JP2004163099A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2004163099A
JP2004163099A JP2003427813A JP2003427813A JP2004163099A JP 2004163099 A JP2004163099 A JP 2004163099A JP 2003427813 A JP2003427813 A JP 2003427813A JP 2003427813 A JP2003427813 A JP 2003427813A JP 2004163099 A JP2004163099 A JP 2004163099A
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
temperature
heating
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427813A
Other languages
Japanese (ja)
Inventor
Hideharu Unno
英晴 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2003427813A priority Critical patent/JP2004163099A/en
Publication of JP2004163099A publication Critical patent/JP2004163099A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02B30/746

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of certainly avoiding abnormal rising of high pressure side pressure of a refrigeration cycle during heating. <P>SOLUTION: When the detected temperature of an indoor temperature sensor 13 becomes a predetermined value or higher and the detected temperature of a temperature sensor 13 of a heat exchanger mounted to the indoor heat exchanger becomes a predetermined value or higher, the abnormal rising of high pressure side pressure of the refrigeration cycle during the heating is certainly avoided by limiting a minimum air quantity of an indoor blower 7 to a predetermined value or higher. <P>COPYRIGHT: (C)2004,JPO

Description

この発明は、冷房および暖房が可能なヒートポンプ式冷凍サイクを備えた空気調和機に関する。   The present invention relates to an air conditioner provided with a heat pump refrigeration cycle capable of cooling and heating.

冷房と暖房のいずれか一方の運転を自動的に選択して実行する冷暖自動運転モード、および冷房と暖房のいずれか一方の運転を外部からの要求に応じて選択的に実行する通常運転モードの機能を備え、さらに、室内温度と設定室内温度との差に応じて室内送風機の風量を制御する自動風量制御の機能を備えた空気調和機がある。   A cooling / heating automatic operation mode in which either one of cooling and heating operations is automatically selected and executed, and a normal operation mode in which one of the cooling and heating operations is selectively executed in response to an external request There is an air conditioner having a function and an automatic air volume control function for controlling the air volume of an indoor blower according to a difference between the indoor temperature and a set indoor temperature.

風量制御については、室内温度が設定室内温度に近付いてその温度差が小さくなっていくに従い、室内送風機の風量が減らされる。   As for the air volume control, the air volume of the indoor blower is reduced as the indoor temperature approaches the set indoor temperature and the temperature difference becomes smaller.

一般に冷暖自動運転モードでは、通常運転モードの場合に比べ空調能力を小さくした省エネルギ運転が要求される。しかしながら、室内送風機の風量制御は冷暖自動運転モードおよび通常運転モードの違いにかかわらず同じであり、このため、冷暖自動運転モード時の空調能力を単に小さくするだけでは、適切な室内温度制御が困難となる。   Generally, in the cooling / heating automatic operation mode, an energy-saving operation in which the air-conditioning capacity is smaller than that in the normal operation mode is required. However, the air volume control of the indoor blower is the same regardless of the difference between the cooling / heating automatic operation mode and the normal operation mode. Therefore, it is difficult to appropriately control the indoor temperature only by reducing the air conditioning capacity in the cooling / heating automatic operation mode. It becomes.

この発明は上記の事情を考慮したもので、その目的とするところは、暖房時の冷凍サイクルの高圧側圧力の異常上昇を確実に回避できる空気調和機を提供することを目的とする。   The present invention has been made in consideration of the above circumstances, and has as its object to provide an air conditioner that can reliably avoid an abnormal increase in the high-pressure side pressure of a refrigeration cycle during heating.

請求項1に係る発明の空気調和機は、圧縮機、室外熱交換器、室内熱交換器、および風量可変の室内送風機を備え、冷房および暖房が可能なものであって、室内空気の温度を検知する室内温度センサと、上記室内熱交換器の温度を検知する熱交換器温度センサと、暖房時、上記室内温度センサの検知温度が所定値以上、上記熱交換器温度センサの検知温度が所定値以上になると、上記室内送風機の最小風量を所定以上に制限する制御手段と、を備えている。   The air conditioner of the invention according to claim 1 includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an indoor blower having a variable air volume, capable of cooling and heating, and controlling the temperature of indoor air. An indoor temperature sensor for detecting, a heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger, and a detected temperature of the indoor temperature sensor that is equal to or higher than a predetermined value during heating, and a detected temperature of the heat exchanger temperature sensor that is predetermined. Control means for limiting the minimum air volume of the indoor blower to a predetermined value or more when the value exceeds the value.

