JP2004164882A - Heating cooker - Google Patents

Heating cooker Download PDF

Info

Publication number
JP2004164882A
JP2004164882A JP2002326486A JP2002326486A JP2004164882A JP 2004164882 A JP2004164882 A JP 2004164882A JP 2002326486 A JP2002326486 A JP 2002326486A JP 2002326486 A JP2002326486 A JP 2002326486A JP 2004164882 A JP2004164882 A JP 2004164882A
Authority
JP
Japan
Prior art keywords
temperature
center
heating
pan
temperature sensors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002326486A
Other languages
Japanese (ja)
Inventor
Tomoya Fujinami
知也 藤濤
Tadashi Nakatani
直史 中谷
Naoaki Ishimaru
直昭 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002326486A priority Critical patent/JP2004164882A/en
Publication of JP2004164882A publication Critical patent/JP2004164882A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Induction Heating Cooking Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately detect the temperature of a heating object by linearly arranging a plurality of temperature sensors, in a temperature sensing method of a heating appliance for cooking. <P>SOLUTION: By linearly arranging a plurality of the temperature sensors 4 to measure the temperature of a part most easily heated and set at high temperature, warpage and displacement of the bottom surface of the heating object 1 can be detected, and the detection error of the temperature of the heating object 1 by the temperature sensors 4 can be reduced. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電磁調理器等の調理器具において、非加熱物の温度を検知する加熱調理器に関するものである。
【0002】
【従来の技術】
従来の技術においては、非加熱物配下にあるトッププレートを介して、非加熱物が置かれるほぼ中央に位置するサーミスタが1つあるいは2個あるのみであった。
【0003】
【特許文献1】
特開2001−257067号公報
【0004】
【発明が解決しようとする課題】
以上のような従来の技術においては、非加熱物の温度をガラスなどでできたトッププレートを介して測定するため、非加熱物の温度を正確に測定することが困難となり、測定温度と実際の非加熱物の温度の誤差が大きかった。また、非加熱物の温度上昇とのタイムラグが大きかった。そのため、非加熱物の温度制御が困難なものとなり、また正確な温度制御もできなかった。
【0005】
【課題を解決するための手段】
本発明は、この従来の課題を解決するもので、複数の温度センサを直線上に配置し、非加熱物がどの位置にあってもより正確に非加熱物の温度を測定することが可能とすることができるものである。
【0006】
【発明の実施の形態】
請求項1に記載の発明は、鍋等の非加熱物を加熱する調理器具において、前記非加熱物の温度を検知する温度センサを3個以上備え、前記複数個の温度センサのうち3個以上を直線上に配置する加熱調理器とすることにより、非加熱物の局所的な最高温度部を効率的に検出することができ、応答性の早い、非加熱物の実温度に最も近い測定値を得ることが可能となる。
【0007】
請求項2に記載の発明は、複数の温度センサのうち、少なくとも1つは鍋等の非加熱物を置く中心近傍に配置する請求項1に記載の加熱調理器とすることにより、非加熱物である鍋底の反りの有無を検出することが可能となり、反りのある鍋の場合には非加熱物の測定温度に誤差が多く生じるため、補正をかける等の制御に反映することが可能となる。
【0008】
請求項3に記載の発明は、鍋等の非加熱物を置く中心から外周に伸びる直線上に複数の温度センサを配置した請求項1に記載の加熱調理器とすることにより、非加熱物である鍋が中心からどれだけずれたかを検出することが可能となり、使用者に注意を促す等の機能を実現することが可能となる。
【0009】
請求項4に記載の発明は、鍋等の非加熱物を置く中心から外周に伸びる複数の直線上に複数の温度センサを配置した請求項1に記載の加熱調理器とすることにより、非加熱物である鍋が中心位置からずれた場合でも鍋の温度を正確に測定することが可能となる。
【0010】
請求項5に記載の発明は、鍋等の非加熱物を置く中心から外周に伸びる複数の直線が、少なくとも1本は中心を通る直線であり、その直線上に複数の温度センサを配置した請求項1に記載の加熱調理器とすることにより、非加熱物である鍋底の反りの有無を検知すると共に、その反り具合を検出することが可能となるため、鍋底の反りの度合いによって補正係数を変える制御が可能となり、より精度の高い温度を検出することが可能となる。
【0011】
請求項6に記載の発明は、鍋等の非加熱物を置く中心から外周に伸びる複数の直線は、90度の相対角度をなす直線であり、その直線上に複数の温度センサを配置した請求項1に記載の加熱調理器とすることにより、非加熱物が小型の鍋であっても温度センサが鍋の下方に存在するため、鍋の温度を正確に検出することが可能となる。
【0012】
請求項7に記載の発明は、鍋等の非加熱物を置く中心から外周に伸びる複数の直線が、120度の相対角度をなす直線であり、その直線上に複数の温度センサを配置した請求項1に記載の加熱調理器とすることにより、最小限の温度センサで、非加熱物が小型の鍋であっても鍋の下方に温度センサが存在する構成となり、鍋の温度を正確に検出することが可能となる。
【0013】
請求項8に記載の発明は、調理器具の加熱方式が、誘導加熱方式である請求項1に記載の加熱調理器とすることにより、非加熱物である鍋そのものが発熱する誘導加熱方式で、発熱源である鍋の位置が変わるような方式であっても非加熱物の実温度を正確に測定することが可能である。
【0014】
請求項9に記載の発明は、温度センサは、加熱コイル上方に配置したことを特長とする請求項8に記載の加熱調理器とすることにより、非加熱物である鍋が発熱し、高温となる部位の下方に温度センサが存在するため、鍋の温度を精度良く測定することが可能となる。
