JP2004163304A - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
JP2004163304A
JP2004163304A JP2002330462A JP2002330462A JP2004163304A JP 2004163304 A JP2004163304 A JP 2004163304A JP 2002330462 A JP2002330462 A JP 2002330462A JP 2002330462 A JP2002330462 A JP 2002330462A JP 2004163304 A JP2004163304 A JP 2004163304A
Authority
JP
Japan
Prior art keywords
magnetic
shaft
circumferential
claw
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002330462A
Other languages
Japanese (ja)
Inventor
Naoki Nakane
直樹 中根
Shigetoshi Fukaya
繁利 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP2002330462A priority Critical patent/JP2004163304A/en
Priority to DE10352793A priority patent/DE10352793B4/en
Priority to FR0313239A priority patent/FR2847341B1/en
Priority to DE10362129A priority patent/DE10362129B8/en
Priority to US10/705,961 priority patent/US6868743B2/en
Publication of JP2004163304A publication Critical patent/JP2004163304A/en
Priority to US11/052,089 priority patent/US7191669B2/en
Priority to FR0508345A priority patent/FR2872902B1/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a torque sensor 1 having a simple structure, no electrical contact point, and high accuracy near a neutral point. <P>SOLUTION: This torque sensor 1 is constituted of a torsion bar 4 for connecting coaxially an input shaft 2 to an output shaft 3, a ring magnet 5 mounted on the end of the input shaft 2, a pair of magnetic yokes 6 mounted on the end of the output shaft 3, a magnetic sensor 7 for detecting a magnetic flux density generated in the magnetic yokes 6, or the like. Each magnetic yoke 6 is provided with pawls 6a to the same number (twelve) as N-poles and S-poles of the magnet 5 at equal intervals on the whole circumference. The magnetic yokes 6 and the magnet 5 are arranged so that the center of each pawl 6a provided on the magnetic yokes 6 agrees with the boundary between the N-pole and the S-pole of the magnet 5 in the state where torsion is not generated in the torsion bar 4. The magnetic sensor 7 detects the magnetic flux density by being inserted into a gap provided between the magnetic yoke 6A and the magnetic yoke 6B facing in the axial direction. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば電動パワーステアリング装置等の回転動力を伝達する機構における軸トルクを検出するトルクセンサに関する。
【0002】
【従来技術】
磁石と磁気センサを使った従来技術としては、磁石と磁気センサをトーションバーの両端に同定し、トルクが印加された際に、トーションバーが捩じれることによって磁石と磁気センサの位置関係が変化し、磁気センサからトルクに比例した出力を得るものがある(例えば、特許文献1参照。)。
【0003】
また、磁石と磁気センサとトーションバーを使用する点で上記の特許文献1と同じであるが、トーションバーの捩じれをギヤを使って軸方向の運動に変える機構にして磁気センサをハウジングに固定させ、磁気センサヘの電力供給と信号の取り出しを行う電気的接触部を不要にしている(例えば、特許文献2参照。)。
【0004】
【特許文献1】
特開平8−159887号公報
【特許文献2】
特開平6−281513号公報
【0005】
【発明が解決しようとする課題】
ところが、特許文献1の方式では、磁石と磁気センサがトーションバーに固定されているため、磁気センサヘの電力供給と信号の取り出しを行うために電気的な接触部が必要となり、具体的にはスリップリングとブラシを使用しているため、接触部の信頼性が懸念される。
【0006】
また、特許文献2の方式では、トーションバーの捩じれを軸方向の運動に変換するギヤ機構を有しているため、構造が複雑になり、且つギヤ機構のバックラッシやギヤの摩耗等により、誤差及び応答遅れ等が生じるため、性能面での懸念点がある。
【0007】
本発明は、上記事情に基づいて成されたもので、その目的は、構造がシンプルで電気的な接触部を持たないトルクセンサを提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、請求項1では、第1の軸と第2の軸とを同軸上に連結し、第1の軸と第2の軸との間に捩じれトルクが入力されると、自身に捩じれを生じる弾性部材と、第1の軸に連結されて、周囲に磁界を形成する硬磁性体と、第2の軸に連結され、且つ硬磁性体により形成される磁界内に配置されて磁気回路を形成し、弾性部材の捩じれによって硬磁性体との相対位置が変化すると、磁気回路に発生する磁束密度が変化する構造を有する一組の軟磁性体と、軟磁性体と非接触に設置され、軟磁性体の磁気回路に発生する磁束密度を検出する磁気センサとを備え、硬磁性体は、周方向に着磁され、軟磁性体は、硬磁性体の外周に配置され、且つ軸方向にギャップを介して対向しており、磁石の極数と同数の爪が全周に等間隔に設けられ、且つ一方の軟磁性体に設けられる爪と他方の軟磁性体に設けられる爪とが周方向にずれて交互に配置され、爪は、根本部と先端部とを有し、根本部の周方向の幅が先端部の周方向の幅よりも大きく、根本部の周方向の幅Aと、一方の軟磁性体の爪の根本部の周方向一端から隣り合う爪の根本部の周方向一端までの周方向の長さPとの間に以下の関係が成立することを特徴としている。
