JP2004163307A - Radiation measurement instrument - Google Patents

Radiation measurement instrument Download PDF

Info

Publication number
JP2004163307A
JP2004163307A JP2002330544A JP2002330544A JP2004163307A JP 2004163307 A JP2004163307 A JP 2004163307A JP 2002330544 A JP2002330544 A JP 2002330544A JP 2002330544 A JP2002330544 A JP 2002330544A JP 2004163307 A JP2004163307 A JP 2004163307A
Authority
JP
Japan
Prior art keywords
light
light source
radiation
radiation measuring
optical filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002330544A
Other languages
Japanese (ja)
Inventor
Yoshio Mito
美生 三戸
Yoichi Abe
洋一 阿部
Satoru Hyodo
悟 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002330544A priority Critical patent/JP2004163307A/en
Publication of JP2004163307A publication Critical patent/JP2004163307A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that a light source part must be taken off, for the measurement with a light amount measurement instrument, in order to determine a change in the light amount of a light source having the relationship proportional to the fluorescent amount of a radiation measurement element, in a radiation measurement device of the radiation measurement element having the characteristic which is stimulated by the radiation and which emits the fluorescent light by irradiation with light. <P>SOLUTION: In the radiation measurement device, a plurality of optical filters are disposed in the front surface of a photomultiplier tube 12 for receiving the fluorescent light 8. By the structure in which a part of the optical filters can be taken out or inserted, the monitoring of the change in the light amount of the light source 1 having the relationship proportional to the fluorescent amount of the radiation measurement element can be easily and precisely performed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、原子力発電所、放射線利用施設及び加速器施設において使用される個人被ばく管理用線量計や環境測定用線量計に関する。
【0002】
【従来の技術】
図3に従来の放射線測定装置の測定部を説明するための測定部概略構成図を示す。
【0003】
図3において、放射線によって励起され、光を照射することによって蛍光を発する放射線測定素子26に対して、光源21で光22を発生させる。そして、この光22は、測定に有効な波長は透過させ有害な波長は遮断するための光学フィルタ23を透過して光25となり、メガホン状の集光管24にて集光される。
【0004】
そして、この光25は放射線測定素子26に照射され、この照射により放射線測定素子26で発せられた蛍光28は光ガイドガラス27を通って光を電気信号に変換するための光電子増倍管30に入る。
【0005】
放射線測定素子26からの蛍光28の光量は光源21からの光量に比例して増加するようになっている。また、光電子増倍管30に蛍光28が入る前に測定に有効な波長は透過させ、有害な波長はカットするための光学フィルタ29を設けている。
【0006】
なお、放射線測定装置の全体構成については、例えば特許文献1に掲載されている。
【0007】
【特許文献1】
特表2000−503396号公報
【0008】
【発明が解決しようとする課題】
上記のような放射線測定装置において、光源の光量の変化を調べる場合には、光源部を取り外して光量計などで光量の測定しなければならなかった。
【0009】
しかし、放射線測定装置は光学系を構成要件としており、このように光学系を有する製品は、一度組み立てた後に分解して再度組み立てを行うと光軸がずれるなどの不具合が生じやすくなるので、組み立て後の分解などは行わないのが通常である。
【0010】
従って、従来の放射線測定装置においては、製品を分解して光路に光センサなどを配置するなどして光源の光量を測定することは大変困難であった。
【0011】
本発明は、光源の光量を容易に測定できる放射線測定装置を実現することを目的とする。
【0012】
【課題を解決するための手段】
本発明の放射線測定装置は、蛍光を受光する光電子増倍管の前面に配備した光学フィルタを複数とし、その光学フィルタの一部を抜き差しできるようにしたものである。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明する。
【0014】
図1に放射線測定装置の測定部構成概略図を示し、図2に光の波長の変化を説明するための波長スペクトル図を示す。
【0015】
先ず、放射線を測定する場合について説明する。
【0016】
放射線によって励起され、緑色LEDからの光を照射することにより青色の蛍光を発する酸化アルミニウムからなる光刺激ルミネッセンス素子6に対して、22個の高輝度LEDからなる光源1により図2に示す波長スペクトル31をもつ光2を照射する。
【0017】
そして、この光2は、測定に有効な、即ち光刺激ルミネッセンス素子6の蛍光を発生させるために寄与する波長(530nm中心付近)は透過させ、測定に有害な、即ち光電子増倍管12に感度があるため光刺激ルミネッセンス素子6からの蛍光に対してノイズ成分となる波長帯(490nm以下)をカットするための黄色光学フィルタ3(φ50mm×9mm)を透過して図2に示す波長スペクトル32をもつ光5となる。
【0018】
この光5は、メガホン状のアルミニウム製集光管4にて光刺激ルミネッセンス素子6の中心部に集光(φ5mm)照射される。これにより光刺激ルミネッセンス素子6からは図2に示す波長スペクトル33をもつ蛍光8が発生し、この蛍光8は光ガイドガラス7を通って光を電気信号に変換するための光電子増倍管12に入る。また、図2の波長スペクトル34は光源1が黄色光学フィルタ3を通り抜けた光でありノイズ成分となるが、蛍光8と同様に光ガイドガラス7を通って光電子増倍管12に入る。ここで、光刺激ルミネッセンス素子6からの蛍光8の光量は、光源1の光量から光源1が黄色光学フィルタ3を通り抜けた光量を差し引いた光量に比例する。
【0019】
さらに、光電子増倍管12に蛍光8が入る前に、測定に有効な波長、即ち光刺激ルミネッセンス素子6からの蛍光8は透過させ、測定に有害な波長、即ち光源1から発せられ黄色光学フィルタ3を通り抜けた光をカットするために、厚みが異なるのみで材質が全く同じである2枚のフィルタを設けている。この2枚のフィルタの内、1つは青色光学フィルタ9(φ30mm×3mm)であり、もう1つは青色光学フィルタ11(φ30mm×6mm)である。これらの青色光学フィルタの厚みは、ノイズ成分である図2の波長スペクトル34を完全にカットできるように決める。