【0015】
請求項10に記載の発明は、複数の温度センサのうち、少なくとも1つは加熱コイルのコイル幅の中心上方に配置したことを特長とする請求項8に記載の加熱調理器とすることにより、誘導加熱方式で最も非加熱物である鍋底の温度が高くなるコイル幅の中心の上方の温度を測定することが可能となり、応答速度が速く鍋の実温度に近い測定することが可能となる。したがって、鍋に少量の油が入っている場合などでも火災が発生する前に停止させる制御などが可能となる。
【0016】
(実施例1)
次に、本発明の実施例について図面を参照して説明する。
【0017】
図1において、非加熱物1は鍋やフライパン等の調理器具である。非加熱物1には食材などが入れられ、調理用加熱器具2から直接又は間接的に加熱され、非加熱物1内の食材などが加熱されるものである。非加熱物1の材質としては、金属系のものであっても良いし、土鍋等の陶器であっても構わない。
【0018】
調理用加熱器具2は、トッププレート3、温度センサ4、加熱源5等から構成されるものである。調理用加熱器具2は、トッププレート3上に置かれた非加熱物1に対して直接又は間接的に加熱し、温度センサ4の検出温度より非加熱物1の温度を計測し、加熱制御を行うことによって非加熱物1内の食材などを調理するものである。調理用加熱器具2の加熱方式としては、ガスなどを燃焼させてその熱を間接的に非加熱物1が受けて加熱するような方式であっても良いし、あるいは加熱源5が加熱コイルであって、加熱源5に高周波電流を流すことによって発生する高周波磁界によって非加熱物1が直接加熱される誘導加熱方式であっても良い。
【0019】
トッププレート3はガラス等でできたものであって、非加熱物1を置くためのものである。トッププレート3は必ずしも平面である必要はなく、また穴が空いているようなものであっても構わない。
【0020】
温度センサ4は、非加熱物1の温度を計測するものである。温度センサ4の取り付け位置としては、トッププレート3の上面であっても下面であっても構わない。また、温度センサ4としてはカップル線やサーミスタのような接触式であっても、赤外線のような非接触のものであっても構わない。
【0021】
加熱源5は、非加熱物1を加熱するためのものであって、加熱源5自身が発熱するバーナーのようなものであっても良いし、加熱源5自身が発熱するわけではなく、非加熱物1を加熱するために存在する誘導加熱方式の加熱コイルのようなものであっても良い。
【0022】
このような構成の調理用加熱器具2において、従来では加熱源5の中心となる位置に温度センサ4aが1つ配置されているだけであった。この場合、非加熱物1の底面が反っている場合には熱がトッププレート3に伝わりにくく、結果として温度センサ4の検出温度としては非加熱物1の温度よりも低く検出されるという問題があった。また、非加熱物1が加熱源5の中心に置かれるという保証はなく、非加熱物1が加熱源5の中心からずれて置かれた場合にはさらに誤差が生じていた。
【0023】
また、トッププレート3はガラスなどでできており、トッププレート3の熱特性に大きく左右され、非加熱物1の温度上昇と温度センサ4の検出温度の上昇にはタイムラグが生じていた。これは、非加熱物1内に何も入っていない空焚きの場合や、少量の油しか入っていない場合などは油の発火等の危険があり、調理用加熱器具2としては必ず避けなければならない事態となる。したがって、安全性を考慮した設計を行う必要があるが、必要以上に加熱パワーを絞らざるを得ないために性能低下の原因となっていた。
【0024】
しかし本発明では、非加熱物1は加熱源5の上方の部分が最も温度が高いという特性をいかす構成としている。特に、加熱源5が誘導加熱方式の場合には加熱コイル幅の中心部が最も高温となるため、その上の非加熱物1の温度を測定する構成となっている。
【0025】
つまり、従来は加熱源5の中心にしかなかった温度センサ4を複数設けることによって、加熱源5の上にあたる部分の温度を測定する。この部分は最も温度の高い部位であるため、この温度が所定値以上となれば危険であると判断し、加熱停止を行うことによって安全性を保つことができる。
【0026】
また、これは従来の中心部に比べて非加熱物1の温度がトッププレート3に伝わりやすい部位である。その理由としては、鍋底の中心は反りがある場合が多いためにトッププレート3と接触せず、放射熱による熱伝達しかないためである。従来の加熱源5の中心に置かれた温度センサ4aに比べて応答が早いため、非加熱物1の温度上昇と温度センサ4の検出温度の上昇のタイムラグを小さくすることができる。
【0027】
非加熱物1は、加熱源5との位置関係によって温度の分布が生じる。加熱源5がバーナーなどの場合はバーナーの炎のうち最も高い温度が当たっている部位が非加熱物1も温度が最も高くなるし、加熱源5が誘導加熱方式の場合の加熱コイルであれば高周波磁界の密度が高い位置の上に位置する非加熱物1の部位が最も温度が高くなる。加熱コイルで最も高周波磁界の密度が高くなるのは、加熱コイルの外周と内周のちょうど中央になる半径の円周上である。
【0028】
このように、非加熱物1に発生する局所的な温度分布のうち、最も応答性がよく温度の高い点を測定することができれば、それが最も非加熱物1の温度との誤差が小さい。また、鍋底の反りによる温度センサ4の測定値の誤差も最小限に押させることができる。そのため、非加熱物1の大きさや置かれる位置などによって影響が出ないように複数個の温度センサ4を設ける構成をとることが有効となる。
【0029】
上記のような理由から請求項1は、複数の温度センサ4を設けるが非加熱物1の情報、つまり非加熱物1の大きさ、底面の状態、置かれた位置などを効率的で簡単な構成で実現可能とするために直線上に配置している。
【0030】
複数の温度センサ4を配置すると、配線が複雑となる。しかし、図2の様に複数の温度センサ4を直線上に配置してそれぞれの配線も直線上を通すことによって最小限の配線で済み、設計の自由度が高くなる。したがって開発が容易であるため、安価で実現することができる。
【0031】
このような構成により、非加熱物1の局所的な最高温度部を効率的に検出することができ、応答性の早い、非加熱物1の実温度に最も近い測定値を得ることが可能となる。また複数の温度センサ4を持つことによって、断線等によって温度センサ4が測定不能になった場合でも他の温度センサ4の計測温度によって制御が可能であるため、故障に対しての信頼性が向上するものである。
【0032】
(実施例2)
実施例2では、図3のように複数の温度センサ4のうち、少なくとも1つは鍋等の非加熱物1を置く中心近傍に配置する。中心は非加熱物1の底面が反っている場合の影響を最も受けやすい位置であるため、この位置に温度センサ4を配置することによって他の温度センサ4の計測温度と比較することで非加熱物1の底面の反りを判別することが可能である。また、非加熱物1が中心からずれて置かれた場合にも影響を受けやすいため、その判定に利用することも可能である。
【0033】
中心近傍に配置された温度センサ4の測定値と、他の温度センサ4の測定値との差が基準値以上の場合は非加熱物1である鍋底に反りがあると判定することができる。反りのある鍋の場合には非加熱物1の測定温度に誤差が多く生じるため、補正をかける等の制御に反映することが可能となる。
【0034】
(実施例3)
実施例3では、図4のように鍋等の非加熱物1を置く中心から外周に伸びる直線上に複数の温度センサ4を配置して、非加熱物1が中心からどれだけずれたかを検出することが可能となり、使用者に注意を促す等の機能を実現することが可能となる。
【0035】
(実施例4)
