JP2002071811A - Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation - Google Patents

Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation

Info

Publication number
JP2002071811A
JP2002071811A JP2000265049A JP2000265049A JP2002071811A JP 2002071811 A JP2002071811 A JP 2002071811A JP 2000265049 A JP2000265049 A JP 2000265049A JP 2000265049 A JP2000265049 A JP 2000265049A JP 2002071811 A JP2002071811 A JP 2002071811A
Authority
JP
Japan
Prior art keywords
luminescence
light
measured
substance
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000265049A
Other languages
Japanese (ja)
Inventor
Tetsuo Hashimoto
哲夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000265049A priority Critical patent/JP2002071811A/en
Publication of JP2002071811A publication Critical patent/JP2002071811A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a luminescence measuring method and a device for the measurement with easy handling and capable of measuring history of a measurement target substance with more accuracy. SOLUTION: This device measuring the history of the measurement target substance by radiation luminescence is characterized by that it has a measurement target substance container carrying means 1 controlling a measurement target substance container SC holding the measurement target substance to move it to an X-ray irradiating position XP and an excitation energy applying position, exciting means 2 and 3 exciting the measurement target substance and causing it to emit luminescence light, a luminescence light measuring means 5 measuring intensity of the emitted luminescence light as an absolute value and having a member shutting out noise due to heat and light from outside, a luminescence light guiding means LG comprising a member 6 transmitting the luminescence light from the measurement target substance to the luminescence light measuring means and shutting out generation of noise due to heat and light from the outside and the exiting means and a luminescence light guiding member 4 transmitting the luminescence light held by the member 6 without diffusing it, and an X-ray irradiator 7 causing a known accumulated age equivalent radiation dose to accumulate on the measurement target substance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、同一の被測定物質
を用いて、ルミネセンス測定と複数回の既知量のX線照
射線量による放射線の蓄積と該照射後のルミネセンスの
測定を繰り返し行い、高精度に蓄積放射線を測定するこ
とにより該被測定物質の履歴を計測する方法および計測
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention repeatedly performs luminescence measurement, accumulation of radiation with a plurality of known doses of X-rays, and measurement of luminescence after the irradiation using the same substance to be measured. The present invention relates to a method and a measuring device for measuring the history of a substance to be measured by measuring accumulated radiation with high accuracy.

【0002】[0002]

【従来の技術】天然放射線由来の天然蓄積線量の測定
は、地質学・考古学方面の年代や被熱被圧などの環境評
価やエネルギー資源としてのウランやトリウムの探査に
とって有用であり、また、人工放射線量の蓄積線量の測
定は保健物理での個人被曝管理や放射線事故時の被曝線
量評価にとって不可欠である。放射線誘起ルミネセンス
の観測は、加熱に伴う熱ルミネセンス(Thermoluminesc
encer,TL)と共に、光照射に伴う光励起ルミネセンス
(Optically stimulated luminescence,OSL)が利用さ
れている。近年、堆積地層や焼成考古遺跡から抽出した
石英や長石粒子をもとに、同一試料に手を加えることな
く、ルミネセンス測定と既知量放射線照射を繰り返し行
い、高精度の蓄積放射線を求める、単一分画(Single a
liquot)法がベストであることが分かってきている。こ
のように、繰り返し測定と既知量放射線照射を行うに
は、照射用放射線源を備えたルミネセンス測定器が必要
となる。この種の市販の測定器は前記既知量の放射線照
射装置としてRI線源(Sr−Y−90β線源)を装備
したものである。しかし、RI線源の取り扱いの法的規
制が厳しいことから、前記既知量放射線照射装置を備え
た測定器は容易に導入できなし、実際の取り扱いも非常
に神経を使うことになる。
2. Description of the Related Art Measurement of natural accumulated dose derived from natural radiation is useful for geological and archeological ages and for environmental evaluation such as heat exposure and exploration of uranium and thorium as energy resources. The measurement of the accumulated dose of the artificial radiation dose is indispensable for the management of personal exposure in health physics and the evaluation of the exposure dose in case of radiation accident. Observation of radiation-induced luminescence is based on thermoluminescence (Thermoluminesc
encer, TL), optically stimulated luminescence (OSL) accompanying light irradiation is used. In recent years, based on quartz and feldspar particles extracted from sedimentary strata and calcined archeological sites, luminescence measurement and irradiation of known doses are repeatedly performed without altering the same sample to obtain highly accurate accumulated radiation. Single fraction (Single a
liquot) method has proven to be the best. As described above, in order to perform the repeated measurement and the irradiation of the known amount of radiation, a luminescence measuring device having a radiation source for irradiation is required. This type of commercially available measuring instrument is equipped with an RI radiation source (Sr-Y-90β radiation source) as the known amount of radiation irradiating device. However, due to strict legal regulations on the handling of the RI source, a measuring instrument equipped with the known radiation irradiation device cannot be easily introduced, and the actual handling is extremely nervous.

【0003】また、本発明者は、放射線誘起ルミネセン
スの発光機構を基本から追求し、その中で、天然石英粒
子(アルミニウムなどの微量不純物を含み、その不純物
量、存在形態は産出地域、該天然石英の受けた熱履歴な
どににより違いがある。)から赤色ルミネセンスがある
ことを発見することができた。天然鉱物の測定をしてい
る中で、我が国の火山起源石英粒子および被熱土器や古
窯からの石英粒子からは赤色ルミネセンスが顕著である
ことを見出した。この実験結果から、赤色ルミネセンス
などを検出波長域とするルミネセンス測定が有用である
ことを知得した。
In addition, the present inventor has pursued the emission mechanism of radiation-induced luminescence from the basics. Among them, natural quartz particles (including trace impurities such as aluminum, the amount of the impurities and the existence form thereof are determined by the production area, There is a difference depending on the thermal history of natural quartz, etc.), and it was found that there was red luminescence. In the measurement of natural minerals, we found that red luminescence was remarkable from volcanic quartz particles in Japan and quartz particles from heated earthenware and old kilns. From these experimental results, it was found that luminescence measurement using red luminescence or the like as a detection wavelength range is useful.

