be 0 mol / liter.
<Preparation of LiCoO 2 electrode>
And LiCoO 2 (Honjo FMC Energy Systems Co. HLC-22) 84 parts by weight, polyvinylidene fluoride 3 parts by weight of 9.5 parts by weight of graphite as a conductive agent and acetylene black 0.5 parts by weight and binder mixture Then, the mixture was dispersed in N-methylpyrrolidone as a solvent to prepare a LiCoO 2 mixture slurry. This LiCoO 2 mixture slurry was applied to an aluminum foil having a thickness of 20 μm, dried and then compression-molded, and punched into a φ13 mm to produce a LiCoO 2 electrode. This LiCoO 2 mixture had a thickness of 90 microns and a weight of 35 mg / Φ13 mm.
<Production of lithium ion secondary battery>
A surface-treated natural graphite electrode having a diameter of 14 mm, a LiCoO 2 electrode having a diameter of 13 mm, and a separator made of a microporous polypropylene film having a thickness of 25 μm and a diameter of 16 mm were placed in a stainless steel 2032-size battery can. The electrode separator and the LiCoO 2 electrode were laminated in this order. Thereafter, 0.03 ml of the non-aqueous electrolyte was injected into the separator, and an aluminum plate (thickness: 1.2 mm, diameter: 16 mm) and a spring were housed. Lastly, a battery can lid was closed via a polypropylene gasket to maintain the airtightness of the battery, and a coin-type battery having a diameter of 20 mm and a height of 3.2 mm was produced.
[0019]
(Comparative example)
A coin battery was manufactured by performing the same operation as in the example except that in the preparation of the negative electrode of the above example, natural graphite not subjected to surface treatment was used instead of natural graphite subjected to surface treatment.
2. Evaluation of battery characteristics (1) Evaluation method <Comparison of charging capacity>
Using the coin battery manufactured in the above-described example, the battery was charged until the voltage reached 4.2 V under a constant current condition of 0.5 mA, and the charging time was measured. Thereafter, the battery was discharged under a constant current condition of 10.0 mA until the voltage reached 3.0 V. This operation was repeated twice. Since the reduction and the like of the electrolytic solution occur in the initial charge and discharge, the second charge time was set to the charge time of 0.5 mA charge. Next, this battery was charged under a constant current condition of 10.0 mA until it reached 4.2 V, and the charging time was measured. The charge capacity (mAh) of the battery under each current condition was calculated from the product of the charge time and the charge current, and the value obtained by dividing the charge capacity at 10.0 mA by the charge capacity at 0.5 mA was calculated as a high-load charge index ( High-load charging index = charging capacity at 10.0 mA / charging capacity at the second cycle at 0.5 mA). Table 1 shows the values of the high load charging index.
[0020]
[Table 1]
Figure 2004164934
[0021]
In the case of natural graphite that has not been subjected to surface treatment, a significant reduction in capacity occurs at high-load charging, so that the high-load charging index is significantly lower than 1, as shown in Table 1. Therefore, natural graphite that has not been subjected to surface treatment needs to be charged at a low load in order to maintain a high capacity of the battery, and the charging time cannot be reduced. On the other hand, in the lithium ion battery using the surface-treated natural graphite as the negative electrode active material, surprisingly, there was almost no capacity deterioration even under high load charging in which the charging current was increased by 20 times. Therefore, by performing the surface treatment, it is possible to extremely reduce a decrease in capacity during high-load charging. That is, the charging time can be reduced.
[0022]
【The invention's effect】
By using the surface treatment method for a negative electrode active material of the present invention, a high capacity can be obtained even under high load charging of a lithium ion battery, so that the charging time can be shortened.

Claims (4)

リチウムイオンを挿入脱離できる二次電池用負極活物質をNFを含有するガスから生成させたプラズマ中に曝す工程を含むことを特徴とする二次電池用負極活物質の表面処理方法。A surface treatment method for a negative electrode active material for a secondary battery, comprising a step of exposing a negative electrode active material for a secondary battery capable of inserting and removing lithium ions to plasma generated from a gas containing NF 3 . 負極活物質が炭素材料であることを特徴とする請求項1に記載の表面処理方法。The surface treatment method according to claim 1, wherein the negative electrode active material is a carbon material. 請求項1または2に記載の方法により表面処理を施したことを特徴とする二次電池用負極活物質。A negative electrode active material for a secondary battery, which has been subjected to a surface treatment by the method according to claim 1. 請求項3に記載の負極活物質を負極に用いることを特徴とする二次電池。A secondary battery using the negative electrode active material according to claim 3 for a negative electrode.
JP2002327335A 2002-11-11 2002-11-11 Surface treatment method of anode active material for secondary battery and secondary battery using the same Withdrawn JP2004164934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327335A JP2004164934A (en) 2002-11-11 2002-11-11 Surface treatment method of anode active material for secondary battery and secondary battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327335A JP2004164934A (en) 2002-11-11 2002-11-11 Surface treatment method of anode active material for secondary battery and secondary battery using the same