実施例4では、図5のように鍋等の非加熱物1を置く中心から外周に伸びる複数の直線上に複数の温度センサ4を配置し、請求項3では1方向のずれは正確に測定することが可能であったが、温度センサ4を配置する方向を増やすことによって各方向へのずれそれぞれに対応することが可能となり、非加熱物1である鍋が中心位置からずれた場合でも鍋の温度を正確に測定することが可能となる。
【0036】
(実施例5)
実施例5では、図6のように請求項6のそれぞれの直線のうち、少なくとも1本は中心を通る直線とすることによって、非加熱物1である鍋底の反りの有無を検知すると共に、その反り具合を検出することが可能となる。これは、請求項2の効果で中心近傍に配置された温度センサ4で鍋底の反りがまず判定できるが、請求項5では鍋底に反りがあってトッププレート3から離れれば鍋からの熱伝導がなくなって放射熱だけとなるため、温度センサ4の検出温度としては低くなるため、その低くなる度合いよりその他の直線上に配置された温度センサ4で鍋底の反りの度合いが判定できる。鍋底の反りの度合いによって補正係数を変える制御が可能となり、より精度の高い温度を検出することが可能となる。
【0037】
(実施例6)
実施例6では、図7のように鍋等の非加熱物1を置く中心から外周に伸びる複数の直線が、90度間隔となる直線として、奥方向と手前方向のずれだけでなく、左右方向のずれに対しても検出可能である。また、非加熱物1が小型の鍋であっても温度センサ4が鍋の下方に存在するため、鍋の温度を正確に検出することが可能となる。
【0038】
(実施例7)
実施例7では、図8のように鍋等の非加熱物1を置く中心から外周に伸びる複数の直線が、120度間隔となる直線として、温度センサ4の数を極力少なくしている。図7と比べると、小さな鍋での検出確率が劣るものの、温度センサ4の数を減らして構成を簡単にできる。
【0039】
(実施例8)
実施例8では、調理器具の加熱方式が、誘導加熱方式として非加熱物1である鍋そのものが発熱するため、発熱源である鍋の位置が変わるような方式であっても非加熱物1の実温度を正確に測定することが可能となるため有利である。
【0040】
(実施例9)
実施例9では、温度センサ4は加熱コイル上に配置して、非加熱物1である鍋が発熱し、高温となる部位の下方に温度センサ4が存在するため、鍋の温度を精度良く測定することが可能となる。
【0041】
(実施例10)
実施例10では、複数の温度センサ4のうち、少なくとも1つは加熱コイルのコイル幅の中心上に配置することによって、誘導加熱方式で最も非加熱物1である鍋底の温度が高くなるコイル幅の中心の上方の温度を測定することが可能となり、応答速度が早く鍋の実温度に近い測定することが可能となる。したがって、鍋に少量の油が入っている場合などでも火災が発生する前に停止させる制御などが可能となり、使用者に便益をもたらすものである。
【0042】
【発明の効果】
以上のように本発明によれば、複数個の温度センサを直線上に配置することによって非加熱物がどの位置にきてもより正確な温度測定が可能となり、また他の温度センサの測定値を比較することで非加熱物の大きさとずれを検知することが可能となる。また非加熱物1の温度との誤差が最も小さくすることが可能となるため、最適な温度制御を行うことが可能であり、使用者に便益をもたらすものである。
【図面の簡単な説明】
【図1】本発明の一実施例における加熱調理器の構成を示す図
【図2】実施例1に記載の加熱調理器の構成を示す図
【図3】実施例2に記載の加熱調理器の構成を示す図
【図4】実施例3に記載の加熱調理器の構成を示す図
【図5】実施例4に記載の加熱調理器の構成を示す図
【図6】実施例5に記載の加熱調理器の構成を示す図
【図7】実施例6に記載の加熱調理器の構成を示す図
【図8】実施例7に記載の加熱調理器の構成を示す図
【符号の説明】
1 非加熱物
2 調理用加熱器具
3 トッププレート
4 温度センサ
5 加熱源
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooking device such as an electromagnetic cooking device that detects the temperature of a non-heated object in a cooking device.
[0002]
[Prior art]
In the prior art, there is only one or two thermistors located approximately at the center where the unheated object is placed via the top plate under the unheated object.
[0003]
[Patent Document 1]
JP 2001-257067 A
[Problems to be solved by the invention]
In the above conventional techniques, since the temperature of the non-heated object is measured through a top plate made of glass or the like, it is difficult to accurately measure the temperature of the non-heated object, and the measured temperature and the actual temperature are not measured. The temperature error of the non-heated material was large. In addition, the time lag with the temperature rise of the non-heated material was large. For this reason, it has been difficult to control the temperature of the non-heated material, and accurate temperature control has not been possible.
[0005]
[Means for Solving the Problems]
The present invention solves the conventional problem, and it is possible to arrange a plurality of temperature sensors on a straight line and more accurately measure the temperature of the non-heated object regardless of the position of the non-heated object. Is what you can do.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 is a cooking appliance for heating an unheated object such as a pot, comprising three or more temperature sensors for detecting the temperature of the unheated object, and three or more temperature sensors among the plurality of temperature sensors. Is located on a straight line, so that the local maximum temperature part of the non-heated object can be efficiently detected, and the measured value is fast-response and closest to the actual temperature of the non-heated object. Can be obtained.