【0009】
0.5×P<A<P
本発明のトルクセンサは、第1の軸と第2の軸との間に捩じれトルクが入力されて弾性部材に捩じれが生じると、硬磁性体と軟磁性体との相対位置が変化することで、軟磁性体の磁気回路に発生する磁束密度が変化する。この磁束密度の変化を磁気センサで検出することにより、第1の軸と第2の軸との間に印加される捩じれトルクを求めることができる。この構成によれば、硬磁性体から発生する磁束を直接磁気センサで検出する必要がないので、非接触式の磁気センサを定位置に固定して使用することができる。その結果、磁気センサに対し電気的な接触部を設ける必要がないので、信頼性の高いトルクセンサを提供できる。
【0010】
さらに、爪の根本部の周方向の幅Aと、一方の軟磁性体の爪の根本部の周方向一端から隣り合う爪の根本部の周方向一端までの周方向の長さPとの間に上記の関係式が成立することで、軟磁性体の大きさに関わらず、磁気センサが直線性の良い磁束密度を検出することができる。
【0011】
また、請求項2では、第1の軸と第2の軸とを同軸上に連結し、第1の軸と第2の軸との間に捩じれトルクが入力されると、自身に捩じれを生じる弾性部材と、第1の軸に連結されて、周囲に磁界を形成する硬磁性体と、第2の軸に連結され、且つ硬磁性体により形成される磁界内に配置されて磁気回路を形成し、弾性部材の捩じれによって硬磁性体との相対位置が変化すると、磁気回路に発生する磁束密度が変化する構造を有する一組の軟磁性体と、軟磁性体に近接して配置され、軟磁性体から磁束を導くと共に、磁束を集める集磁部を有する補助軟磁性体と、集磁部を介して補助軟磁性体に生じる磁束密度を検出する磁気センサとを備え、硬磁性体は、周方向に着磁され、軟磁性体は、硬磁性体の外周に配置され、且つ軸方向にギャップを介して対向しており、磁石の極数と同数の爪が全周に等間隔に設けられ、且つ一方の軟磁性体に設けられる爪と他方の軟磁性体に設けられる爪とが周方向にずれて交互に配置され、爪は、根本部と先端部とを有し、根本部の周方向の幅が先端部の周方向の幅よりも大きく、根本部の周方向の幅Aと、一方の軟磁性体の爪の根本部の周方向一端から隣り合う爪の根本部の周方向一端までの周方向の長さPとの間に以下の関係が成立することを特徴としている。
【0012】
0.5×P<A<P
本発明のトルクセンサは、第1の軸と第2の軸との間に捩じれトルクが入力されて弾性部材に捩じれが生じると、硬磁性体と軟磁性体との相対位置が変化することで、軟磁性体の磁気回路に発生する磁束密度が変化する。さらに、軟磁性体に発生する磁束が補助軟磁性体に導かれて、その補助軟磁性体に設けられた集磁部に集められる。従って、集磁部を介して補助軟磁性体に生じる磁束密度を磁気センサで検出することにより、第1の軸と第2の軸との間に印加される捩じれトルクを求めることができる。この構成によれば、硬磁性体から発生する磁束を直接磁気センサで検出する必要がないので、非接触式の磁気センサを定位置に固定して使用することができる。その結果、磁気センサに対し電気的な接触郡を設ける必要がないので、信頼性の高いトルクセンサを提供できる。また、補助軟磁性体に生じる磁束を集磁部に集めることにより、軟磁性体の全周で発生する磁束密度の平均を磁気センサで検出することができる。これにより、磁気回路を構成する部品の製造ばらつきや組付け精度、センタずれ等による検出誤差を小さくできる。
【0013】
さらに、爪の根本部の周方向の幅Aと、一方の軟磁性体の爪の根本部の周方向一端から隣り合う爪の根本部の周方向一端までの周方向の長さPとの間に上記の関係式が成立することで、軟磁性体の大きさに関わらず、磁気センサが直線性の良い磁束密度を検出することができる。
【0014】
【発明の実施の形態】
以下、図に示す実施形態について説明する。
【0015】
図1は、トルクセンサ1の分解斜視図である。図2は、トルクセンサ1の軸方向断面図である。図3は、磁石5と一組の磁気ヨーク6との位置関係を示す軸方向平面図(a)と側面図(b)である。図4は、トーションバー4の捩じれ角(磁石5と磁気ヨーク6とのずれ角)と磁気ヨーク6に生じる磁束密度との関係を表すグラフである。図5は、一組の磁気ヨーク6の側面図である。図6は、トーションバー4の捩じれ角(磁石5と磁気ヨーク6とのずれ角)と磁気ヨーク6に生じる磁束密度との関係を表わすグラフである。
【0016】
本実施形態のトルクセンサ1は、例えば車両の電動式パワーステアリング装置に用いられるもので、ステアリングシャフトを構成する入力軸2(第1の軸)と出力軸3(第2の軸)との間に設けられ、ステアリングシャフトに加わる操舵トルクを検出している。
【0017】
そのトルクセンサ1は、入力軸2と出力軸3とを同軸上に連結するトーションバー4(弾性部材)、入力軸2の端部(またはトーションバー4の一端側)に取り付けられる磁石5(硬磁性体)、出力軸3の端部(またはトーションバー4の他端側)に取り付けられる一組の磁気ヨーク6(軟磁性体)、及びこの一組の磁気ヨーク6間に生じる磁束密度を検出する磁気センサ7等より構成される。
【0018】
トーションバー4は、両端がそれぞれピン8により入力軸2と出力軸3とに固定され、目的に応じた捩じれ/トルク特性を持たせてある。従って、入力軸2と出力軸3は、トーションバー4が捩じれを生じることで相対的に回動することができる。
【0019】
磁石5は、リング状に設けられて周方向にS極とN極とが交互に着磁され、例えば24極に形成されている。
【0020】
一組の磁気ヨーク6(6A、6B)は、図1に示す様に、磁石5の外周に近接して配置される環状体で、それぞれ磁石5のN極及びS極と同数(12個)の爪6aが全周に等間隔に設けられている。この一組の磁気ヨーク6は、互いの爪6aが周方向にずれて交互に配置される様に、固定部9(図2参照)により位置決めされている。
【0021】
また、一組の磁気ヨーク6と磁石5は、トーションバー4に捩じれが生じていない状態(入力軸2と出力軸3との間に捩じれトルクが加わっていない時)で、各磁気ヨーク6に設けられた爪6aの中心と磁石5のN極とS極との境界とが一致するように配置されている(図3参照)。
【0022】
磁気センサ7は、図3に示す様に、軸方向に対向する一方の磁気ヨーク6Aと他方の磁気ヨーク6Bとの間に設けられるギャップG内に挿入され、両磁気ヨーク6間に生じる磁束密度を検出する。但し、この磁気センサ7は、磁気ヨーク6と接触することなく、図示しないハウジング等に固定されて、定位置に設けられている。
【0023】
磁気センサ7としては、例えばホール素子、ホールIC、磁気抵抗素子等を使用することができ、検出した磁束密度を電気信号(例えば電圧信号)に変換して出力する。
【0024】
次に、本実施形態の作動を説明する。
【0025】
入力軸2と出力軸3との間に捩じれトルクが印加されていない状態、つまりトーションバー4が捩じれていない中立位置では、図4(b)に示す様に、磁気ヨーク6に設けられた爪6aの中心と磁石5のN極とS極との境界とが一致している。この場合、各磁気ヨーク6の爪6aには、磁石5のN極とS極から同数の磁力線が出入りするため、一方の磁気ヨーク6Aと他方の磁気ヨーク6Bの内部でそれぞれ磁力線が閉じている。従って、磁気ヨーク6Aと磁気ヨーク6Bとの間(ギャップG)に磁束が洩れることはなく、磁気センサ7で検出する磁束密度は0となる(図4参照)。
【0026】
入力軸2と出力軸3との間に捩じれトルクが印加されて、トーションバー4に捩じれが生じると、入力軸2に固定された磁石5と出力軸3に固定された一組の磁気ヨーク6との相対位置が周方向に変化する。これにより、図4(a)または(c)に示す様に、磁気ヨーク6に設けられた爪6aの中心と磁石5のN極とS極との境界とが一致しなくなるため、各磁気ヨーク6には、NまたはSの極性を有する磁力線が増加する。
【0027】