【0004】しかしながら、市販の測定器の多くは赤色
ルミネセンスの測定手段を持っておらず、測定ルミネセ
ンスは青色スペクトル領域に限られていた。これに対
し、前記したように天然、および人工の被測定物質に
は、火山活動や焼成作用の履歴を持ったものが多く、こ
れらは長波長領域の赤色ルミネッセンスを測定手段とし
て用いることが有用である。
However, many commercially available measuring instruments do not have a means for measuring red luminescence, and the measured luminescence is limited to the blue spectral region. On the other hand, as described above, many of natural and artificial substances to be measured have a history of volcanic activity and firing action, and it is useful to use red luminescence in a long wavelength region as a measuring means. is there.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、前記
RI線源を必要とすることなく、かつ赤色ルミネッセン
スの測定を可能とすることにより、高精度に蓄積放射線
を測定し、該被測定物質の履歴を計測する方法および該
計測方法用の計測装置を提供することである。本発明者
は、前記測定方法および該方法を実現する測定装置を開
発すべくRI線源に替わる既知量の放射線蓄積手段およ
び赤色ルミネセンスをノイズを少なくして測定する手段
を検討する中で、小型のX線発生手段が既知量の放射線
蓄積手段として有用であること、被測定物質から放出さ
れるルミネセンス光を効率よくルミネセンス光測定手段
に伝達するルミネセンス光ガイド手段を用いること、お
よび被測定試料を効率的に加熱、冷却する手段を開発す
ることにより、前記課題を解決できることを発見した。
SUMMARY OF THE INVENTION An object of the present invention is to measure the accumulated radiation with high accuracy by eliminating the need for the above-mentioned RI source and enabling the measurement of red luminescence. An object of the present invention is to provide a method for measuring the history of a substance and a measuring device for the measuring method. The present inventor has studied a means for measuring a known amount of radiation storage means and red luminescence with a reduced noise in place of an RI source in order to develop the measurement method and a measurement apparatus for realizing the method, That the small-sized X-ray generation means is useful as a known amount of radiation storage means, and that luminescence light guide means for efficiently transmitting luminescence light emitted from the substance to be measured to the luminescence light measurement means is used, and It has been found that the problem can be solved by developing means for efficiently heating and cooling the sample to be measured.

【0006】[0006]

【課題を解決するための手段】本発明の第1は、被測定
物質の持つ蓄積放射線を、励起手段からの外部エネルギ
ーで励起してそれにより放出される近紫外から近赤外の
ルミネセンスの強さを絶対値として測定し、次いで該被
測定物質に既知の(蓄積年相当前後)放射線量を蓄積さ
せるX線照射をした後に前記励起手段による外部エネル
ギーで励起し、放出ルミネセンスの強さを測定する操作
を前記X線照射線量を変えて少なくとも2回以上行い、
該被測定試料からのルミネセンスの強さと前記既知の蓄
積年数相当X線照射後のルミネセンスの強さの変化とか
ら被測定物質の蓄積放射線量の蓄積年数を算出すること
を特徴とする放射線ルミネセンスによる被測定試料の履
歴の計測方法である。好ましくは、励起手段からの外部
エネルギーが熱及び/または可視光〜近赤外光であるこ
とを特徴とする前記放射線ルミネセンスによる被測定物
質の履歴の計測方法であり、より好ましくは、被測定物
質から放出される励起ルミネセンスを該ルミネセンスの
強さを測定するルミネセンス測定手段まで伝送するの
に、外部からの熱及び光によるノイズを遮断する部材に
より保持された該ルミネセンス光を伝送する導波路内に
拘束して伝達することを特徴とする前記各放射線ルミネ
センスによる被測定物質の加熱や経過時間などに関した
履歴の計測方法である。
A first aspect of the present invention is to excite stored radiation of a substance to be measured with external energy from an excitation means and emit near-ultraviolet to near-infrared luminescence. The intensity is measured as an absolute value, and then the substance to be measured is irradiated with X-rays for accumulating a known (approximately equivalent to the accumulation year) radiation dose, and then excited by external energy by the excitation means, and the emission luminescence intensity Is performed at least twice by changing the X-ray irradiation dose,
Calculating the accumulated years of accumulated radiation dose of the substance to be measured from the intensity of luminescence from the sample to be measured and the change in luminescence intensity after X-ray irradiation corresponding to the known accumulated years. This is a method for measuring the history of a sample to be measured by luminescence. Preferably, the external energy from the excitation means is heat and / or visible light to near-infrared light, and the method is a method for measuring the history of a substance to be measured by the radioluminescence. In order to transmit the excited luminescence emitted from the substance to the luminescence measuring means for measuring the intensity of the luminescence, the luminescence light held by the member that blocks noise due to external heat and light is transmitted. A method for measuring a history related to heating of a substance to be measured, elapsed time, and the like by each of the above-described radiation luminescences, wherein the measurement is performed by constraining the transmission within a waveguide to be transmitted.

【0007】本発明の第2は、被測定物質を保持する被
測定物質容器をX線照射位置XPおよび励起エネルギー
付与位置に制御して移動させる被測定物質容器保持移動
手段、該被測定物質を光密中で励起しルミネセンス光を
放出させる励起手段、該放出ルミネセンス光の強さを絶
対値として測定する、外部からの熱及び光によるノイズ
を遮断する部材を持つルミネセンス光測定手段、該ルミ
ネセンス光を被測定物質から該ルミネセンス光測定手段
まで伝達し、該励起手段及び外部からの熱及び光による
ノイズの発生を遮断する部材、および該部材に保持され
たルミネセンス光を拡散させることなく伝送するルミネ
センス光ガイド部材からなるルミネセンス光ガイド手
段、及び該被測定物質に光密中で既知の蓄積年相当放射
線量を蓄積させるX線照射装置を有することを特徴とす
る放射線ルミネセンスによる被測定物質の履歴の計測装
置である。好ましくは、外部からの熱及び光によるノイ
ズを遮断する部材を持つルミネセンス光の強さを絶対値
として測定する手段が、冷却手段を備えた槽付き光電子
増倍管であることを特徴とする前記放射線ルミネセンス
による被測定物質の履歴の計測装置であり、より好まし
くは、励起手段及び外部からの熱及び光ノイズを遮断す
る部材、および該部材に保持されたルミネセンス光を拡
散させることなく伝送するルミネセンス光ガイド部材か
らなるルミネセンス光ガイド手段は、熱及び光によるノ
イズを遮断する部材中にルミネセンス光取り入れ口及び
伝送されたルミネセンス光をルミネセンス光測定手段に
伝える光取り出し口を除いて埋設されたルミネセンス光
ガイド部材を有するものであることを特徴とする前記各
放射線ルミネセンスによる被測定物質の履歴の計測装置
であり、さらに好ましくは、熱及び光によるノイズを遮
断する部材が黒色弾性部材であり、ルミネセンス光ガイ
ド部材が耐熱性コア−クラッド型ロッドまたはファイバ
ーであることを特徴とする前記各放射線ルミネセンスに
よる被測定物質の履歴の計測装置であり、一層好ましく
は、該被測定試料を熱励起する手段が集中して450℃ま
での加熱および測定後の室温迄の迅速空冷が可能な細板
状セラミックの端面が被測定試料容器の加熱に提供され
るように多重積層され、かつ多重積層端面が該試料容器
底面積より小さくなるように構成したセラミックヒータ
であることを特徴とする前記各放射線ルミネセンスによ
る被測定物質の履歴の計測装置である。
A second object of the present invention is to provide a substance container holding and moving means for controlling and moving a substance container holding a substance to be measured to an X-ray irradiation position XP and an excitation energy applying position. Exciting means for emitting luminescence light when excited in light tightness, measuring the intensity of the emitted luminescence light as an absolute value, luminescence light measuring means having a member for blocking noise due to external heat and light, A member for transmitting the luminescence light from the substance to be measured to the luminescence light measurement means, for blocking generation of noise due to heat and light from the excitation means and the outside, and a member for diffusing the luminescence light held by the member; A luminescent light guide means comprising a luminescent light guide member for transmitting without causing the X-ray to accumulate a radiation equivalent to a known accumulation year in the substance to be measured in a light-tight manner; A history of the measurement device of a measured substance by radiation luminescence, characterized in that it comprises an illumination device. Preferably, the means for measuring, as an absolute value, the intensity of the luminescence light having a member for blocking noise due to heat and light from the outside is a photomultiplier tube with a tank provided with a cooling means. It is a measurement device of the history of the substance to be measured by the radiation luminescence, more preferably, a member that shuts off heat and optical noise from the excitation means and the outside, and without diffusing the luminescence light held by the member The luminescent light guide means, which comprises a luminescent light guide member for transmission, has a luminescence light intake port and a light output port for transmitting the transmitted luminescence light to the luminescence light measurement means in a member that blocks noise due to heat and light. Characterized by having a luminescent light guide member buried except for It is an apparatus for measuring the history of constant substances, and more preferably, the member that blocks noise due to heat and light is a black elastic member, and the luminescent light guide member is a heat-resistant core-clad rod or fiber. The apparatus for measuring the history of a substance to be measured by each of the above-mentioned radiation luminescence, more preferably, means for thermally exciting the sample to be measured is concentrated to heating to 450 ° C. and rapid air cooling to room temperature after measurement. A ceramic heater configured such that the end faces of the thin plate-shaped ceramics capable of being provided are provided for heating the sample container to be measured, and the multi-stacked end faces are smaller than the bottom area of the sample container. The measurement device of the history of the substance to be measured by each of the radiation luminescence.