[0007]
The invention according to claim 2 is a heating cooker according to claim 1, wherein at least one of the plurality of temperature sensors is arranged near a center where a non-heated object such as a pan is placed. It is possible to detect the presence or absence of warpage at the bottom of the pan, and in the case of a warped pan, since there are many errors in the measured temperature of the non-heated object, it is possible to reflect the correction in control such as applying correction .
[0008]
The invention according to claim 3 is a heating cooker according to claim 1 in which a plurality of temperature sensors are arranged on a straight line extending from the center where an unheated object such as a pan is placed to the outer periphery. It is possible to detect how much a certain pan has deviated from the center, and it is possible to realize functions such as urging the user's attention.
[0009]
According to a fourth aspect of the present invention, there is provided a heating cooker according to the first aspect, wherein a plurality of temperature sensors are arranged on a plurality of straight lines extending from a center where an unheated object such as a pan is placed to an outer periphery. It is possible to accurately measure the temperature of the pan even when the pan is shifted from the center position.
[0010]
According to a fifth aspect of the present invention, at least one straight line extending from the center where the unheated object such as a pan is placed to the outer periphery is a straight line passing through the center, and the plurality of temperature sensors are arranged on the straight line. By using the heating cooker according to item 1, it is possible to detect the presence or absence of the warpage of the pan bottom which is a non-heated material, and to detect the degree of the warpage. The change control becomes possible, and it becomes possible to detect the temperature with higher accuracy.
[0011]
According to a sixth aspect of the present invention, the plurality of straight lines extending from the center where an unheated object such as a pan is placed to the outer periphery are straight lines forming a relative angle of 90 degrees, and the plurality of temperature sensors are arranged on the straight line. By using the heating cooker described in Item 1, even if the non-heated object is a small pan, the temperature sensor is located below the pan, so that the temperature of the pan can be accurately detected.
[0012]
According to a seventh aspect of the present invention, the plurality of straight lines extending from the center where the unheated object such as a pan is placed to the outer periphery are straight lines forming a relative angle of 120 degrees, and the plurality of temperature sensors are arranged on the straight line. By using the heating cooker according to item 1, the temperature sensor is provided below the pot even if the non-heated object is a small pot with a minimum temperature sensor, and the temperature of the pot is accurately detected. It is possible to do.