この時、一方の磁気ヨーク6Aと他方の磁気ヨーク6Bは、それぞれ逆の極性を有する磁力線が増加するので、一方の磁気ヨーク6Aと他方の磁気ヨーク6Bとの間(ギャップG)に磁束密度が発生する。この磁束密度は、図4に示す様に、トーションバー4の捩じれ量に略比例し、且つトーションバー4の捩じれ方向に応じて極性が反転する。この磁束密度を磁気センサ7で検出し、電圧信号として取り出すことができる。
【0028】
本実施形態のトルクセンサ1は、トーションバー4に捩じれが生じて、磁石5と一組の磁気ヨーク6との相対位置が周方向に変化すると、一組の磁気ヨーク6間の全周で磁束密度が変化する。即ち、一組の磁気ヨーク6間の全周で同一強度の磁束密度を検出できる。従って、一方の磁気ヨーク6Aと他方の磁気ヨーク6Bとが対向するギャップG内に磁気センサ7を挿入することで、磁気ヨーク6に接触することなく、磁気ヨーク6間の磁束密度を検出することができる。これにより、磁気センサ7に対し電気的な接触部(例えばスリップリングとブラシ)を設ける必要がないので、信頼性の高いトルクセンサ1を提供できる。
【0029】
また、磁気センサ7の検出トルク範囲において、磁気ヨーク6で発生する磁束密度の直線性を向上させるための磁気ヨーク6の形状の求め方について実験データに基づいて以下に説明する。
【0030】
爪6aは、図5に示すように、根本部6a1と先端部6a2とを有し、根本部6a1の周方向の幅Aが先端部6a2の周方向の幅Bよりも大きく、周方向の中心に沿って対称である略台形形状を呈している。
【0031】
そして、磁石5の極数nを24極、磁気ヨーク6の内径rを31mm、一方の磁気ヨーク6Aから他方の磁気ヨーク6Bまでの軸方向の距離Fを8mmとし、表1に示すように、爪6aの根本部6a1の周方向の幅Aを第1から第3水準の値に、根本部6a1から先端部6a2までの軸方向の長さLを第1から第4水準の値にそれぞれ設定した。そして、磁気ヨーク6を磁石5との中立位置から周方向に2.5度回転させた場合の磁気ヨーク6で発生する磁束密度をそれぞれ測定した。
【0032】
【表1】

Figure 2004163304
【0033】
他方の磁気ヨーク6Bの爪6aは、図5に示すように、周方向に隣り合う第1の爪61と第2の爪62とを有しており、根本部6a1の周方向の幅Aと第1の爪61の根本部6a1の周方向一端(周方向右側一端)から第2の爪62の根本部6a1の周方向一端(周方向右側一端)までの周方向の距離Pとが変化することで、第1の爪61と第2の爪62との周方向の間隔が変化し、磁石5と磁気ヨーク6との間を出入りする磁束の量が変化することから、磁気ヨーク6で発生する磁束密度の直線性を向上させるための理論を以下に説明する。
【0034】
第1の爪61の根本部6a1の周方向一端から第2の爪62の根本部6a1の周方向一端までの周方向の距離Pは、一方の磁気ヨーク6Aと他方の磁気ヨーク6Bとのそれぞれの爪6aの極数nが12極数であることから、以下の関係式▲1▼で求められる。
【0035】
P[mm]=π×r(31mm)/n(12)≒8.11・・・・・・・▲1▼
また、根本部6a1の周方向の幅Aが第3水準(4.2mm)の時に、図6に示す正弦波である実線の波形になり、且つ、表2より根本部6a1から先端部6a2までの軸方向の長さLが第2水準(7.0mm)、根本部6a1の周方向の幅Aが第2水準(3.7mm)の時に、磁気ヨーク6で発生する磁束密度を最も大きくすることができると共に、図6に示す点線の波形になることがわかった。この点線の波形では、磁束密度の変化が少ない不感帯領域を生じるため、磁気角±90deg付近の磁気ヨーク6で発生する磁束密度を直線性にできない。
【0036】
このことから、本発明では、第3水準(4.2mm)を根本部6a1の周方向の幅Aの閾値とした。また、本実施形態では、第1の爪61の根本部6a1の周方向一端から第2の爪62の根本部6a1の周方向一端までの周方向の距離Pを固定させている。そのため、根本部6a1の周方向の幅Aを上述の関係式▲4▼で求めた距離Pで割ることで、根本部6a1の周方向の幅Aと第1の爪61の根本部6a1の周方向一端から第2の爪62の根本部6a1の周方向一端までの周方向の距離Pとの比例定数を求めることができる(関係式▲2▼参照)。
【0037】
A(4.2mm)/P(8.11mm)≒0.517・・・・・・・・▲2▼
以上説明したように、以下の関係式▲2▼から数値Aを以下の関係式▲3▼の範囲に設定することによって、磁気ヨーク6で発生する磁束密度は、図6の実線の波形のように、正弦波にすることができ、磁気センサ7が直線性の良い磁束密度を検出することができる。なお、実験データに若干の誤差があることを考慮して比例定数を決定した。
【0038】
0.5×P<A<P・・・・・・・・・・・・・・・・・・・・・・・▲3▼
また、本実施形態では、磁気ヨーク6もしくは磁石5の極数nを24極、磁気ヨーク6の内径rを31mm、一方の磁気ヨーク6Aから他方の磁気ヨーク6Bまでの軸方向の距離Fを8mmとしているが、磁気ヨーク6の大きさが変化して極数n、内径r、距離Fの値が比例的に変わったとしても、磁石5と磁気ヨーク6との間を流れる磁束の量及び磁束の経路が変わらないため、上記の関係式▲3▼の関係を満たすことで、図6に示す正弦波の波形にできる。
【0039】
なお、本実施形態では、例えば根本部6a1の周方向の幅Aが3.7mmである場合に、最も磁気センサ6の磁束密度が大きくできると説明したが、3.7mm付近の値でさらに磁気センサ6の磁束密度を大きくできる値があることも考えられる。
【0040】
なお、本実施形態での爪6aは、根本部6a1の周方向の幅Aが先端部6a2の周方向の幅Bよりも大きい略台形形状を呈しているが、先端部6a2の周方向の幅Bが0である略三角形形状であってもよい。
【0041】
なお、図7に示すように、磁気ヨーク6A、6Bの外周に近接してリング状の集磁リング10(補助軟磁性体)が設けられていてもよい。この集磁リング10は、磁気ヨーク6A,6Bと同じ軟磁性体であって、周方向の一箇所に平板状の集磁部10aが設けられ、互いの集磁部10a同士が軸方向に対向して配置される。但し、集磁部10aは、集磁リング10の他の部位より軸方向に接近して設けられる。さらに、軸方向に対向する集磁部10a同士の間に磁気センサ7が挿入され、その両集磁部10a間に発生する磁束密度を検出する。
【0042】
この構成によれば、集磁リング10が磁気回路の一部を形成するため、磁石5から発生した磁束が磁気ヨーク6を通って集磁リング10に導かれ、その集磁リング10に設けられた集磁部10aに優先的に集まる。この集磁部10a間に発生する磁束密度を磁気センサ7で検出することにより、磁気ヨーク6の全周で発生する磁束密度の平均を取ることができるので、磁気回路を構成する部品の製造ばらつきや組み付け誤差、及び入力側と出力側とのセンタずれ等による検出誤差を抑えることができる。
【図面の簡単な説明】
【図1】トルクセンサの分解斜視図である。
【図2】トルクセンサの軸方向断面図である。
【図3】磁石と一組の磁気ヨークとの位置関係を示す軸方向平面図(a)と側面図(b)である。
【図4】トーションバーの捩じれ角(磁石と磁気ヨークとのずれ角)と磁気ヨークに生じる磁束密度との関係を表すグラフである。
【図5】一組の磁気ヨークの側面図である。
【図6】トーションバーの捩じれ角(磁石と磁気ヨークとのずれ角)と磁気ヨークに生じる磁束密度との関係を表わすグラフである。
【図7】トルクセンサの分解斜視図である。(他の実施例)
【符号の説明】
1…トルクセンサ、
2…入力軸、
3…出力軸、
4…トーションバー、
5…磁石、
6…磁気ヨーク、
7…磁気センサ、
8…ピン、
9…固定部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a torque sensor that detects a shaft torque in a mechanism that transmits rotational power, such as an electric power steering device.