【0008】更に、ルミネセンス光ガイド手段の光放出
口側とルミネセンス測定手段の該光取込側との間に、励
起手段からの励起エネルギーをカットするフィルター手
段を有することを特徴とする前記各放射線ルミネセンス
による被測定物質の履歴の計測装置であり、また、ルミ
ネセンス光ガイド部材を構成する耐熱性コア−クラッド
ロッドまたはファイバーが励起手段からの励起エネルギ
ー光をカットするフィルター機能を有することを特徴と
する前記各放射線ルミネセンスによる被測定物質の履歴
の計測装置である。
[0008] Further, a filter means for cutting the excitation energy from the excitation means is provided between the light emission port side of the luminescence light guide means and the light intake side of the luminescence measurement means. A device for measuring the history of a substance to be measured by each radiation luminescence, and a heat-resistant core-clad rod or fiber constituting a luminescence light guide member has a filter function of cutting excitation energy light from excitation means. The apparatus for measuring the history of a substance to be measured by each of the radiation luminescence.

【0009】[0009]

【本発明の実施の態様】A.図1を参照しながら説明す
る。図1の1は、被測定物質容器SCをX線照射位置X
P、励起エネルギー付与位置EPに制御して(制御装置
にプログラムされた工程により)移動させる被測定物質
容器保持移動手段であり、ここではターンテーブル状で
あり、16個の被測定物質(試料という場合もある)を
同時に配置して、測定することが可能になっている。該
被測定物質容器保持移動手段における同時に配置、測定
可能な個数は適宜増減できる。該被測定物質容器保持移
動手段1は、被測定物質が加熱酸化を受けないように不
活性ガス、例えば窒素ガス気流中に配置するのが好まし
い。また、ターンテーブルなど、光の影響を受ける装置
は、X線照射用および被測定物質からのルミネセンス伝
達用の開口を持つボックス内に光密に配置されている。
被測定物質の形状は、粒子状でもタブレット状でも良
い。励起エネルギー付与位置EPでは、熱的に励起する
態様のために、クラスタヒータからなる加熱手段2によ
り、被測定物質が入れられた被測定物質容器SC(試料
容器という場合もある。)を被測定物質容器保持移動手
段1から浮かせた状態で、集中的に加熱している。これ
により該移動手段が加熱され、黒体輻射により赤色ルミ
ネセンス測定手段へ「ノイズ」(黒体輻射など)が加わ
るのを防止できる。加熱手段の付近には冷却気体を送風
する装置(ファン、図示なし)を設け被測定物質の迅速
冷却を実現するようにすることが好ましい。3は励起手
段として光、例えば青色レーザ(半導体レーザ)を用い
る場合を示している。照射エネルギーは該被測定物質あ
たりほぼ5mW/cm2であり、該被測定物質と半導体
レーザホールダとの距離や作用電流値を変化させること
で調整できる。
DETAILED DESCRIPTION OF THE INVENTION This will be described with reference to FIG. In FIG. 1, reference numeral 1 denotes an X-ray irradiation position X
P, a substance-to-be-measured container holding / moving means for controlling (by a step programmed in the control device) to move to the excitation energy applying position EP, which has a turntable shape here, and has 16 substance to be measured (referred to as a sample). In some cases) can be simultaneously placed and measured. The number that can be simultaneously arranged and measured in the substance-to-be-measured container holding and moving means can be appropriately increased or decreased. The substance-to-be-measured container holding / moving means 1 is preferably arranged in an inert gas, for example, a nitrogen gas stream so that the substance to be measured is not subjected to thermal oxidation. Devices that are affected by light, such as a turntable, are light-tightly arranged in a box having an opening for X-ray irradiation and for transmitting luminescence from a substance to be measured.
The shape of the substance to be measured may be a particle shape or a tablet shape. At the excitation energy applying position EP, the substance to be measured container SC (also referred to as a sample container) containing the substance to be measured is measured by the heating means 2 composed of a cluster heater in order to thermally excite it. The material is heated intensively while floating from the substance container holding and moving means 1. As a result, the moving means is heated, so that "noise" (such as black body radiation) can be prevented from being applied to the red luminescence measuring means by black body radiation. It is preferable to provide a device (fan, not shown) for blowing cooling gas near the heating means so as to realize rapid cooling of the substance to be measured. Reference numeral 3 denotes a case where light, for example, a blue laser (semiconductor laser) is used as the excitation means. The irradiation energy is approximately 5 mW / cm 2 per substance to be measured, and can be adjusted by changing the distance between the substance to be measured and the semiconductor laser holder and the value of the operating current.