[0013]
The invention according to claim 8 is directed to an induction heating method in which the heating method of the cooking utensil is the induction heating method according to claim 1, whereby the pot itself, which is a non-heating object, generates heat, It is possible to accurately measure the actual temperature of the non-heated material even in a method in which the position of the pan as the heat source changes.
[0014]
According to a ninth aspect of the present invention, the temperature sensor is disposed above the heating coil, and by using the heating cooker according to the eighth aspect, the pan, which is a non-heated object, generates heat, and the temperature of the pan becomes high. Since the temperature sensor exists below the portion, the temperature of the pan can be measured with high accuracy.
[0015]
According to a tenth aspect of the present invention, there is provided the heating cooker according to the eighth aspect, wherein at least one of the plurality of temperature sensors is disposed above the center of the coil width of the heating coil. In the induction heating method, it is possible to measure the temperature above the center of the coil width at which the temperature of the bottom of the pot, which is the most unheated material, is high, and the response speed is high and the measurement can be close to the actual temperature of the pot. Therefore, even if a small amount of oil is contained in the pot, it is possible to perform control to stop the pot before a fire occurs.
[0016]
(Example 1)
Next, embodiments of the present invention will be described with reference to the drawings.
[0017]
In FIG. 1, a non-heated object 1 is a cooking utensil such as a pot or a frying pan. Foods and the like are put into the non-heated object 1 and are heated directly or indirectly from the cooking heater 2 to heat the foods and the like in the non-heated object 1. The material of the non-heated object 1 may be a metal-based material or a ceramic such as a clay pot.
[0018]
The cooking heater 2 includes a top plate 3, a temperature sensor 4, a heating source 5, and the like. The cooking heater 2 directly or indirectly heats the non-heated object 1 placed on the top plate 3, measures the temperature of the non-heated object 1 from the temperature detected by the temperature sensor 4, and controls heating. By doing so, foods and the like in the non-heated material 1 are cooked. The heating method of the cooking heater 2 may be a method in which gas or the like is burned and the heat is indirectly received and heated by the non-heated object 1, or the heating source 5 is a heating coil. In addition, an induction heating method in which the non-heated object 1 is directly heated by a high-frequency magnetic field generated by flowing a high-frequency current through the heating source 5 may be used.
[0019]
The top plate 3 is made of glass or the like, on which the non-heated material 1 is placed. The top plate 3 does not necessarily have to be flat, and may have a hole.
[0020]
The temperature sensor 4 measures the temperature of the non-heated object 1. The mounting position of the temperature sensor 4 may be on the upper surface or the lower surface of the top plate 3. The temperature sensor 4 may be a contact type such as a couple wire or a thermistor, or a non-contact type such as an infrared ray.
[0021]
The heating source 5 is for heating the non-heated object 1, and may be a burner that generates heat from the heating source 5 itself. The heating source 5 itself does not generate heat. It may be a kind of induction heating type heating coil existing for heating the heating object 1.
[0022]
Conventionally, in the cooking heater 2 having such a configuration, only one temperature sensor 4a is disposed at a position that is the center of the heating source 5. In this case, when the bottom surface of the non-heated object 1 is warped, heat is not easily transmitted to the top plate 3, and as a result, the temperature detected by the temperature sensor 4 is detected to be lower than the temperature of the non-heated object 1. there were. Further, there is no guarantee that the non-heated object 1 is placed at the center of the heating source 5, and when the non-heated object 1 is placed off the center of the heating source 5, a further error occurs.
[0023]
Further, the top plate 3 is made of glass or the like, and is largely influenced by the thermal characteristics of the top plate 3, and a time lag occurs between the rise in the temperature of the non-heated object 1 and the rise in the temperature detected by the temperature sensor 4. This is because there is a danger of ignition of oil when there is no heating in the non-heated material 1 or when there is only a small amount of oil in the non-heated material 1. It will not happen. Therefore, it is necessary to design in consideration of safety. However, since the heating power has to be reduced more than necessary, it has caused a decrease in performance.
[0024]
However, in the present invention, the non-heated object 1 is configured to take advantage of the characteristic that the temperature above the heating source 5 is the highest. In particular, when the heating source 5 is of the induction heating type, the temperature at the center of the width of the heating coil becomes the highest, so that the temperature of the non-heated object 1 thereon is measured.
[0025]
That is, by providing a plurality of temperature sensors 4 which were conventionally only at the center of the heating source 5, the temperature of the portion above the heating source 5 is measured. Since this portion is the portion with the highest temperature, it is determined that it is dangerous if this temperature exceeds a predetermined value, and safety can be maintained by stopping the heating.
[0026]
This is a portion where the temperature of the non-heated object 1 is more easily transmitted to the top plate 3 than in the conventional central portion. The reason for this is that the center of the bottom of the pot is often warped and does not come into contact with the top plate 3, so that there is only heat transfer by radiant heat. Since the response is faster than that of the conventional temperature sensor 4a located at the center of the heating source 5, the time lag between the rise in the temperature of the non-heated object 1 and the rise in the temperature detected by the temperature sensor 4 can be reduced.