【0020】
光電子増倍管12では、これらの青色光学フィルタを透過した図2に示す波長スペクトル35の光量をフォトンカウント計測し、光量に比例してパルスを発生させ、その計数値から予め実験により決定された計数値(カウント)と線量(mSv)との換算係数を用いて光刺激ルミネッセンス素子6の被ばく線量(mSv)を求める。
【0021】
次に、光源1の光量を測定する場合について説明する。
【0022】
光源1の光量を測定するためには、光刺激ルミネッセンス素子6は置かず、即ち光刺激ルミネッセンス素子6を13の位置に移動させ、更に2枚の青色光学フィルタの内の1枚である青色光学フィルタ9をソレノイドによるシャッター機構により光路から外して10の位置に移動させる。これにより光刺激ルミネッセンス素子6からは図2に示す波長スペクトル33をもつ蛍光8は発生しない。
【0023】
そして、光源1から発せられた図2に示す波長スペクトル31をもつ光2は黄色光学フィルタ3を通り抜けて図2に示す波長スペクトル32をもつ光5となり、この光5は光ガイドガラス7を通り、さらに2枚の青色光学フィルタの内の1枚であり光電子増倍管12の近傍に設けられている青色光学フィルタ11(φ30mm×6mm)で減衰されて、図2に示す波長スペクトル36をもつ光となり光電子増倍管12に入る。
【0024】
この光電子増倍管12に入った光はフォトンカウント計測され、光電子増倍管12により光量に比例してパルスを発生させ、このパルスの計数値を計測する。
【0025】
上記により、初期計数値を基準として、光源1の使用経過後の光量変化率を管理することができる。例えば、初期光量(計数値)に対して−10%の管理基準値を設けて、これを下回った場合にはLEDを交換するようにする。
【0026】
なお、本実施の形態において、光電子増倍管12に入る前に設けられた青色光学フィルタを2つとし、光源1の光量を測定する場合には青色光学フィルタの1つを外し1つを残して測定したが、これは光電子増倍管12は測定感度が良く、強い光が入射すると光電子増倍管12の出力特性が飽和して正確な測定ができなくなることを防止するための減衰の手段として1つの青色光学フィルタを設けており、適切な強度になるように青色光学フィルタの1つを残したものである。従って、光源1の光量を測定する場合に、光源1の状態により減衰させる必要がないのであれば青色光学フィルタを2枚とも外し、青色光学フィルタがない状態で測定しても良い。
【0027】
【発明の効果】
以上の説明から明らかなように、本発明によれば、放射線測定素子の蛍光量に比例関係のある光源の光量の変化のモニタが容易にできるため高精度の測定が可能な放射線測定装置を実現できる。
【図面の簡単な説明】
【図1】本実施の形態における放射線測定装置の測定部構成概略図
【図2】本実施の形態における波長スペクトル図
【図3】従来の放射線測定装置の測定部構成概略図
【符号の説明】
1 光源
2 光
3 黄色光学フィルタ
4 集光管
5 光
6、13 光刺激ルミネッセンス素子
7 光ガイドガラス
8 蛍光
9、10 青色光学フィルタ
11 青色光学フィルタ
12 光電子増倍管
21 光源
22 光
23 光学フィルタ
24 集光管
25 光
26 放射線測定素子
27 光ガイドガラス
28 蛍光
29 光学フィルタ
30 光電子増倍管
31 波長スペクトル
32 波長スペクトル
33 波長スペクトル
34 波長スペクトル
35 波長スペクトル
36 波長スペクトル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a personal exposure management dosimeter and an environmental measurement dosimeter used in nuclear power plants, radiation utilization facilities, and accelerator facilities.
[0002]
[Prior art]
FIG. 3 shows a schematic configuration diagram of a measuring unit for explaining a measuring unit of a conventional radiation measuring apparatus.
[0003]
In FIG. 3, a light source 21 generates light 22 with respect to a radiation measuring element 26 which is excited by radiation and emits fluorescence when irradiated with light. The light 22 passes through an optical filter 23 for transmitting a wavelength effective for measurement and blocking a harmful wavelength to become light 25, which is condensed by a megaphone-shaped condenser tube 24.
[0004]
Then, the light 25 is irradiated to the radiation measuring element 26, and the fluorescent light 28 emitted from the radiation measuring element 26 by this irradiation passes through the light guide glass 27 to the photomultiplier tube 30 for converting light into an electric signal. enter.
[0005]
The light amount of the fluorescent light 28 from the radiation measuring element 26 increases in proportion to the light amount from the light source 21. Before the fluorescent light 28 enters the photomultiplier tube 30, an optical filter 29 for transmitting a wavelength effective for measurement and cutting a harmful wavelength is provided.
[0006]
The overall configuration of the radiation measuring apparatus is described in, for example, Patent Document 1.
[0007]
[Patent Document 1]
JP 2000-503396 A
[Problems to be solved by the invention]
When examining a change in the light amount of the light source in the above-described radiation measuring apparatus, it is necessary to remove the light source unit and measure the light amount using a light meter or the like.
[0009]
However, radiation measurement devices require an optical system as a component, and products with such an optical system are likely to cause problems such as deviation of the optical axis if they are assembled once, disassembled and reassembled. Normally, no later decomposition is performed.
[0010]