[0002]
[Prior art]
As a conventional technique using a magnet and a magnetic sensor, the magnet and the magnetic sensor are identified at both ends of the torsion bar, and when a torque is applied, the torsion bar is twisted to change the positional relationship between the magnet and the magnetic sensor. There is one that obtains an output proportional to torque from a magnetic sensor (for example, see Patent Document 1).
[0003]
Also, it is the same as Patent Document 1 described above in that a magnet, a magnetic sensor, and a torsion bar are used, but a mechanism that changes the torsion of the torsion bar into an axial movement using a gear is used to fix the magnetic sensor to the housing. In addition, an electric contact portion for supplying power to the magnetic sensor and extracting a signal is not required (for example, see Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 8-15987 [Patent Document 2]
JP-A-6-281513
[Problems to be solved by the invention]
However, in the method of Patent Literature 1, since the magnet and the magnetic sensor are fixed to the torsion bar, an electric contact portion is required to supply power to the magnetic sensor and take out a signal. Since the ring and brush are used, there is concern about the reliability of the contact part.
[0006]
In addition, the method disclosed in Patent Document 2 has a gear mechanism for converting the torsion of the torsion bar into an axial movement. Therefore, the structure is complicated, and errors and errors are caused by backlash of the gear mechanism and wear of the gear. Since a response delay occurs, there is a concern in terms of performance.
[0007]
SUMMARY OF THE INVENTION The present invention has been made based on the above circumstances, and an object of the present invention is to provide a torque sensor having a simple structure and no electrical contact.
[0008]
[Means for Solving the Problems]
In order to solve the above problem, in claim 1, the first shaft and the second shaft are connected coaxially, and when a torsional torque is input between the first shaft and the second shaft. An elastic member that causes twisting in itself, a hard magnetic body connected to the first shaft to form a magnetic field around it, and a hard magnetic body connected to the second shaft and arranged in a magnetic field formed by the hard magnetic body. And a magnetic circuit is formed, and when the relative position with respect to the hard magnetic material changes due to the torsion of the elastic member, a set of soft magnetic material having a structure in which the magnetic flux density generated in the magnetic circuit changes, A magnetic sensor installed in contact and detecting a magnetic flux density generated in a magnetic circuit of the soft magnetic material, the hard magnetic material is magnetized in the circumferential direction, and the soft magnetic material is disposed on the outer periphery of the hard magnetic material. , And face each other with a gap in the axial direction. The claw provided on one soft magnetic body and the claw provided on the other soft magnetic body are alternately arranged so as to be displaced in the circumferential direction, and the claw has a root portion and a tip portion; Is larger than the circumferential width of the tip portion, and the circumferential width A of the root portion is equal to the circumferential width of one of the soft magnetic nails. The following relationship is established with the circumferential length P up to one end in the direction.
[0009]
0.5 × P <A <P
According to the torque sensor of the present invention, when a torsional torque is input between the first shaft and the second shaft and the elastic member is twisted, the relative position between the hard magnetic material and the soft magnetic material changes. The magnetic flux density generated in the magnetic circuit of the soft magnetic material changes. By detecting the change in the magnetic flux density with a magnetic sensor, the torsional torque applied between the first axis and the second axis can be obtained. According to this configuration, the magnetic flux generated from the hard magnetic material does not need to be directly detected by the magnetic sensor, so that the non-contact type magnetic sensor can be fixed and used at a fixed position. As a result, there is no need to provide an electrical contact portion for the magnetic sensor, so that a highly reliable torque sensor can be provided.
[0010]
Further, between the circumferential width A of the base of the nail and the circumferential length P from one circumferential end of the base of one soft magnetic body to one circumferential end of the base of the adjacent nail. By satisfying the above relational expression, the magnetic sensor can detect a magnetic flux density with good linearity regardless of the size of the soft magnetic material.
[0011]
In the second aspect, the first shaft and the second shaft are coaxially connected, and when a torsional torque is input between the first shaft and the second shaft, the first shaft and the second shaft are twisted. A hard magnetic body connected to the elastic member and the first shaft to form a magnetic field around the elastic member; and a magnetic circuit connected to the second shaft and arranged in the magnetic field formed by the hard magnetic body to form a magnetic circuit. Then, when the relative position with respect to the hard magnetic material changes due to the torsion of the elastic member, a set of soft magnetic materials having a structure in which the magnetic flux density generated in the magnetic circuit changes, and An auxiliary soft magnetic body having a magnetic flux collecting part that guides magnetic flux from the magnetic body and collects the magnetic flux, and a magnetic sensor that detects a magnetic flux density generated in the auxiliary soft magnetic body via the magnetic collecting part, Circumferentially magnetized, the soft magnetic material is arranged on the outer periphery of the hard magnetic material, and the gap is And the same number of claws as the number of poles of the magnet are provided at equal intervals on the entire circumference, and the claw provided on one soft magnetic body and the claw provided on the other soft magnetic body are arranged in the circumferential direction. The nails have a root portion and a tip portion, and are arranged alternately and shifted. The circumferential width of the root portion is larger than the circumferential width of the tip portion, and the circumferential width A of the root portion is one. The following relationship is established between the soft magnetic material and the circumferential length P from one circumferential end of the base of the claw to one circumferential end of the base of the adjacent claw.