[0027]
The non-heated object 1 has a temperature distribution depending on the positional relationship with the heating source 5. When the heating source 5 is a burner or the like, the portion of the burner flame to which the highest temperature is applied also has the highest temperature for the non-heated object 1, and if the heating source 5 is a heating coil in the case of the induction heating method. The temperature of the portion of the non-heated object 1 located above the position where the density of the high-frequency magnetic field is high has the highest temperature. The highest density of the high-frequency magnetic field in the heating coil is on the circumference having a radius exactly at the center between the outer circumference and the inner circumference of the heating coil.
[0028]
As described above, if a point having the highest responsiveness and the highest temperature in the local temperature distribution generated in the non-heated object 1 can be measured, the error from the temperature of the non-heated object 1 is the smallest. In addition, it is possible to minimize the error of the measured value of the temperature sensor 4 due to the warpage of the pot bottom. Therefore, it is effective to adopt a configuration in which a plurality of temperature sensors 4 are provided so as not to be affected by the size of the non-heated object 1 or the position where the object 1 is placed.
[0029]
According to the first aspect, a plurality of temperature sensors 4 are provided for the above-described reasons. They are arranged on a straight line so that they can be realized with a configuration.
[0030]
When a plurality of temperature sensors 4 are arranged, wiring becomes complicated. However, a plurality of temperature sensors 4 are arranged on a straight line as shown in FIG. Therefore, since development is easy, it can be realized at low cost.
[0031]
With such a configuration, it is possible to efficiently detect the local maximum temperature portion of the non-heated object 1 and obtain a measurement value that is fast in response and is closest to the actual temperature of the non-heated object 1. Become. In addition, by having a plurality of temperature sensors 4, even when the temperature sensor 4 cannot be measured due to disconnection or the like, control can be performed by the measured temperature of another temperature sensor 4, thereby improving reliability against failure. Is what you do.
[0032]
(Example 2)
In the second embodiment, at least one of the plurality of temperature sensors 4 is arranged near the center where the unheated object 1 such as a pan is placed as shown in FIG. Since the center is the position most susceptible to the influence of the case where the bottom surface of the non-heated object 1 is warped, by disposing the temperature sensor 4 at this position, it is possible to compare the measured temperature of the other temperature sensors 4 with the non-heated It is possible to determine the warpage of the bottom surface of the object 1. In addition, since the unheated object 1 is easily affected even if it is shifted from the center, it can be used for the determination.
[0033]
If the difference between the measured value of the temperature sensor 4 arranged near the center and the measured value of the other temperature sensor 4 is equal to or larger than the reference value, it can be determined that the bottom of the pot as the non-heated object 1 is warped. In the case of a warped pot, since there are many errors in the measured temperature of the non-heated object 1, it is possible to reflect the error in control such as applying correction.
[0034]
(Example 3)
In the third embodiment, as shown in FIG. 4, a plurality of temperature sensors 4 are arranged on a straight line extending from the center where the unheated object 1 such as a pan is placed to the outer periphery, and detect how much the unheated object 1 is shifted from the center. It is possible to realize functions such as calling the user's attention.
[0035]
(Example 4)
In the fourth embodiment, a plurality of temperature sensors 4 are arranged on a plurality of straight lines extending from the center where the unheated object 1 such as a pan is placed as shown in FIG. 5 to the outer periphery. However, by increasing the direction in which the temperature sensor 4 is disposed, it is possible to cope with each of the deviations in each direction. Temperature can be accurately measured.
[0036]
(Example 5)
In the fifth embodiment, at least one of the straight lines in claim 6 is a straight line passing through the center as shown in FIG. 6, thereby detecting whether or not the bottom of the pot as the non-heated object 1 is warped. The degree of warpage can be detected. According to the effect of claim 2, the temperature sensor 4 arranged near the center can first determine the warpage of the pot bottom, but in claim 5, if the pot bottom is warped and separated from the top plate 3, the heat conduction from the pot will be increased. Since the temperature of the temperature sensor 4 is low because the heat is lost and only the radiant heat is detected, the degree of the warping of the pot bottom can be determined by the temperature sensors 4 arranged on other straight lines based on the degree of the decrease. Control for changing the correction coefficient according to the degree of warpage of the pot bottom becomes possible, and more accurate temperature detection becomes possible.
[0037]
(Example 6)
In the sixth embodiment, a plurality of straight lines extending from the center where the unheated object 1 such as a pot is placed as shown in FIG. Can also be detected for the deviation. In addition, even if the non-heated object 1 is a small pot, the temperature sensor 4 is located below the pot, so that the temperature of the pot can be accurately detected.
[0038]
(Example 7)
In the seventh embodiment, as shown in FIG. 8, a plurality of straight lines extending from the center where the unheated object 1 such as a pan is placed to the outer periphery are spaced at 120 degrees, and the number of the temperature sensors 4 is reduced as much as possible. Compared with FIG. 7, although the detection probability in a small pot is inferior, the number of temperature sensors 4 can be reduced and the configuration can be simplified.
[0039]
(Example 8)
In the eighth embodiment, the heating method of the cooking utensil is the induction heating method because the pot itself, which is the non-heated object 1, generates heat. This is advantageous because the actual temperature can be measured accurately.
[0040]
(Example 9)
In the ninth embodiment, the temperature sensor 4 is disposed on the heating coil, and the pan as the non-heated object 1 generates heat, and the temperature sensor 4 exists below the high temperature part, so that the temperature of the pan is accurately measured. It is possible to do.