Therefore, in the conventional radiation measurement device, it is very difficult to measure the light amount of the light source by disassembling the product and disposing an optical sensor or the like in an optical path.
[0011]
An object of the present invention is to realize a radiation measuring device that can easily measure the light amount of a light source.
[0012]
[Means for Solving the Problems]
The radiation measuring apparatus of the present invention has a plurality of optical filters provided on the front surface of a photomultiplier tube for receiving fluorescence, and allows a part of the optical filters to be inserted and removed.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
FIG. 1 shows a schematic diagram of the configuration of a measuring unit of the radiation measuring apparatus, and FIG. 2 shows a wavelength spectrum diagram for explaining a change in the wavelength of light.
[0015]
First, the case of measuring radiation will be described.
[0016]
For the photostimulated luminescence element 6 made of aluminum oxide, which is excited by radiation and emits blue fluorescent light by irradiating light from a green LED, the wavelength spectrum shown in FIG. Light 2 having 31 is irradiated.
[0017]
This light 2 transmits a wavelength (around the center of 530 nm) that is effective for measurement, that is, contributes to the generation of fluorescence of the photostimulated luminescence element 6, and is harmful to measurement, that is, sensitivity to the photomultiplier tube 12. 2 through the yellow optical filter 3 (φ50 mm × 9 mm) for cutting a wavelength band (490 nm or less) that becomes a noise component with respect to the fluorescence from the photostimulated luminescence element 6. It becomes light 5 having.
[0018]
The light 5 is condensed (φ5 mm) and radiated to the central portion of the photostimulable luminescence element 6 by a megaphone-shaped aluminum condenser tube 4. As a result, fluorescent light 8 having the wavelength spectrum 33 shown in FIG. 2 is generated from the photostimulated luminescent element 6, and this fluorescent light 8 passes through the light guide glass 7 to the photomultiplier tube 12 for converting light into an electric signal. enter. The wavelength spectrum 34 in FIG. 2 is light that the light source 1 has passed through the yellow optical filter 3 and becomes a noise component, but enters the photomultiplier tube 12 through the light guide glass 7 like the fluorescent light 8. Here, the light amount of the fluorescent light 8 from the photostimulable luminescence element 6 is proportional to the light amount obtained by subtracting the light amount of the light source 1 passing through the yellow optical filter 3 from the light amount of the light source 1.
[0019]
Further, before the fluorescent light 8 enters the photomultiplier tube 12, a wavelength effective for measurement, that is, the fluorescent light 8 from the photostimulated luminescence element 6 is transmitted, and a wavelength harmful to the measurement, that is, a yellow optical filter emitted from the light source 1 In order to cut off the light passing through 3, two filters having the same material but different thicknesses are provided. One of the two filters is a blue optical filter 9 (φ30 mm × 3 mm), and the other is a blue optical filter 11 (φ30 mm × 6 mm). The thicknesses of these blue optical filters are determined so that the wavelength spectrum 34 of FIG. 2 which is a noise component can be completely cut.
[0020]
The photomultiplier tube 12 measures the amount of light of the wavelength spectrum 35 shown in FIG. 2 transmitted through these blue optical filters by photon counting, generates a pulse in proportion to the amount of light, and is determined in advance by experiment from the count value. The exposure dose (mSv) of the photostimulable luminescence element 6 is obtained using the conversion coefficient between the count value (count) and the dose (mSv).