Publications (1)

Publication Number Publication Date
JP2004164934A true JP2004164934A (en) 2004-06-10

Family

ID=32806010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327335A Withdrawn JP2004164934A (en) 2002-11-11 2002-11-11 Surface treatment method of anode active material for secondary battery and secondary battery using the same

Country Status (1)

Country Link
JP (1) JP2004164934A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265733A (en) * 2003-02-28 2004-09-24 Tdk Corp Manufacturing method of electrode and manufacturing method of battery
WO2005001965A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation Carbon material for electrode and method for producing same, battery electrode and method for producing same, and battery and method for producing same
WO2007037717A1 (en) * 2005-09-30 2007-04-05 Filippov Aleksandr Konstantino Carbon-containing material for a lithium-ion battery and a lithium-ion battery
JP2014514721A (en) * 2011-05-03 2014-06-19 エルジー・ケム・リミテッド Method for surface treatment of positive electrode active material particles and positive electrode active material particles formed therefrom
US20210343999A1 (en) * 2020-05-03 2021-11-04 Venkatraman Prabhakar Systems and methods involving use of nitrogen-containing plasma to treat lithium-ion cell cathode materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004265733A (en) * 2003-02-28 2004-09-24 Tdk Corp Manufacturing method of electrode and manufacturing method of battery
WO2005001965A1 (en) * 2003-06-30 2005-01-06 Tdk Corporation Carbon material for electrode and method for producing same, battery electrode and method for producing same, and battery and method for producing same
WO2007037717A1 (en) * 2005-09-30 2007-04-05 Filippov Aleksandr Konstantino Carbon-containing material for a lithium-ion battery and a lithium-ion battery
JP2009510689A (en) * 2005-09-30 2009-03-12 コンスタンティノビッチ フィリポフ、アレクサンドル Carbon-containing material and lithium ion storage battery for lithium ion storage battery
JP2014514721A (en) * 2011-05-03 2014-06-19 エルジー・ケム・リミテッド Method for surface treatment of positive electrode active material particles and positive electrode active material particles formed therefrom
US9776879B2 (en) 2011-05-03 2017-10-03 Lg Chem, Ltd. Surface-treatment method of cathode active material and cathode active material formed therefrom
US20210343999A1 (en) * 2020-05-03 2021-11-04 Venkatraman Prabhakar Systems and methods involving use of nitrogen-containing plasma to treat lithium-ion cell cathode materials

Similar Documents

Publication Publication Date Title
JP4527605B2 (en) Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same
US20040106047A1 (en) Non-aqueous electrolyte secondary battery and electrolyte for the same
JPWO2005057713A1 (en) Secondary battery
JPWO2005057714A1 (en) Secondary battery electrolyte and secondary battery using the same
JP4819409B2 (en) Non-aqueous electrolyte secondary battery charge / discharge method
JP2009105069A (en) Electrolyte for lithium secondary battery, and lithium secondary battery containing same
JP2004235145A (en) Lithium ion secondary battery
JP3911870B2 (en) Electrolyte for lithium secondary battery and lithium secondary battery using the same
JP2001223024A (en) Electrolyte for lithium secondary battery
JP2007323958A (en) Nonaqueous electrolyte battery and its manufacturing method
JP4345658B2 (en) Secondary battery
JP2005203342A (en) Secondary battery
JP5421220B2 (en) Secondary battery electrolyte and secondary battery
JP4412767B2 (en) Storage method of lithium secondary battery
JP4153170B2 (en) Electrolyte for lithium secondary battery
JP2001023688A (en) Nonaqueous electrolyte and lithium secondary battery using it
KR20150095248A (en) Electrolyte with additive for lithium secondary battery and lithium secondary battery
KR102440657B1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising the same
JP5055780B2 (en) Method for producing positive electrode active material and battery using the same
JP2007250499A (en) Lithium ion secondary battery
JP2004164934A (en) Surface treatment method of anode active material for secondary battery and secondary battery using the same
WO2022156706A1 (en) Positive electrode plate and electrochemical device and electronic device comprising positive electrode plate
WO2021193388A1 (en) Lithium secondary battery
EP4089766A1 (en) Positive electrode plate, electrochemical device comprising same, and electronic device
JP2011034693A (en) Lithium metal negative electrode, and lithium metal secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409