[0041]
(Example 10)
In the tenth embodiment, by arranging at least one of the plurality of temperature sensors 4 on the center of the coil width of the heating coil, the coil width at which the temperature of the pot bottom, which is the most non-heated object 1 in the induction heating method, becomes high. And the temperature above the center of the pan can be measured, and the response speed is fast and the temperature can be measured close to the actual temperature of the pan. Therefore, even when a small amount of oil is contained in the pot, it is possible to perform a control to stop the oil before a fire occurs, which brings benefits to the user.
[0042]
【The invention's effect】
As described above, according to the present invention, by arranging a plurality of temperature sensors on a straight line, more accurate temperature measurement is possible regardless of the position of the non-heated object, and the measured values of other temperature sensors can be measured. It is possible to detect the size and the deviation of the non-heated object by comparing. Further, since the error with respect to the temperature of the non-heated object 1 can be minimized, it is possible to perform optimal temperature control and bring benefits to the user.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a heating cooker according to one embodiment of the present invention; FIG. 2 is a diagram showing a configuration of a heating cooker according to a first embodiment; FIG. FIG. 4 is a diagram showing a configuration of a heating cooker according to a third embodiment. FIG. 5 is a diagram showing a configuration of a heating cooker according to a fourth embodiment. FIG. 6 is a diagram showing a fifth embodiment. FIG. 7 is a diagram showing a configuration of a heating cooker according to a sixth embodiment. FIG. 8 is a diagram showing a configuration of a heating cooker according to a sixth embodiment.
DESCRIPTION OF SYMBOLS 1 Non-heating thing 2 Cooking heater 3 Top plate 4 Temperature sensor 5 Heating source

Claims (10)

鍋等の非加熱物を加熱する調理器具において、前記非加熱物の温度を検知する温度センサを3個以上備え、前記複数個の温度センサのうち3個以上を直線上に配置する加熱調理器。A cooking appliance for heating a non-heated object such as a pan, wherein the cooking device comprises three or more temperature sensors for detecting the temperature of the non-heated object, and arranges at least three of the plurality of temperature sensors in a straight line. . 複数の温度センサのうち、少なくとも1つは鍋等の非加熱物を置く中心近傍に配置する請求項1に記載の加熱調理器。The heating cooker according to claim 1, wherein at least one of the plurality of temperature sensors is disposed near a center where an unheated object such as a pan is placed. 鍋等の非加熱物を置く中心から外周に伸びる直線上に複数の温度センサを配置した請求項1に記載の加熱調理器。The heating cooker according to claim 1, wherein the plurality of temperature sensors are arranged on a straight line extending from the center where the unheated object such as a pan is placed to the outer periphery. 鍋等の非加熱物を置く中心から外周に伸びる複数の直線上に複数の温度センサを配置した請求項1に記載の加熱調理器。The heating cooker according to claim 1, wherein a plurality of temperature sensors are arranged on a plurality of straight lines extending from the center where the unheated object such as a pan is placed to the outer periphery. 鍋等の非加熱物を置く中心から外周に伸びる複数の直線が、少なくとも1本は中心を通る直線であり、その直線上に複数の温度センサを配置した請求項1に記載の加熱調理器。The heating cooker according to claim 1, wherein at least one straight line extending from the center where the unheated object such as a pan is placed to the outer periphery is a straight line passing through the center, and the plurality of temperature sensors are arranged on the straight line. 鍋等の非加熱物を置く中心から外周に伸びる複数の直線は、90度の相対角度をなす直線であり、その直線上に複数の温度センサを配置した請求項1に記載の加熱調理器。The heating cooker according to claim 1, wherein the plurality of straight lines extending from the center where the unheated object such as a pan is placed to the outer periphery are straight lines forming a relative angle of 90 degrees, and the plurality of temperature sensors are arranged on the straight line. 鍋等の非加熱物を置く中心から外周に伸びる複数の直線が、120度の相対角度をなす直線であり、その直線上に複数の温度センサを配置した請求項1に記載の加熱調理器。The heating cooker according to claim 1, wherein the plurality of straight lines extending from the center where the unheated object such as a pan is placed to the outer periphery are straight lines forming a relative angle of 120 degrees, and the plurality of temperature sensors are arranged on the straight lines. 調理器具の加熱方式が、誘導加熱方式である請求項1に記載の加熱調理器。The heating cooker according to claim 1, wherein the heating method of the cooking utensil is an induction heating method. 温度センサは、加熱コイル上方に配置したことを特長とする請求項8に記載の加熱調理器。9. The cooking device according to claim 8, wherein the temperature sensor is disposed above the heating coil. 複数の温度センサのうち、少なくとも1つは加熱コイルのコイル幅の中心上方に配置したことを特長とする請求項8に記載の加熱調理器。The heating cooker according to claim 8, wherein at least one of the plurality of temperature sensors is disposed above the center of the coil width of the heating coil.