[0021]
Next, a case where the light amount of the light source 1 is measured will be described.
[0022]
In order to measure the light amount of the light source 1, the photostimulable luminescent element 6 is not placed, that is, the photostimulable luminescent element 6 is moved to the position 13 and the blue optical filter which is one of the two blue optical filters is further removed. The filter 9 is removed from the optical path by a shutter mechanism using a solenoid and moved to a position 10. As a result, no fluorescent light 8 having the wavelength spectrum 33 shown in FIG. 2 is generated from the photostimulated luminescence element 6.
[0023]
Then, the light 2 emitted from the light source 1 and having the wavelength spectrum 31 shown in FIG. 2 passes through the yellow optical filter 3 and becomes the light 5 having the wavelength spectrum 32 shown in FIG. Further, one of the two blue optical filters is attenuated by the blue optical filter 11 (φ30 mm × 6 mm) provided near the photomultiplier tube 12 and has the wavelength spectrum 36 shown in FIG. It becomes light and enters the photomultiplier tube 12.
[0024]
The light that has entered the photomultiplier tube 12 is subjected to photon count measurement, and a pulse is generated by the photomultiplier tube 12 in proportion to the amount of light, and the count value of the pulse is measured.
[0025]
As described above, the light amount change rate after the use of the light source 1 can be managed based on the initial count value. For example, a management reference value of −10% is provided for the initial light amount (count value), and when the management reference value falls below this, the LED is replaced.
[0026]
In this embodiment, two blue optical filters are provided before entering the photomultiplier tube 12, and when measuring the light amount of the light source 1, one of the blue optical filters is removed and one is left. This is because the photomultiplier tube 12 has good measurement sensitivity, and attenuating means for preventing the output characteristics of the photomultiplier tube 12 from saturating when strong light is incident and making accurate measurement impossible. In this example, one blue optical filter is provided, and one of the blue optical filters is left so as to have an appropriate intensity. Therefore, when it is not necessary to attenuate the light amount of the light source 1 depending on the state of the light source 1, both blue optical filters may be removed and measurement may be performed without the blue optical filter.
[0027]
【The invention's effect】
As is apparent from the above description, according to the present invention, it is possible to easily monitor the change in the light amount of the light source that is proportional to the amount of fluorescence of the radiation measuring element, thereby realizing a radiation measuring device capable of high-accuracy measurement it can.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of a measuring section of a radiation measuring apparatus according to the present embodiment. FIG. 2 is a wavelength spectrum diagram of the present embodiment. FIG. 3 is a schematic diagram of a measuring section of a conventional radiation measuring apparatus.
Reference Signs List 1 light source 2 light 3 yellow optical filter 4 condenser tube 5 light 6, 13 photostimulated luminescence element 7 light guide glass 8 fluorescent light 9, 10 blue optical filter 11 blue optical filter 12 photomultiplier tube 21 light source 22 light 23 optical filter 24 Condenser tube 25 light 26 radiation measuring element 27 light guide glass 28 fluorescence 29 optical filter 30 photomultiplier tube 31 wavelength spectrum 32 wavelength spectrum 33 wavelength spectrum 34 wavelength spectrum 35 wavelength spectrum 36 wavelength spectrum