【0010】被測定物質から放出されるルミネセンス光
は、熱及び光ノイズを遮断する部材6(例えば、耐熱性
黒色ゴム材料製の部材、ネオプレン(登録商標)、耐熱
性シリコンゴム等)に埋設されたルミネセンス光ガイド
部材LG(光ガイド手段4)によって、ルミネセンス測
定手段5の光取り入れ口まで導かれる。このような、光
ガイド部材を用いることにより、従来の紫外域から赤外
域までの光に対して透過率の高い真空セル型石英窓を利
用する場合に比べて、断熱効果、取り扱い性および光の
伝送効率が格段(およそ30倍以上)に改善できた。7
は、被測定物質に既知量のX線を照射し既知量の蓄積放
射線を蓄積させるX線照射装置であり、機能的には従来
のRI線源に代替するものであるが、取り扱い性の面か
らは格段の改善になる。出力としては、10〜50W
(ワット)の小型のものでよい。本発明の最も改善され
た装置は、前記各特徴的手段および装置を組み合わせた
ものであり、特に、試料に既知量の放射線を蓄積させる
手段として小型のX線発生装置を用いたこと、ルミネセ
ンス光を熱及び光ノイズを遮断する部材6に埋設された
ルミネセンス光ガイド部材LGによりルミネセンス光測
定手段5へ導くようにして、熱に起因する該測定器への
影響を取り除くことができるとともに、被測定物質から
ルミネセンス光測定装置へルミネセンス光を伝達する際
のルミネセンス光が拡散などにより減衰する不都合を取
り除くことができるという顕著な効果がもたらされる。
The luminescent light emitted from the substance to be measured is embedded in a member 6 (for example, a member made of a heat-resistant black rubber material, neoprene (registered trademark), a heat-resistant silicon rubber, etc.) for blocking heat and optical noise. The luminescent light guide member LG (light guide means 4) is guided to the light intake of the luminescence measuring means 5. By using such a light guide member, the heat insulating effect, the handleability, and the light transmittance can be reduced as compared with the case where a conventional vacuum cell type quartz window having a high transmittance for light in the ultraviolet to infrared ranges is used. The transmission efficiency was remarkably improved (about 30 times or more). 7
Is an X-ray irradiator that irradiates a substance to be measured with a known amount of X-rays and accumulates a known amount of accumulated radiation. Although it is functionally an alternative to the conventional RI source, it is difficult to handle. From then it will be a remarkable improvement. As output, 10-50W
(Watts) may be small. The most improved apparatus of the present invention is a combination of each of the above-mentioned characteristic means and apparatuses. In particular, the use of a small X-ray generator as a means for accumulating a known amount of radiation in a sample, the luminescence, Light is guided to the luminescence light measuring means 5 by the luminescence light guide member LG buried in the member 6 that blocks heat and light noise, so that the influence of the heat on the measuring instrument can be removed. In addition, a remarkable effect can be obtained in that the inconvenience that the luminescence light when transmitting the luminescence light from the substance to be measured to the luminescence light measuring device is attenuated by diffusion or the like can be eliminated.

【0011】更に、本発明の装置においては、被測定物
質を熱励起する手段として、被測定物質容器の底面積か
らはみ出ない状態で集中して450℃までの加熱および測
定後の室温迄の迅速冷却が可能に工夫する、例えば、加
熱手段2として、細板状セラミックの端面が被測定試料
容器の加熱に提供されるように多重積層され、かつ多重
積層端面が該試料容器底面積より小さくなるように構成
したセラミックヒータ(クラスタヒータと呼ぶ。)を用
い、ファンによる冷却と組み合わせることにより、被測
定物質の集中加熱、および迅速冷却が可能になった。例
えば、セラミックスヒータの具体的構成は、32Wの板
状ヒータを4枚積層(120W)してその端面を加熱に
用い、更に該セラミックヒータの先端を熱伝導性の良い
金属、例えば真鍮あるいは銀板で覆う構成にし、被測定
物質の容器底面積に比べて加熱面を小さくすると共に黒
体輻射を抑制されるようにした。出力としては100±
30W程度であり、450℃までの等速昇温が可能とな
る。更に、被測定物質の容器本体SMの周囲に黒雲母製
のつば状物MBを取り付け(例えば接着により)て(例
えば図3)、加熱部材による黒体放射光がルミネセンス
測定手段に到達するのを防いでいる。
Further, in the apparatus according to the present invention, as means for thermally exciting the substance to be measured, the substance is concentrated to a temperature of 450 ° C. without protruding from the bottom area of the substance to be measured and quickly to room temperature after the measurement. For example, as the heating means 2, the end face of the thin plate-shaped ceramic is multiply stacked so as to be provided for heating the sample container to be measured, and the multiply stacked end face becomes smaller than the bottom area of the sample container. By using a ceramic heater (referred to as a cluster heater) configured as described above and combining with cooling by a fan, concentrated heating and rapid cooling of a substance to be measured can be performed. For example, a specific configuration of the ceramic heater is to stack four (32 W) plate heaters each having a capacity of 32 W (120 W), use the end surfaces of the heaters for heating, and further form a tip of the ceramic heater with a metal having good heat conductivity, such as a brass or silver plate The heating surface is made smaller than the container bottom area of the substance to be measured, and blackbody radiation is suppressed. The output is 100 ±
It is about 30 W, and the temperature can be raised at a constant speed up to 450 ° C. Further, a biotite-made brim-shaped material MB is attached (for example, by bonding) to the periphery of the container body SM of the substance to be measured (for example, by bonding) so that the black body radiation light from the heating member reaches the luminescence measuring means. Is preventing.

【0012】8は、本測定装置を制御する装置であり、
9は温度制御装置であり、10は電子発光の電圧電流を
制御する装置である。
Reference numeral 8 denotes a device for controlling the measuring device.
Reference numeral 9 denotes a temperature control device, and reference numeral 10 denotes a device for controlling voltage and current of electroluminescence.

【0013】熱及び光ノイズを遮断する部材6は、耐熱
性、低熱伝導性であり、測定ルミネセンス光を透過しな
い材料であれば良く、市販の光学ロッドや光学ファイバ
ーの保護層の形成に使われている、耐熱性黒色材料を使
用できる。また、熱及び光ノイズを遮断する部材は、光
ノイズを防止する光吸収層と熱を遮断する断熱層との2
層構造とすることもできる。ルミネセンス光ガイド部材
LGは、近紫外から近赤外を透過させる多成分系ガラス
を用いたものが好ましい。しかしながら、測定するルミ
ネセンス光を透過すれば良いから、例えば赤色ルミネセ
ンスを測定するものと、青色ルミネセンスを測定するも
のでは光ガイド部材を構成する材料の光透過性が異なっ
ていても良い。また、励起手段によるノイズを防ぐため
に、ルミネセンス光ガイド部材とルミネセンス光測定手
段との間に配置されるフィルター11(図1)に代えて
励起手段からのノイズ波長領域光をカットするようにフ
ィルター作用を持たせることもできる。光ガイドの形状
としてはロッド型でも、ファイバーアレイ型でも良い。
また、光ガイドの熱及び光ノイズを遮断する部材6中へ
の配設もアレイ状にすることもできる。また、ルミネセ
ンス光取り入れ側と、ルミネセンス測定手段への取り出
し側での配設の形を、ルミネセンスの検出手段の構造
(例えばアレイ構造)との関連で変えても良い。
The member 6 for blocking heat and optical noise may be made of any material that has heat resistance and low thermal conductivity and does not transmit the measured luminescence light, and is used for forming a protective layer of a commercially available optical rod or optical fiber. It is possible to use a heat-resistant black material. The member that blocks heat and optical noise includes a light absorbing layer that prevents optical noise and a heat insulating layer that blocks heat.
It may have a layered structure. The luminescent light guide member LG preferably uses a multi-component glass that transmits near ultraviolet to near infrared. However, since the luminescence light to be measured only needs to be transmitted, the light transmittance of the material constituting the light guide member may be different between, for example, those measuring red luminescence and those measuring blue luminescence. Further, in order to prevent noise caused by the excitation means, noise in the noise wavelength region from the excitation means is cut off instead of the filter 11 (FIG. 1) disposed between the luminescence light guide member and the luminescence light measurement means. It can also have a filtering effect. The shape of the light guide may be a rod type or a fiber array type.
In addition, the arrangement of the light guide in the member 6 that blocks heat and optical noise can also be arranged in an array. Further, the arrangement of the luminescence light taking-in side and the taking-out side to the luminescence measuring means may be changed in relation to the structure of the luminescence detecting means (for example, an array structure).