JP2002326486A 2002-11-11 2002-11-11 Heating cooker Pending JP2004164882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326486A JP2004164882A (en) 2002-11-11 2002-11-11 Heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326486A JP2004164882A (en) 2002-11-11 2002-11-11 Heating cooker

Publications (1)

Publication Number Publication Date
JP2004164882A true JP2004164882A (en) 2004-06-10

Family

ID=32805387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326486A Pending JP2004164882A (en) 2002-11-11 2002-11-11 Heating cooker

Country Status (1)

Country Link
JP (1) JP2004164882A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156006A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Heating cooker and its program
JP2007134258A (en) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd Induction heating device
JP2008262719A (en) * 2007-04-10 2008-10-30 Matsushita Electric Ind Co Ltd Induction heating device
JP2009187965A (en) * 2009-05-27 2009-08-20 Panasonic Corp Cooker and its program
JP2009231098A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Induction heating cooking device
JP2009264803A (en) * 2008-04-23 2009-11-12 Murata Mfg Co Ltd Planar temperature detection sensor
JP2009295457A (en) * 2008-06-06 2009-12-17 Hitachi Appliances Inc Induction heating cooker
JP2011023188A (en) * 2009-07-15 2011-02-03 Mitsubishi Electric Corp Induction heating cooker
JP2011138799A (en) * 2009-04-02 2011-07-14 Mitsubishi Electric Corp Induction heating cooker
WO2014125596A1 (en) * 2013-02-14 2014-08-21 トヨタ自動車株式会社 Power reception apparatus and power transmission apparatus
CN104797024A (en) * 2014-01-22 2015-07-22 日立空调·家用电器株式会社 Induction heating cooking machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156006A (en) * 2004-11-26 2006-06-15 Matsushita Electric Ind Co Ltd Heating cooker and its program
JP4529660B2 (en) * 2004-11-26 2010-08-25 パナソニック株式会社 Cooking apparatus and program thereof
JP2007134258A (en) * 2005-11-14 2007-05-31 Matsushita Electric Ind Co Ltd Induction heating device
US8426782B2 (en) 2005-11-14 2013-04-23 Panasonic Corporation Induction heating device
JP2008262719A (en) * 2007-04-10 2008-10-30 Matsushita Electric Ind Co Ltd Induction heating device
JP2009231098A (en) * 2008-03-24 2009-10-08 Mitsubishi Electric Corp Induction heating cooking device
JP2009264803A (en) * 2008-04-23 2009-11-12 Murata Mfg Co Ltd Planar temperature detection sensor
JP2009295457A (en) * 2008-06-06 2009-12-17 Hitachi Appliances Inc Induction heating cooker
JP2012253037A (en) * 2009-04-02 2012-12-20 Mitsubishi Electric Corp Induction heating cooker
JP2011138799A (en) * 2009-04-02 2011-07-14 Mitsubishi Electric Corp Induction heating cooker
JP2011138798A (en) * 2009-04-02 2011-07-14 Mitsubishi Electric Corp Induction heating cooker
JP4530097B2 (en) * 2009-05-27 2010-08-25 パナソニック株式会社 Cooking apparatus and program thereof
JP2009187965A (en) * 2009-05-27 2009-08-20 Panasonic Corp Cooker and its program
JP2011023188A (en) * 2009-07-15 2011-02-03 Mitsubishi Electric Corp Induction heating cooker
WO2014125596A1 (en) * 2013-02-14 2014-08-21 トヨタ自動車株式会社 Power reception apparatus and power transmission apparatus
CN104995817A (en) * 2013-02-14 2015-10-21 丰田自动车株式会社 Power reception apparatus and power transmission apparatus
JPWO2014125596A1 (en) * 2013-02-14 2017-02-02 トヨタ自動車株式会社 Power receiving device and power transmitting device
US9755436B2 (en) 2013-02-14 2017-09-05 Toyota Jidosha Kabushiki Kaisha Power receiving device and power transmitting device
CN104797024A (en) * 2014-01-22 2015-07-22 日立空调·家用电器株式会社 Induction heating cooking machine

Similar Documents

Publication Publication Date Title
US6462316B1 (en) Cooktop control and monitoring system including detecting properties of a utensil and its contents
US9848462B2 (en) Temperature sensor and induction heating cooker having the same
KR20080087961A (en) Control method of heating apparatus
JP2004164882A (en) Heating cooker
KR20140124106A (en) induction range
US11473781B2 (en) Cooktop appliance temperature sensor with transient temperature correction
JP2004139894A (en) Temperature detection device
US6403932B1 (en) Controller for a heating unit in a cooktop and methods of operating same
JP5272612B2 (en) Induction heating cooker
JP3317017B2 (en) Temperature detector for induction cooker
JP2004223048A (en) Heating cooker
JP4952214B2 (en) Induction heating cooker
JP2004139821A (en) Temperature detection device
JP5679039B2 (en) Induction heating cooker
JP5029774B1 (en) Induction heating cooker
JP2004241220A (en) Induction heating cooking device
JP5264838B2 (en) Cooker
JP4397257B2 (en) Stove
JP2008135201A5 (en)
JP4301203B2 (en) Cooker
JP4375185B2 (en) Multi-neck heating cooker
JP5921480B2 (en) Stove
JP5445628B2 (en) Induction heating cooker
JP2003317919A (en) Induction heating cooking device
US11965657B2 (en) Cooktop appliance with temperature sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071211