Claims (8)

光源からの光による光刺激により発生する放射線測定素子からの蛍光を光電子増倍管で測定する装置において、前記光源の光量を測定する場合に、前記光電子増倍管の入射部の前に設けられた光学フィルタのシャッタリングを行うことを特徴とする放射線測定装置。In an apparatus for measuring fluorescence from a radiation measuring element generated by photostimulation by light from a light source with a photomultiplier tube, when measuring the light amount of the light source, the device is provided in front of the entrance of the photomultiplier tube. A radiation measuring apparatus for performing shuttering of an optical filter. 光学フィルタは近接して設けられた複数の光学フィルタからなり、少なくとも1つの光学フィルタのシャッタリングを行う請求項1記載の放射線測定装置。2. The radiation measurement apparatus according to claim 1, wherein the optical filter includes a plurality of optical filters provided in close proximity to each other, and performs shuttering of at least one optical filter. 光源が高輝度緑色LEDであることを特徴とする請求項1または2記載の放射線測定装置。3. The radiation measuring apparatus according to claim 1, wherein the light source is a high-luminance green LED. 光源が複数のLEDの集合体であることを特徴とする請求項1または2記載の放射線測定装置。3. The radiation measuring apparatus according to claim 1, wherein the light source is an aggregate of a plurality of LEDs. 放射線測定素子が光刺激ルミネッセンス材料であることを特徴とする請求項1または2記載の放射線測定装置。3. The radiation measuring device according to claim 1, wherein the radiation measuring element is a photostimulable luminescent material. 光刺激ルミネッセンス材料が酸化アルミニウムであることを特徴とする請求項5記載の放射線測定装置。The radiation measuring apparatus according to claim 5, wherein the photostimulable luminescent material is aluminum oxide. 光学フィルタが青色光学フィルタであることを特徴とする請求項1または2記載の放射線測定装置。3. The radiation measuring apparatus according to claim 1, wherein the optical filter is a blue optical filter. ソレノイドによりシャッタリングが行われることを特徴とする請求項1または2記載の放射線測定装置。3. The radiation measuring apparatus according to claim 1, wherein shuttering is performed by a solenoid.
JP2002330544A 2002-11-14 2002-11-14 Radiation measurement instrument Pending JP2004163307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330544A JP2004163307A (en) 2002-11-14 2002-11-14 Radiation measurement instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330544A JP2004163307A (en) 2002-11-14 2002-11-14 Radiation measurement instrument