【0014】外部からの熱及び光ノイズを遮断する部材
を持つルミネセンス測定手段5としては、冷却手段付、
例えばペルチエ冷却手段付きの光電子増倍管を用いる。
このようなものとしては、光電面としてマルチアルカリ
(Na-K-Sb-Csの組成)を用いた近紫外から近赤外までに
感度を持つもの(浜松ホトニクス(株)社製、R-64
9)、バイアルカリ(Sb-Rb-Csの組成)を用いた近紫外
から青色領域に感度が高いもの(浜松ホトニクス(株)
社製、R-585)を光電面とする光電子増倍管を用いるこ
とができる。絶対値を測定するとは、フォトン数として
測定する(光子計測器)ことを意味する。
The luminescence measuring means 5 having a member for shutting off external heat and optical noise includes cooling means,
For example, a photomultiplier tube with Peltier cooling means is used.
Examples of such materials include those having sensitivity from near ultraviolet to near infrared using a multi-alkali (composition of Na-K-Sb-Cs) as a photocathode (R-64, manufactured by Hamamatsu Photonics KK).
9) High sensitivity in near-ultraviolet to blue region using bi-alkali (Sb-Rb-Cs composition) (Hamamatsu Photonics Co., Ltd.)
A photomultiplier tube having a photocathode of R-585) can be used. To measure the absolute value means to measure as the number of photons (photon meter).

【0015】本発明の測定原理を、放射線蓄積年数を推
定する場合について説明する。図2の横軸は、年の経過
を示す。縦軸は蓄積放射線量(発光強度)単位は積算カ
ウント(フォトン数)であり、自然放射線蓄積年数およ
びX線照射時間に相関する。光増倍管としては浜松ホト
ニクス(株)社製、R-649を用いた。したがって、観察
時点の被測定物質のルミネセンス強度、これに既知量の
X線を照射した後のルミネセンス強度を測定し、該X線
照射量(照射時間対応する)と強度との関係から、前記
測定時点でのルミネセンス強度の放射線蓄積年数を推測
すれば、蓄積放射線開放事象が発生した時期、例えば火
山爆発などの時期を推測できる。また、前記図2とは異
なり、自然蓄積ではなく、事件による大量の放射線被爆
量(例えば原子力施設などでの)、X線の照射を受けた
被測定物質の被曝量(被曝の履歴)を推定することがで
きる。X線照射量と赤色熱ルミネセンスの強度の相関の
標準校正曲線を図4に示す。
The measurement principle of the present invention will be described for the case of estimating the years of radiation accumulation. The horizontal axis in FIG. 2 indicates the passage of the year. The vertical axis indicates the accumulated radiation dose (emission intensity) unit is the integrated count (the number of photons), and correlates with the natural radiation accumulation years and the X-ray irradiation time. R-649 manufactured by Hamamatsu Photonics KK was used as the photomultiplier tube. Therefore, the luminescence intensity of the substance to be measured at the time of observation, and the luminescence intensity after irradiating a known amount of X-rays thereto, are measured, and from the relationship between the X-ray irradiation amount (corresponding to the irradiation time) and the intensity, By estimating the number of years of radiation accumulation of the luminescence intensity at the time of the measurement, it is possible to estimate the time when the accumulated radiation release event occurs, for example, the time of a volcanic eruption. In addition, unlike FIG. 2 described above, the amount of radiation exposure (eg, at a nuclear facility) due to the incident, and the amount of exposure to the substance to be measured (exposure history) that are irradiated with X-rays are estimated instead of natural accumulation. can do. FIG. 4 shows a standard calibration curve of the correlation between the X-ray irradiation dose and the intensity of red thermoluminescence.

【0016】[0016]

【実施例】実施例1 長野県大町産出の火山灰起源の白色鉱物を粉砕し、フッ
酸(48%)を用いて、室温において60分間処理し
た。この処理により長石を溶解除去する。不溶部を分離
して白色石英粉末試料を得た(比重選鉱方法を用いて更
に精製するほうが好ましい。)。これを被測定物質とし
て、金属、例えばアルミニウム製の皿状容器に入れ、図
1に記載の被測定物質容器保持移動手段を構成するター
ンテーブルの被測定物資容器保持用の穴にセットする。
ヒータは前記32Wの板状ヒータを4枚積層(120
W)したものに、温度センサーを取り付けた真鍮板を被
せたものを作成して使用した。図5は、既知量のγ線照
射(5Gy(グレイ)、1Gy=100rad)、および本発明の装
置におけるX−線発生装置7(50ワット)により30
秒、60秒、90秒および120秒照射後における赤色
熱ルミネセンスの大きさを示している。X線照射量と赤
色熱ルミネセンスの強度の相関の標準校正曲線を図4に
示す。図5から得たX線照射量と赤色熱ルミネセンスの
強度の相関の標準校正曲線を図4に示す。図6は、前記
と同じ被測定物質を青色LED(半導体レーザ、発光ピ
ーク値は470nm)照射で得られた、380nm領域
の光励起ルミネセンス(0SL)の減衰曲線を示す。該
減衰曲線の特性は指数関数的に減衰しており、一方石英
粒子への天然蓄積放射線作用に比例して増加ので一定時
間内の積算光励起ルミネセンス強度から、熱ルミネセン
ス法(図2および図4)同様に線量校正曲線を利用し
て、石英粒子の履歴を求めることができる。石英粒子と
共存する長石からの妨害を防ぐため、前もって石英粒子
に分離後十数時間赤外線を照射し、長石由来の光励起ル
ミネセンスを消去することが望ましい(図6中のR60
は、600nmの波長で50%の透過性を示す赤色域ガ
ラスフィルターであり、疑似太陽光源により赤外線領域
を選択して照射できる。)。因みに、ルミネセンス光伝
達手段に代えて、従来から紫外域から赤外域までの光に
対して透過率の高い真空石英窓を用いた場合には、ルミ
ネセンス光の伝達量が小さいために、X線照射による図
5と図6に対応するルミネセンス曲線が特に低放射線量
領域では作成できなかった。
EXAMPLES Example 1 A white mineral originating in volcanic ash from Omachi, Nagano Prefecture was ground and treated with hydrofluoric acid (48%) at room temperature for 60 minutes. This treatment dissolves and removes feldspar. The insoluble portion was separated to obtain a white quartz powder sample (preferably further purified using a specific gravity ore separation method). This is placed in a dish-shaped container made of metal, for example, aluminum, as a substance to be measured, and set in a hole for holding a substance to be measured container of a turntable constituting the means for holding and moving the substance to be measured container shown in FIG.
As the heater, four 32 W plate heaters are laminated (120 heaters).
W) was prepared by covering a brass plate to which a temperature sensor was attached on the processed product. FIG. 5 shows 30 gamma radiation (5 Gy (gray), 1 Gy = 100 rad) with a known amount of gamma radiation and an X-ray generator 7 (50 watts) in the device of the invention.
The magnitude of red thermoluminescence after irradiation for 60 seconds, 90 seconds, and 120 seconds is shown. FIG. 4 shows a standard calibration curve of the correlation between the X-ray irradiation dose and the intensity of red thermoluminescence. FIG. 4 shows a standard calibration curve of the correlation between the X-ray irradiation dose and the red thermoluminescence intensity obtained from FIG. FIG. 6 shows an attenuation curve of photoexcited luminescence (0SL) in the 380 nm region obtained by irradiating the same substance to be measured with a blue LED (semiconductor laser, emission peak value is 470 nm). The characteristics of the decay curve decay exponentially, while increasing in proportion to the effect of naturally accumulated radiation on the quartz particles, so that the integrated photoexcited luminescence intensity within a certain time can be used to determine the thermoluminescence method (FIGS. 2 and 3). 4) Similarly, the history of the quartz particles can be obtained using the dose calibration curve. In order to prevent interference from feldspar coexisting with quartz particles, it is desirable to irradiate the quartz particles in advance with infrared rays for about 10 hours after separation to eliminate photoexcited luminescence derived from feldspar (R60 in FIG. 6).
Is a glass filter in the red region showing 50% transmittance at a wavelength of 600 nm, and can select and irradiate an infrared region with a pseudo-sun light source. ). By the way, in the case where a vacuum quartz window having a high transmittance for light from the ultraviolet region to the infrared region is conventionally used instead of the luminescence light transmission means, the transmission amount of the luminescence light is small. The luminescence curves corresponding to FIG. 5 and FIG. 6 by the line irradiation could not be created especially in the low radiation dose region.