[0012]
0.5 × P <A <P
According to the torque sensor of the present invention, when a torsional torque is input between the first shaft and the second shaft and the elastic member is twisted, the relative position between the hard magnetic material and the soft magnetic material changes. The magnetic flux density generated in the magnetic circuit of the soft magnetic material changes. Further, the magnetic flux generated in the soft magnetic material is guided to the auxiliary soft magnetic material, and is collected in a magnetic flux collecting unit provided in the auxiliary soft magnetic material. Therefore, the torsion torque applied between the first axis and the second axis can be obtained by detecting the magnetic flux density generated in the auxiliary soft magnetic body via the magnetic flux collecting part by the magnetic sensor. According to this configuration, the magnetic flux generated from the hard magnetic material does not need to be directly detected by the magnetic sensor, so that the non-contact type magnetic sensor can be fixed and used at a fixed position. As a result, there is no need to provide an electrical contact group for the magnetic sensor, and a highly reliable torque sensor can be provided. Further, by collecting the magnetic flux generated in the auxiliary soft magnetic material in the magnetic flux collecting part, the average of the magnetic flux density generated in the entire circumference of the soft magnetic material can be detected by the magnetic sensor. As a result, it is possible to reduce a detection error due to manufacturing variations, assembly accuracy, center deviation, and the like of components constituting the magnetic circuit.
[0013]
Further, between the circumferential width A of the base of the nail and the circumferential length P from one circumferential end of the base of one soft magnetic body to one circumferential end of the base of the adjacent nail. By satisfying the above relational expression, the magnetic sensor can detect a magnetic flux density with good linearity regardless of the size of the soft magnetic material.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the embodiment shown in the drawings will be described.
[0015]
FIG. 1 is an exploded perspective view of the torque sensor 1. FIG. 2 is an axial sectional view of the torque sensor 1. FIG. 3 is an axial plan view (a) and a side view (b) showing the positional relationship between the magnet 5 and a set of magnetic yokes 6. FIG. 4 is a graph showing the relationship between the torsion angle of the torsion bar 4 (the angle of deviation between the magnet 5 and the magnetic yoke 6) and the magnetic flux density generated in the magnetic yoke 6. FIG. 5 is a side view of a pair of magnetic yokes 6. FIG. 6 is a graph showing the relationship between the torsion angle of the torsion bar 4 (the deviation angle between the magnet 5 and the magnetic yoke 6) and the magnetic flux density generated in the magnetic yoke 6.
[0016]
The torque sensor 1 according to the present embodiment is used, for example, in an electric power steering device for a vehicle, and is provided between an input shaft 2 (first shaft) and an output shaft 3 (second shaft) constituting a steering shaft. And detects the steering torque applied to the steering shaft.
[0017]
The torque sensor 1 includes a torsion bar 4 (elastic member) for connecting the input shaft 2 and the output shaft 3 coaxially, and a magnet 5 (hard) attached to an end of the input shaft 2 (or one end of the torsion bar 4). A magnetic body), a set of magnetic yokes 6 (soft magnetic body) attached to the end of the output shaft 3 (or the other end of the torsion bar 4), and a magnetic flux density generated between the set of magnetic yokes 6 And the like.
[0018]
Both ends of the torsion bar 4 are fixed to the input shaft 2 and the output shaft 3 by pins 8, respectively, and have torsional / torque characteristics according to the purpose. Therefore, the input shaft 2 and the output shaft 3 can relatively rotate due to the torsion bar 4 being twisted.
[0019]
The magnet 5 is provided in a ring shape, and the S pole and the N pole are alternately magnetized in the circumferential direction, and are formed to have, for example, 24 poles.
[0020]
As shown in FIG. 1, the pair of magnetic yokes 6 (6A, 6B) is an annular body disposed close to the outer periphery of the magnet 5, and has the same number (12) as the N and S poles of the magnet 5, respectively. Are provided at equal intervals around the entire circumference. The set of magnetic yokes 6 is positioned by the fixing portion 9 (see FIG. 2) such that the claws 6a are alternately arranged while being shifted in the circumferential direction.
[0021]
The pair of magnetic yokes 6 and the magnets 5 are applied to the respective magnetic yokes 6 in a state where the torsion bar 4 is not twisted (when no torsional torque is applied between the input shaft 2 and the output shaft 3). It is arranged so that the center of the provided claw 6a and the boundary between the N pole and the S pole of the magnet 5 coincide (see FIG. 3).
[0022]
As shown in FIG. 3, the magnetic sensor 7 is inserted into a gap G provided between one magnetic yoke 6A and the other magnetic yoke 6B opposed in the axial direction, and the magnetic flux density generated between the two magnetic yokes 6 Is detected. However, the magnetic sensor 7 is fixed to a housing or the like (not shown) without being in contact with the magnetic yoke 6, and is provided at a fixed position.
[0023]
As the magnetic sensor 7, for example, a Hall element, a Hall IC, a magnetic resistance element, or the like can be used, and the detected magnetic flux density is converted into an electric signal (for example, a voltage signal) and output.
[0024]
Next, the operation of the present embodiment will be described.
[0025]
In a state where no torsional torque is applied between the input shaft 2 and the output shaft 3, that is, in a neutral position where the torsion bar 4 is not twisted, the claw provided on the magnetic yoke 6 as shown in FIG. The center of 6a coincides with the boundary between the north pole and the south pole of the magnet 5. In this case, since the same number of lines of magnetic force enter and exit from the N pole and the S pole of the magnet 5 to the claws 6a of each magnetic yoke 6, the lines of magnetic force are closed inside one magnetic yoke 6A and the other magnetic yoke 6B. . Therefore, no magnetic flux leaks between the magnetic yoke 6A and the magnetic yoke 6B (gap G), and the magnetic flux density detected by the magnetic sensor 7 becomes 0 (see FIG. 4).
[0026]
When a torsion torque is applied between the input shaft 2 and the output shaft 3 and the torsion bar 4 is twisted, a pair of magnets 5 fixed to the input shaft 2 and a pair of magnetic yokes 6 fixed to the output shaft 3 are formed. Relative position changes in the circumferential direction. As a result, as shown in FIG. 4A or 4C, the center of the claw 6a provided on the magnetic yoke 6 does not coincide with the boundary between the N pole and the S pole of the magnet 5, so that each magnetic yoke In 6, the number of lines of magnetic force having N or S polarity increases.