Publications (1)

Publication Number Publication Date
JP2004163307A true JP2004163307A (en) 2004-06-10

Family

ID=32808210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330544A Pending JP2004163307A (en) 2002-11-14 2002-11-14 Radiation measurement instrument

Country Status (1)

Country Link
JP (1) JP2004163307A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517472A (en) * 2010-01-12 2013-05-16 ランダウアー インコーポレイテッド Optical system for dosimeter reader
JP2013245292A (en) * 2012-05-25 2013-12-09 Futaba Corp Ultraviolet light-emitting material and ultraviolet light source
JP2015528102A (en) * 2012-06-22 2015-09-24 ランダウアー インコーポレイテッド Method and apparatus for rapid determination of unknown radiation dose
CN109374258A (en) * 2018-09-26 2019-02-22 苏州长光华医生物医学工程有限公司 A kind of photomultiplier tube test structure and luminous value measurement method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013517472A (en) * 2010-01-12 2013-05-16 ランダウアー インコーポレイテッド Optical system for dosimeter reader
JP2013245292A (en) * 2012-05-25 2013-12-09 Futaba Corp Ultraviolet light-emitting material and ultraviolet light source
JP2015528102A (en) * 2012-06-22 2015-09-24 ランダウアー インコーポレイテッド Method and apparatus for rapid determination of unknown radiation dose
CN109374258A (en) * 2018-09-26 2019-02-22 苏州长光华医生物医学工程有限公司 A kind of photomultiplier tube test structure and luminous value measurement method

Similar Documents

Publication Publication Date Title
Yukihara et al. Spectroscopy and optically stimulated luminescence of Al2O3: C using time-resolved measurements
US9006663B2 (en) Radiation dosimeter detection system and method
JP5816542B2 (en) Dose rate measurement system and dose rate measurement method
WO2005008287A1 (en) Thermal netron flux monitor
US10386499B2 (en) Device for determining a deposited dose and associated method
Marrone Radiation‐induced luminescence in silica core optical fibers
Alharbi et al. Benchmarking a novel inorganic scintillation detector for applications in radiation therapy
JP2004163307A (en) Radiation measurement instrument
EP3321714B1 (en) Radiation monitor
JP2017161378A (en) Radiation monitor and radiation measuring method
JP6420637B2 (en) Radiation measuring apparatus and measuring method thereof
US20120313011A1 (en) Method of measuring luminescence of a material
Oresegun et al. Radioluminescence of silica optical fibre scintillators for real-time industrial radiation dosimetry
RU2399928C1 (en) Method of exciting dosimetric signal of optically stimulated luminescence of ionising radiation detectors based on aluminium oxide
Molina et al. Radioluminescence of rare-earth doped potassium yttrium fluorides crystals
JP2636099B2 (en) Infrared amount measuring method and infrared amount meter
JPH1090414A (en) Radiation intensity distribution measuring device
RU2367978C1 (en) Method for calibration of scintillation circuit
JP2002071811A (en) Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation
WO2022224541A1 (en) Detector and radiation monitor
JP2019219278A (en) Radiation monitor, and radiotherapy device including the same, and radiation monitor method
JP3262149B2 (en) Infrared detector and excitation method thereof
JP3204636B2 (en) Fluorescent glass dosimeter measuring device
JP6663077B2 (en) Radiation monitor
JP5422811B2 (en) Glass dosimeter reader

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041220

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD01 Notification of change of attorney

Effective date: 20050707

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20060829

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Written amendment

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20070403

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070523

A02 Decision of refusal

Effective date: 20070619

Free format text: JAPANESE INTERMEDIATE CODE: A02