【0017】実施例2 江戸時代の伊万里磁器伊万里片から円盤状薄片試料(直
径9.4mm,1mm厚)を作り、蓄積天然放射線量の推定およ
び年代評価を行った実験結果を述べる。測定方法は、実
施例1の条件と同様に、被測定物質の処理、赤色ルミネ
センス光の測定とX線照射による既知量の放射線の蓄積
の操作を繰り返して、図2に対応する曲線(図7)を描
き被測定物質につき21Gyの蓄積天然放射線量(積算
温度領域260-310℃)および270年の若い年代評価を
行えた。
Example 2 A disk-shaped flake sample (diameter 9.4 mm, 1 mm thick) was prepared from Imari porcelain Imari pieces from the Edo period, and the results of experiments for estimating the accumulated natural radiation dose and estimating the age are described. The measurement method is the same as the condition in Example 1 by repeating the processing of the substance to be measured, the measurement of red luminescence light, and the accumulation of a known amount of radiation by X-ray irradiation, to obtain a curve corresponding to FIG. 7) was drawn, and a 21 Gy accumulated natural radiation dose (accumulated temperature range of 260-310 ° C.) and a young age of 270 could be evaluated for the substance to be measured.

【0018】実施例3 年代既知の火山灰層を挟む上下の層から採取した縄文様
式の土器片から石英粒子を実施例1と同様の処理で抽出
および測定を行い、図2および図4に対応する図8を描
き赤色ルミネセンスにより年代の推定を行った。本装置
により5000年の火山灰層の上下の層からの縄文土器
片の年代値は、3800年と5700+/−1700年
に評価され火山灰層の年代値と調和した結果を示した。
Example 3 Quartz particles were extracted and measured from the Jomon-style earthenware pieces obtained from the upper and lower layers sandwiching the known volcanic ash layer in the same manner as in Example 1, and corresponded to FIGS. 2 and 4. Figure 8 was drawn and the age was estimated by red luminescence. The age values of Jomon pottery pieces from the layers above and below the volcanic ash layer for 5000 years were evaluated in 3800 and 5700 +/- 1700 years, and showed results that were in harmony with the age values of the volcanic ash layer.

【0019】[0019]

【発明の効果】以上述べたように、小型のX線装置と熱
赤外ルミネセンス光測定装置と組み合わせることによ
り、従来のRI線源を用いるものに比べ、簡易でかつ安
全である。また、熱または光励起ルミネセンス光を用い
て初めて、熱履歴を持つ被測定物質の測定が可能にな
る。また、本発明のルミネセンス光ガイド部材を用いる
ことにより、より微弱なルミネセンス光の測定が可能に
なったという優れた効果がもたらされる。
As described above, by combining a small-sized X-ray apparatus and a thermal infrared luminescence light measuring apparatus, it is simpler and safer than one using a conventional RI-ray source. Further, it is possible to measure a substance to be measured having a thermal history only by using heat or photoexcited luminescence light. Further, by using the luminescent light guide member of the present invention, an excellent effect that it is possible to measure weaker luminescent light is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のルミネセンス測定装置の一態様FIG. 1 shows one embodiment of the luminescence measuring device of the present invention.

【図2】 本発明による測定の原理図FIG. 2 is a diagram illustrating the principle of measurement according to the present invention.

【図3】 黒雲母製のつば状物を取り付けた被測定物質
の金属製容器
Fig. 3 Metal container of the substance to be measured, fitted with a biotite brim

【図4】 X線照射量と赤色熱ルミネセンスとの相関FIG. 4 Correlation between X-ray dose and red thermoluminescence

【図5】 大町産火山鉱石中の石英の、X線照射と熱励
起赤色ルミネセンスの特性の相関
Fig. 5 Correlation between the characteristics of X-ray irradiation and thermally excited red luminescence of quartz in Omachi volcanic ore.

【図6】 図5の被測定物質の光励起(青色レーザ)に
よる近紫外ルミネセンス光の減衰特性
6 is a diagram showing attenuation characteristics of near-ultraviolet luminescence light by optical excitation (blue laser) of the substance to be measured in FIG. 5;

【図7】 赤色ルミネセンス(RTL)線量応答曲線を
用いた天然蓄積線量評価〔伊万里磁器片からの円盤状薄
片(タブレット)試料を測定〕
FIG. 7: Evaluation of natural accumulated dose using red luminescence (RTL) dose response curve [Measurement of a disk-shaped tablet sample from Imari porcelain pieces]

【図8】 縄文土器から抽出した石英粒子の赤色熱ルミ
ネセンス(RTL)発光曲線(I)と照射線量応答曲線
(II)
FIG. 8: Red thermoluminescence (RTL) emission curve (I) and irradiation dose response curve (II) of quartz particles extracted from Jomon pottery

【符号の説明】[Explanation of symbols]