[0027]
At this time, since the magnetic lines of force having the opposite polarities increase in one magnetic yoke 6A and the other magnetic yoke 6B, the magnetic flux density is present between one magnetic yoke 6A and the other magnetic yoke 6B (gap G). appear. As shown in FIG. 4, the magnetic flux density is substantially proportional to the amount of twist of the torsion bar 4, and the polarity is reversed according to the direction of twist of the torsion bar 4. This magnetic flux density can be detected by the magnetic sensor 7 and taken out as a voltage signal.
[0028]
In the torque sensor 1 according to the present embodiment, when the torsion bar 4 is twisted and the relative position between the magnet 5 and the set of magnetic yokes 6 changes in the circumferential direction, the magnetic flux is generated all around the set of magnetic yokes 6. Density changes. That is, the magnetic flux density having the same intensity can be detected in the entire circumference between the pair of magnetic yokes 6. Therefore, by inserting the magnetic sensor 7 into the gap G where one magnetic yoke 6A and the other magnetic yoke 6B face each other, it is possible to detect the magnetic flux density between the magnetic yokes 6 without contacting the magnetic yoke 6. Can be. Accordingly, it is not necessary to provide an electrical contact portion (for example, a slip ring and a brush) to the magnetic sensor 7, so that the highly reliable torque sensor 1 can be provided.
[0029]
In addition, how to determine the shape of the magnetic yoke 6 for improving the linearity of the magnetic flux density generated in the magnetic yoke 6 in the detection torque range of the magnetic sensor 7 will be described below based on experimental data.
[0030]
As shown in FIG. 5, the claw 6a has a root portion 6a1 and a tip portion 6a2. The circumferential width A of the root portion 6a1 is larger than the circumferential width B of the tip portion 6a2, and the center in the circumferential direction. Has a substantially trapezoidal shape that is symmetrical along the line.
[0031]
Then, the number of poles n of the magnet 5 is 24, the inner diameter r of the magnetic yoke 6 is 31 mm, and the axial distance F from one magnetic yoke 6A to the other magnetic yoke 6B is 8 mm, as shown in Table 1. The circumferential width A of the base 6a1 of the claw 6a is set to the first to third levels, and the axial length L from the base 6a1 to the tip 6a2 is set to the first to fourth levels. did. Then, the magnetic flux density generated in the magnetic yoke 6 when the magnetic yoke 6 was rotated 2.5 degrees in the circumferential direction from the neutral position with respect to the magnet 5 was measured.
[0032]
[Table 1]
Figure 2004163304
[0033]
As shown in FIG. 5, the claw 6a of the other magnetic yoke 6B has a first claw 61 and a second claw 62 that are adjacent in the circumferential direction, and has a width A in the circumferential direction of the root portion 6a1. The circumferential distance P from one circumferential end of the root 6a1 of the first claw 61 (one right end in the circumferential direction) to one circumferential end of the root 6a1 of the second claw 62 (one right in the circumferential direction) changes. As a result, the circumferential distance between the first claw 61 and the second claw 62 changes, and the amount of magnetic flux entering and exiting between the magnet 5 and the magnetic yoke 6 changes. The theory for improving the linearity of the magnetic flux density will be described below.
[0034]
The circumferential distance P from one circumferential end of the root 6a1 of the first claw 61 to one circumferential end of the root 6a1 of the second claw 62 is the distance P between one magnetic yoke 6A and the other magnetic yoke 6B. Since the number of poles n of the nail 6a is 12 poles, it can be obtained by the following relational expression (1).
[0035]
P [mm] = π × r (31 mm) / n (12) ≒ 8.11 (1)
Further, when the circumferential width A of the root 6a1 is at the third level (4.2 mm), the waveform becomes a solid line waveform as a sine wave shown in FIG. 6, and from Table 2, from the root 6a1 to the tip 6a2. When the axial length L is at the second level (7.0 mm) and the circumferential width A of the root 6a1 is at the second level (3.7 mm), the magnetic flux density generated in the magnetic yoke 6 is maximized. It was found that the waveforms indicated by dotted lines in FIG. In the waveform of the dotted line, a dead zone region where the change of the magnetic flux density is small is generated, so that the magnetic flux density generated in the magnetic yoke 6 near the magnetic angle of ± 90 deg cannot be made linear.
[0036]
For this reason, in the present invention, the third level (4.2 mm) is set as the threshold value of the circumferential width A of the root portion 6a1. In the present embodiment, the circumferential distance P from one circumferential end of the root 6a1 of the first claw 61 to one circumferential end of the root 6a1 of the second claw 62 is fixed. Therefore, by dividing the circumferential width A of the root 6a1 by the distance P obtained by the above-described relational expression (4), the circumferential width A of the root 6a1 and the circumference of the root 6a1 of the first claw 61 are obtained. A proportionality constant with the circumferential distance P from one end in the direction to one end in the circumferential direction of the root 6a1 of the second claw 62 can be obtained (see relational expression (2)).
[0037]
A (4.2 mm) / P (8.11 mm) ≒ 0.517
As described above, by setting the numerical value A from the following relational expression (2) to the range of the following relational expression (3), the magnetic flux density generated in the magnetic yoke 6 becomes as shown by the solid line waveform in FIG. In addition, a sine wave can be obtained, and the magnetic sensor 7 can detect a magnetic flux density with good linearity. The proportionality constant was determined in consideration of a slight error in the experimental data.
[0038]
0.5 × P <A <P ・ ・ ・ ・ ・ ・ ・ ・ ・ 3
In the present embodiment, the number of poles n of the magnetic yoke 6 or the magnet 5 is 24, the inner diameter r of the magnetic yoke 6 is 31 mm, and the axial distance F from one magnetic yoke 6A to the other magnetic yoke 6B is 8 mm. However, even if the size of the magnetic yoke 6 changes and the values of the number of poles n, the inner diameter r, and the distance F change proportionally, the amount and magnetic flux of the magnetic flux flowing between the magnet 5 and the magnetic yoke 6 Since the path does not change, the sine wave waveform shown in FIG. 6 can be obtained by satisfying the above relation (3).
[0039]
In the present embodiment, for example, it has been described that the magnetic flux density of the magnetic sensor 6 can be maximized when the circumferential width A of the root part 6a1 is 3.7 mm. It is conceivable that there is a value that can increase the magnetic flux density of the sensor 6.
[0040]
The claw 6a in the present embodiment has a substantially trapezoidal shape in which the circumferential width A of the root portion 6a1 is larger than the circumferential width B of the distal end portion 6a2, but the circumferential width of the distal end portion 6a2. A substantially triangular shape in which B is 0 may be used.
[0041]
As shown in FIG. 7, a ring-shaped magnetic flux collecting ring 10 (auxiliary soft magnetic material) may be provided near the outer periphery of the magnetic yokes 6A and 6B. The magnetic flux collecting ring 10 is a soft magnetic material similar to the magnetic yokes 6A and 6B, and is provided with a flat magnetic flux collecting portion 10a at one circumferential position, and the magnetic flux collecting portions 10a are opposed to each other in the axial direction. Placed. However, the magnetic flux collecting part 10a is provided closer to the axial direction than other parts of the magnetic flux collecting ring 10. Further, the magnetic sensor 7 is inserted between the magnetic flux collecting portions 10a facing each other in the axial direction, and detects the magnetic flux density generated between the magnetic flux collecting portions 10a.
[0042]
According to this configuration, since the magnetic flux collection ring 10 forms a part of a magnetic circuit, the magnetic flux generated from the magnet 5 is guided to the magnetic flux collection ring 10 through the magnetic yoke 6 and provided on the magnetic flux collection ring 10. It gathers preferentially in the magnetic flux collecting part 10a. By detecting the magnetic flux density generated between the magnetic flux collecting portions 10a with the magnetic sensor 7, the average of the magnetic flux density generated over the entire circumference of the magnetic yoke 6 can be obtained, so that manufacturing variations of the components constituting the magnetic circuit can be obtained. And an assembly error, and a detection error due to a center shift between the input side and the output side can be suppressed.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a torque sensor.
FIG. 2 is an axial sectional view of a torque sensor.
3A and 3B are an axial plan view and a side view showing a positional relationship between a magnet and a set of magnetic yokes.
FIG. 4 is a graph showing a relationship between a torsion angle of a torsion bar (a deviation angle between a magnet and a magnetic yoke) and a magnetic flux density generated in the magnetic yoke.
FIG. 5 is a side view of a set of magnetic yokes.
FIG. 6 is a graph showing a relationship between a torsion angle of a torsion bar (a deviation angle between a magnet and a magnetic yoke) and a magnetic flux density generated in the magnetic yoke.
FIG. 7 is an exploded perspective view of the torque sensor. (Other embodiments)
[Explanation of symbols]
1: Torque sensor,
2. Input shaft,
3 ... output shaft,
4 ... torsion bar
5 ... magnet,
6 ... magnetic yoke,
7 ... magnetic sensor,
8 ... pin,
9 ... fixed part

Claims (2)

第1の軸と第2の軸とを同軸上に連結し、前記第1の軸と前記第2の軸との間に捩じれトルクが入力されると、自身に捩じれを生じる弾性部材と、
前記第1の軸に連結されて、周囲に磁界を形成する硬磁性体と、
前記第2の軸に連結され、且つ前記硬磁性体により形成される磁界内に配置されて磁気回路を形成し、前記弾性部材の捩じれによって前記硬磁性体との相対位置が変化すると、前記磁気回路に発生する磁束密度が変化する構造を有する一組の軟磁性体と、
前記軟磁性体と非接触に設置され、前記軟磁性体の磁気回路に発生する磁束密度を検出する磁気センサとを備え、
前記硬磁性体は、周方向に着磁され、
前記軟磁性体は、前記硬磁性体の外周に配置され、且つ軸方向にギャップを介して対向しており、前記磁石の極数と同数の爪が全周に等間隔に設けられ、且つ一方の軟磁性体に設けられる爪と他方の軟磁性体に設けられる爪とが周方向にずれて交互に配置され、
前記爪は、根本部と先端部とを有し、前記根本部の周方向の幅が前記先端部の周方向の幅よりも大きく、
前記根本部の周方向の幅Aと、一方の軟磁性体の前記爪の根本部の周方向一端から隣り合う前記爪の根本部の周方向一端までの周方向の長さPとの間に以下の関係が成立することを特徴とするトルクセンサ。
0.5×P<A<P
An elastic member that connects the first shaft and the second shaft coaxially, and when a torsional torque is input between the first shaft and the second shaft, the elastic member generates a torsion;
A hard magnetic body connected to the first shaft and forming a magnetic field around the first shaft;
The magnetic member is connected to the second shaft and arranged in a magnetic field formed by the hard magnetic material to form a magnetic circuit, and when the relative position with respect to the hard magnetic material changes due to the torsion of the elastic member, the magnetic force is reduced. A set of soft magnetic materials having a structure in which the magnetic flux density generated in the circuit changes,
A magnetic sensor that is installed in non-contact with the soft magnetic body and detects a magnetic flux density generated in a magnetic circuit of the soft magnetic body,
The hard magnetic material is magnetized in a circumferential direction,
The soft magnetic material is arranged on the outer periphery of the hard magnetic material, and is opposed to each other via a gap in the axial direction, and the same number of claws as the number of poles of the magnet are provided at equal intervals on the entire circumference. The claw provided on the soft magnetic body and the claw provided on the other soft magnetic body are alternately arranged so as to be shifted in the circumferential direction,
The claw has a root portion and a tip portion, and a circumferential width of the root portion is larger than a circumferential width of the tip portion,
Between the circumferential width A of the root portion and the circumferential length P from one circumferential end of the root portion of the claw of one soft magnetic material to one circumferential end of the root portion of the adjacent claw. A torque sensor, wherein the following relationship is established.