1 被測定物質容器保持移動手段 2 加熱手段(クラスタヒータ) 3 光励起手段 4 ルミネセンス光ガイド部材 5 ルミネセンス光測
定手段 6 熱及び光によるノイズの発生を遮断する部材 7
放射線蓄積X線照射装置 8 ルミネセンス測定装置制御装置 9 熱励起電力制
御装置 10 光励起電力装置 11 光学フィルタ SM 容
器本体 MB 黒雲母製のつば状物
REFERENCE SIGNS LIST 1 substance-to-be-measured container holding and moving means 2 heating means (cluster heater) 3 light excitation means 4 luminescence light guide member 5 luminescence light measurement means 6 member for shutting off generation of noise due to heat and light 7
Radiation accumulation X-ray irradiation device 8 Luminescence measurement device control device 9 Thermal excitation power control device 10 Optical excitation power device 11 Optical filter SM Container main body MB Bomb made of biotite

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01N 21/62 G01N 21/62 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) // G01N 21/62 G01N 21/62 A

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 被測定物質の持つ蓄積放射線を、励起手
段(2または3)からの外部エネルギーで励起してそれ
により放出される近紫外から近赤外のルミネセンスの強
さを絶対値として測定し、次いで該被測定物質に既知の
(蓄積年相当)放射線量を蓄積させるX線照射をした後
に前記励起手段による外部エネルギーで励起し、放出ル
ミネセンスの強さを測定する操作を前記X線照射線量を
変えて少なくとも2回以上行い、該被測定物質からのル
ミネセンスの強さと前記既知の蓄積年数相当X線照射後
のルミネセンスの強さの変化とから被測定物質の蓄積放
射線量の蓄積年数を算出することを特徴とする放射線ル
ミネセンスによる被測定物質の履歴の計測方法。
1. Excitation of stored radiation of a substance to be measured by external energy from an excitation means (2 or 3), and the intensity of near-ultraviolet to near-infrared luminescence emitted by the excitation is defined as an absolute value. X-ray irradiation for accumulating a known (equivalent to a storage year) radiation dose on the substance to be measured is followed by excitation with external energy by the excitation means and measurement of the intensity of the emitted luminescence. The irradiation dose is changed at least twice, and the accumulated radiation dose of the substance to be measured is determined based on the luminescence intensity from the substance to be measured and the change in the luminescence intensity after X-ray irradiation corresponding to the known accumulation years. A method for measuring the history of a substance to be measured by radioluminescence, which comprises calculating the number of years of storage.
【請求項2】 励起手段からの外部エネルギーが熱及び
/または可視光〜近赤外光であることを特徴とする請求
項1に記載の放射線ルミネセンスによる被測定物質の履
歴の計測方法。
2. The method according to claim 1, wherein the external energy from the excitation means is heat and / or visible light to near-infrared light.
【請求項3】 被測定物質から放出される励起ルミネセ
ンスを該ルミネセンスの強さを測定するルミネセンス測
定手段まで伝送するのに、外部からの熱及び光によるノ
イズを遮断する部材により保持された該ルミネセンス光
を伝送する導波路内に拘束して伝達することを特徴とす
る請求項1または2に記載の放射線ルミネセンスによる
被測定物質の履歴の計測方法。
3. The transmission of the excited luminescence emitted from the substance to be measured to the luminescence measuring means for measuring the intensity of the luminescence is held by a member that blocks noise due to external heat and light. The method for measuring the history of a substance to be measured by radiation luminescence according to claim 1 or 2, wherein the luminescence light is constrained and transmitted in a waveguide for transmitting the luminescence light.
【請求項4】 被測定物質を保持する被測定物質容器S
CをX線照射位置XPおよび励起エネルギー付与位置に
制御して移動させる被測定物質容器保持移動手段1、該
被測定物質を光密中で励起しルミネセンス光を放出させ
る励起手段(2,3)、該放出ルミネセンス光の強さを
絶対値として測定する、外部からの熱及び光によるノイ
ズを遮断する部材を持つルミネセンス光測定手段5、該
ルミネセンス光を被測定物質から該ルミネセンス光測定
手段まで伝達し、該励起手段及び外部からの熱及び光に
よるノイズの発生を遮断する部材6および該部材に保持
されたルミネセンス光を拡散させることなく伝送するル
ミネセンス光ガイド部材4からなるルミネセンス光ガイ
ド手段LG、及び該被測定物質に光密中で既知の蓄積年
相当放射線量を蓄積させるX線照射装置7を有すること
を特徴とする放射線ルミネセンスによる被測定物質の履
歴の計測装置。
4. A substance to be measured container S for holding a substance to be measured.
A substance container holding and moving means 1 for controlling and moving C to an X-ray irradiation position XP and an excitation energy applying position; an excitation means (2, 3) for exciting the substance to be measured in light tightness and emitting luminescence light ), A luminescence light measuring means 5 having a member for blocking the noise due to heat and light from the outside, which measures the intensity of the emitted luminescence light as an absolute value, and converts the luminescence light from the substance to be measured to the luminescence. A member 6 for transmitting the light to the light measuring means, blocking the generation of noise due to heat and light from the excitation means and the outside, and a luminescent light guide member 4 for transmitting the luminescent light held by the member without diffusing. A luminescent light guide means LG, and an X-ray irradiating device 7 for accumulating a radiation equivalent to a known accumulation year in light-tight on the substance to be measured. The history of the measuring device of the substance to be measured by the luminescence.
【請求項5】 外部からの熱及び光によるノイズを遮断
する部材を持つルミネセンス光の強さを絶対値として測
定する手段が、冷却手段を備えた槽付き光電子増倍管で
あることを特徴とする請求項4に記載の放射線ルミネセ
ンスによる被測定物質の履歴の計測装置。
5. A photomultiplier tube with a cooling means provided with a means for measuring the intensity of luminescence light having a member for blocking noise due to heat and light from the outside as an absolute value. The apparatus for measuring the history of a substance to be measured by radiation luminescence according to claim 4.
【請求項6】 励起手段及び外部からの熱及び光ノイズ
を遮断する部材、および該部材に保持されたルミネセン
ス光を拡散させることなく伝送するルミネセンス光ガイ
ド部材からなるルミネセンス光ガイド手段は、熱及び光
によるノイズを遮断する部材中にルミネセンス光取り入
れ口及び伝送されたルミネセンス光をルミネセンス光測
定手段に伝える光取り出し口を除いて埋設されたルミネ
センス光ガイド部材を有するものであることを特徴とす
る請求項4または5に記載の放射線ルミネセンスによる
被測定物質の履歴の計測装置。
6. A luminescence light guide means comprising: an excitation means, a member for blocking heat and light noise from the outside, and a luminescence light guide member for transmitting the luminescence light held by said member without diffusing. Having a luminescence light guide member buried in a member that blocks noise due to heat and light, except for a luminescence light intake port and a light extraction port that transmits the transmitted luminescence light to the luminescence light measurement means. The apparatus for measuring the history of a substance to be measured by radiation luminescence according to claim 4 or 5, wherein:
【請求項7】 熱及び光によるノイズを遮断する部材が
黒色弾性部材であり、ルミネセンス光ガイド部材が耐熱
性コア−クラッド型ロッドまたはファイバーであること
を特徴とする請求項4、5、または6に記載の放射線ル
ミネセンスによる被測定物質の履歴の計測装置。
7. The member for blocking noise due to heat and light is a black elastic member, and the luminescent light guide member is a heat-resistant core-clad rod or fiber. 7. An apparatus for measuring the history of a substance to be measured by radioluminescence according to 6.
【請求項8】 該被測定試料を熱励起する手段が集中し
て450℃までの加熱および測定後の室温迄の迅速空冷が
可能な細板状セラミックの端面が被測定試料容器の加熱
に提供されるように多重積層され、かつ多重積層端面が
該試料容器底面積より小さくなるように構成したセラミ
ックヒータであることを特徴とする請求項4、5、6ま
たは7に記載の放射線ルミネセンスによる被測定物質の
履歴の計測装置。
8. An end face of a thin plate-shaped ceramic capable of heating to 450 ° C. and rapidly cooling to room temperature after measurement by concentrating means for thermally exciting the sample to be measured is provided for heating the sample container to be measured. 8. A ceramic heater according to claim 4, 5, 6 or 7, wherein the ceramic heater is a multi-layered ceramic heater having a multi-layered end face smaller than the bottom area of the sample container. Measurement device for the history of the substance to be measured.
【請求項9】 ルミネセンス光ガイド手段の光放出口側
とルミネセンス測定手段の該光取込側との間に、励起手
段からの励起エネルギーをカットするフィルター手段を
有することを特徴とする請求項4、5、6、7または8
に記載の放射線ルミネセンスによる被測定物質の履歴の
計測装置。
9. A filter means for cutting excitation energy from the excitation means between the light emission port side of the luminescence light guide means and the light intake side of the luminescence measurement means. Item 4, 5, 6, 7 or 8
3. A measuring device for a history of a substance to be measured by radioluminescence described in 4.
【請求項10】 ルミネセンス光ガイド部材を構成する
耐熱性コア−クラッドロッドまたはファイバーが励起手
段からの励起エネルギー光をカットするフィルター機能
を有することを特徴とする請求項6、7または8に記載
の放射線ルミネセンスによる被測定物質の履歴の計測装
置。
10. The heat-resistant core-cladding rod or fiber constituting the luminescence light guide member has a filter function of cutting off excitation energy light from the excitation means. For measuring the history of the substance to be measured by means of radioluminescence.
JP2000265049A 2000-09-01 2000-09-01 Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation Pending JP2002071811A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000265049A JP2002071811A (en) 2000-09-01 2000-09-01 Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000265049A JP2002071811A (en) 2000-09-01 2000-09-01 Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation

Publications (1)

Publication Number Publication Date
JP2002071811A true JP2002071811A (en) 2002-03-12

Family

ID=18752377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000265049A Pending JP2002071811A (en) 2000-09-01 2000-09-01 Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation

Country Status (1)

Country Link
JP (1) JP2002071811A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013178192A (en) * 2012-02-29 2013-09-09 Kanazawa Univ Disk for two-dimensional measurement of radiation dose and radiation dose measuring apparatus using the disk
WO2014148224A1 (en) * 2013-03-22 2014-09-25 三菱重工業株式会社 Camera
US8890102B2 (en) 2004-12-17 2014-11-18 Dosimetry & Imaging Pty Limited Radiation storage phosphor and applications
KR101491468B1 (en) 2012-12-27 2015-02-10 한국지질자원연구원 Optically stimulated luminescence dating measurement for a transection side of sediment core exposed to light
CN105913886A (en) * 2016-07-06 2016-08-31 中国核动力研究设计院 Technology for measuring heat release rate of material in reactor
KR101722692B1 (en) * 2016-11-02 2017-04-03 김명진 Method and system for discriminating authenticity of ancient pottery and ceramic using absolute age measurement

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8890102B2 (en) 2004-12-17 2014-11-18 Dosimetry & Imaging Pty Limited Radiation storage phosphor and applications
JP2013178192A (en) * 2012-02-29 2013-09-09 Kanazawa Univ Disk for two-dimensional measurement of radiation dose and radiation dose measuring apparatus using the disk
KR101491468B1 (en) 2012-12-27 2015-02-10 한국지질자원연구원 Optically stimulated luminescence dating measurement for a transection side of sediment core exposed to light
WO2014148224A1 (en) * 2013-03-22 2014-09-25 三菱重工業株式会社 Camera
JP2014185909A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd Camera
US10070073B2 (en) 2013-03-22 2018-09-04 Mitsubishi Heavy Industries, Ltd. Camera for visualizing states of distribution of radioactive substances
CN105913886A (en) * 2016-07-06 2016-08-31 中国核动力研究设计院 Technology for measuring heat release rate of material in reactor
KR101722692B1 (en) * 2016-11-02 2017-04-03 김명진 Method and system for discriminating authenticity of ancient pottery and ceramic using absolute age measurement
WO2018084507A1 (en) * 2016-11-02 2018-05-11 김명진 Method and system for authenticating ancient earthenware and china using absolute dating technique

Similar Documents

Publication Publication Date Title
Bøtter-Jensen Luminescence techniques: instrumentation and methods
Huston et al. Remote optical fiber dosimetry
Bøtter-Jensen et al. Developments in optically stimulated luminescence techniques for dating and retrospective dosimetry
US9006663B2 (en) Radiation dosimeter detection system and method
Thomsen et al. Developments in luminescence measurement techniques
Al Helou et al. Radioluminescence and optically stimulated luminescence responses of a cerium-doped sol-gel silica glass under X-ray beam irradiation
US9121948B2 (en) Optically stimulated luminescence dosimetry using doped lithium fluoride crystals
Donaldson et al. Photoluminescence, radioluminescence, and thermoluminescence in NaMgF3 activated with Ni2+ and Er3+
US6414324B1 (en) Method of preparing detection materials for use in UV detection using phototransferred thermoluminescence
Bulur et al. Phototransferred thermoluminescence from α-Al2O3: C using blue light emitting diodes
JP2002071811A (en) Measuring method and its device by luminescence combined with small x-ray irradiation means for accumulating radiation
Benabdesselam et al. TL properties of RE-doped and co-doped sol-gel silica Rods. Application to passive (OSL) and real-time (RL) dosimetry
Bøtter-Jensen et al. Enhancements in luminescence measurement techniques
Justus et al. Optically stimulated luminescence dosimetry using doped fused quartz
Aluker et al. High-efficiency thermoluminescent detectors for measuring the absorbed ionizing radiation dose in the environment
US2934651A (en) Dosimeter and method of determining radiation dose
Plattard et al. Characterization of an integrated sensor using optically stimulated luminescence for in-flight dosimetry
Miller et al. Cooled optically stimulated luminescence in CaF2: Mn
Darafsheh Scintillation fiber optic dosimetry
RU2399928C1 (en) Method of exciting dosimetric signal of optically stimulated luminescence of ionising radiation detectors based on aluminium oxide
RU2310889C1 (en) Device for measuring dosimetric signal of optically stimulated luminescence
WO1994015227A1 (en) Environmental radiation detection via thermoluminescence
Smetana et al. A portable multi-purpose OSL reader for UV dosimetry at workplaces
Donaldson et al. A luminescence study of NaMgF3: Dy3+ and NaMgF3: Nd3+ for applications in radiation dosimetry
Bøtter-Jensen et al. Application of luminescence techniques in retrospective dosimetry

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070612