0.5 × P <A <P
第1の軸と第2の軸とを同軸上に連結し、前記第1の軸と前記第2の軸との間に捩じれトルクが入力されると、自身に捩じれを生じる弾性部材と、
前記第1の軸に連結されて、周囲に磁界を形成する硬磁性体と、
前記第2の軸に連結され、且つ前記硬磁性体により形成される磁界内に配置されて磁気回路を形成し、前記弾性部材の捩じれによって前記硬磁性体との相対位置が変化すると、前記磁気回路に発生する磁束密度が変化する構造を有する一組の軟磁性体と、
前記軟磁性体に近接して配置され、前記軟磁性体から磁束を導くと共に、前記磁束を集める集磁部を有する補助軟磁性体と、
前記集磁部を介して前記補助軟磁性体に生じる磁束密度を検出する磁気センサとを備え、
前記硬磁性体は、周方向に着磁され、
前記軟磁性体は、前記硬磁性体の外周に配置され、且つ軸方向にギャップを介して対向しており、前記磁石の極数と同数の爪が全周に等間隔に設けられ、且つ一方の軟磁性体に設けられる爪と他方の軟磁性体に設けられる爪とが周方向にずれて交互に配置され、
前記爪は、根本部と先端部とを有し、前記根本部の周方向の幅が前記先端部の周方向の幅よりも大きく、
前記根本部の周方向の幅Aと、一方の軟磁性体の前記爪の根本部の周方向一端から隣り合う前記爪の根本部の周方向一端までの周方向の長さPとの間に以下の関係が成立することを特徴とするトルクセンサ。
0.5×P<A<P
An elastic member that connects the first shaft and the second shaft coaxially, and when a torsional torque is input between the first shaft and the second shaft, the elastic member generates a torsion;
A hard magnetic body connected to the first shaft and forming a magnetic field around the first shaft;
The magnetic member is connected to the second shaft and arranged in a magnetic field formed by the hard magnetic material to form a magnetic circuit, and when the relative position with respect to the hard magnetic material changes due to the torsion of the elastic member, the magnetic force is reduced. A set of soft magnetic materials having a structure in which the magnetic flux density generated in the circuit changes,
An auxiliary soft magnetic body that is arranged close to the soft magnetic body, guides magnetic flux from the soft magnetic body, and has a magnetic flux collecting unit that collects the magnetic flux;
A magnetic sensor that detects a magnetic flux density generated in the auxiliary soft magnetic body through the magnetic flux collection unit,
The hard magnetic material is magnetized in a circumferential direction,
The soft magnetic material is arranged on the outer periphery of the hard magnetic material, and is opposed to each other via a gap in the axial direction, and the same number of claws as the number of poles of the magnet are provided at equal intervals on the entire circumference. The claw provided on the soft magnetic body and the claw provided on the other soft magnetic body are alternately arranged so as to be shifted in the circumferential direction,
The claw has a root portion and a tip portion, and a circumferential width of the root portion is larger than a circumferential width of the tip portion,
Between the circumferential width A of the root portion and the circumferential length P from one circumferential end of the root portion of the claw of one soft magnetic material to one circumferential end of the root portion of the adjacent claw. A torque sensor, wherein the following relationship is established.
0.5 × P <A <P
JP2002330462A 2002-11-14 2002-11-14 Torque sensor Pending JP2004163304A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002330462A JP2004163304A (en) 2002-11-14 2002-11-14 Torque sensor
DE10352793A DE10352793B4 (en) 2002-11-14 2003-11-12 Highly reliable torque sensor
FR0313239A FR2847341B1 (en) 2002-11-14 2003-11-12 MAGNETIC RING TORQUE SENSOR
DE10362129A DE10362129B8 (en) 2002-11-14 2003-11-12 Highly reliable torque sensor
US10/705,961 US6868743B2 (en) 2002-11-14 2003-11-13 Highly reliable torque sensor
US11/052,089 US7191669B2 (en) 2002-11-14 2005-02-08 Highly reliable torque sensor
FR0508345A FR2872902B1 (en) 2002-11-14 2005-08-04 MAGNETIC RING TORQUE SENSOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330462A JP2004163304A (en) 2002-11-14 2002-11-14 Torque sensor

Publications (1)

Publication Number Publication Date
JP2004163304A true JP2004163304A (en) 2004-06-10

Family

ID=32808146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330462A Pending JP2004163304A (en) 2002-11-14 2002-11-14 Torque sensor

Country Status (1)

Country Link
JP (1) JP2004163304A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232727A (en) * 2007-03-19 2008-10-02 Koyo Electronics Ind Co Ltd Torque detector
US7533583B2 (en) 2004-05-17 2009-05-19 Jtekt Corporation Torque detecting apparatus
JP2013088140A (en) * 2011-10-13 2013-05-13 Showa Corp Relative angle detection device and manufacturing method of the same
US8616326B2 (en) 2011-11-08 2013-12-31 Jtekt Corporation Torque detection device and electric power steering system
US8836267B2 (en) 2011-11-08 2014-09-16 Jtekt Corporation Torque detection device and electric power steering system
CN108225633A (en) * 2016-12-22 2018-06-29 株式会社电装 For detecting the equipment of moment values
CN109955890A (en) * 2017-12-26 2019-07-02 长城汽车股份有限公司 Steering mechanism and vehicle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533583B2 (en) 2004-05-17 2009-05-19 Jtekt Corporation Torque detecting apparatus
JP2008232727A (en) * 2007-03-19 2008-10-02 Koyo Electronics Ind Co Ltd Torque detector
JP2013088140A (en) * 2011-10-13 2013-05-13 Showa Corp Relative angle detection device and manufacturing method of the same
US8616326B2 (en) 2011-11-08 2013-12-31 Jtekt Corporation Torque detection device and electric power steering system
US8836267B2 (en) 2011-11-08 2014-09-16 Jtekt Corporation Torque detection device and electric power steering system
CN108225633A (en) * 2016-12-22 2018-06-29 株式会社电装 For detecting the equipment of moment values
CN108225633B (en) * 2016-12-22 2021-01-05 株式会社电装 Device for detecting torque values
CN109955890A (en) * 2017-12-26 2019-07-02 长城汽车股份有限公司 Steering mechanism and vehicle

Similar Documents

Publication Publication Date Title
JP2004020527A (en) Torque sensor
JP3913657B2 (en) Torque sensor
US7191669B2 (en) Highly reliable torque sensor
KR101429825B1 (en) Torque sensor apparatus
JP3874642B2 (en) Torque sensor and electric power steering apparatus provided with the torque sensor
US7424830B2 (en) Torque sensor
JP4561748B2 (en) Torque sensor
JP3861778B2 (en) Torque sensor, electric power steering apparatus using the torque sensor, and method for manufacturing the electric power steering apparatus
KR101553960B1 (en) Angle detecting apparatus and torque detecting apparatus using the same
KR100983963B1 (en) Torque sensor for Electric Power Steering System
JP2004309463A (en) Instrument for measuring torque applied to shaft
JP2007121149A (en) Torque detector
KR20140069005A (en) Combined steering torque-steering angle sensor
WO2005111565A1 (en) Torque detector
JP2006292423A (en) Rotation angle sensor and torque sensor using it, steering angle sensor, steering device and power steering device
KR100915264B1 (en) Torque sensor and electric power steering device with the same
JP2004163304A (en) Torque sensor
JP4906253B2 (en) Torque detection device
JP2004163303A (en) Torque sensor
KR101034113B1 (en) Non-contacting type torque sensor for steering system
JP2018109571A (en) Magnetism collecting ring and torque sensor
JP2018119811A (en) Torque detector
JP2008157762A (en) Torque-measuring device
JP4878747B2 (en) Torque sensor
JP2009020064A (en) Torque sensor and electric power steering device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A02 Decision of refusal

Effective date: 20061114

Free format text: JAPANESE INTERMEDIATE CODE: A02