請求項4に係る発明の空気調和機は、圧縮機、室外熱交換器、室内熱交換器などを接続して冷媒を循環させる冷凍サイクルを備え、冷房および暖房が可能なものであって、室内熱交換器の温度を検知する熱交換器温度センサと、暖房時、上記熱交換器温度センサの検知温度が所定値以上になると、上記冷凍サイクルの高圧側圧力を抑制するための処置を実行する高圧保護手段と、この高圧保護手段の前記所定値を、上記熱交換器温度センサの検知温度が設定値未満のときは設定値以上のときより低く設定する制御手段と、を備えている。   The air conditioner of the invention according to claim 4 includes a refrigeration cycle that connects a compressor, an outdoor heat exchanger, an indoor heat exchanger, and the like to circulate a refrigerant, and is capable of cooling and heating. A heat exchanger temperature sensor for detecting the temperature of the heat exchanger, and a measure for suppressing the high-pressure side pressure of the refrigeration cycle when the detected temperature of the heat exchanger temperature sensor becomes a predetermined value or more during heating. And a control means for setting the predetermined value of the high-pressure protection means to be lower when the temperature detected by the heat exchanger temperature sensor is less than a set value than when the detected temperature is equal to or more than the set value.

この発明によれば、暖房時、室内温度が所定値以上、室内熱交換器の温度が所定値以上になると、室内送風機の最小風量を所定以上に制限することにより、暖房時の冷凍サイクルの高圧側圧力の異常上昇を確実に回避できる空気調和機を提供できる。   According to the present invention, when the indoor temperature is equal to or higher than the predetermined value and the temperature of the indoor heat exchanger is equal to or higher than the predetermined value during heating, the minimum air flow of the indoor blower is limited to or above the predetermined value, thereby increasing the high pressure of the refrigeration cycle during heating. An air conditioner that can reliably avoid an abnormal increase in side pressure can be provided.

以下、この発明の第1実施例について図面を参照して説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

図2に示すように、室外ユニットXおよび室内ユニットYにヒートポンプ式冷凍サイクルが搭載される。   As shown in FIG. 2, a heat pump refrigeration cycle is mounted on the outdoor unit X and the indoor unit Y.

1は能力可変圧縮機で、この圧縮機1の吐出口に四方弁2を介して室外熱交換器3が配管接続される。この室外熱交換器3に減圧器たとえば膨張弁4を介して室内熱交換器5が配管接続され、その室内熱交換器5は四方弁2を介して圧縮機1の吸込口に配管接続される。   Reference numeral 1 denotes a variable capacity compressor, and an outdoor heat exchanger 3 is connected to a discharge port of the compressor 1 via a four-way valve 2 by piping. An indoor heat exchanger 5 is connected to the outdoor heat exchanger 3 via a pressure reducer, for example, an expansion valve 4 via a pipe, and the indoor heat exchanger 5 is connected via a four-way valve 2 to a suction port of the compressor 1. .

室外熱交換器3の近傍に、室外送風機6が設けられる。室外送風機6は、外気を室外熱交換器3を通して循環させる。室内熱交換器5の近傍に、速度可変の室内送風機7が設けられる。室内送風機7は、室内空気を室内熱交換器5を通して循環させる。   An outdoor blower 6 is provided near the outdoor heat exchanger 3. The outdoor blower 6 circulates outside air through the outdoor heat exchanger 3. In the vicinity of the indoor heat exchanger 5, a variable speed indoor blower 7 is provided. The indoor blower 7 circulates indoor air through the indoor heat exchanger 5.

室内熱交換器5に、その室内熱交換器5の暖房時の温度(凝縮器温度)Tcを検知するための熱交換器温度センサ12が取付けられる。   The indoor heat exchanger 5 is provided with a heat exchanger temperature sensor 12 for detecting a temperature (condenser temperature) Tc of the indoor heat exchanger 5 during heating.

室内送風機7によって形成される室内空気の吸込み風路に、室内空気温度Taを検知するための室内温度センサ13が設けられる。   An indoor temperature sensor 13 for detecting the indoor air temperature Ta is provided in an indoor air intake air path formed by the indoor blower 7.

室内機Yの具体例を図3および図4に示す。図3は室内機Yの筐体内部を側方から見たもの、図4は室内機Yの筐体内部を上方から見たものである。   3 and 4 show specific examples of the indoor unit Y. FIG. 3 is a side view of the inside of the housing of the indoor unit Y, and FIG. 4 is a view of the inside of the housing of the indoor unit Y from above.

すなわち、室内機Yの筐体50が天井面Sの開口に埋設される。筐体50の下面部は天井面Sと同一面をなし、その下面部において、略中央に空気吸込口51が設けられ、その空気吸込口51を囲む位置に複数の空気吹出口52が配設される。筐体50内に、空気吸込口51から各空気吸込口52にかけて通風空間が形成され、その通風空間に上記室内送風機7(および室内送風機モータ7M)が設けられる。また、通風空間において、室内送風機7を囲む位置に上記室内熱交換器5が配設される。   That is, the housing 50 of the indoor unit Y is embedded in the opening of the ceiling surface S. The lower surface of the housing 50 is flush with the ceiling surface S, and the lower surface thereof is provided with an air inlet 51 substantially at the center, and a plurality of air outlets 52 are provided at positions surrounding the air inlet 51. Is done. A ventilation space is formed in the housing 50 from the air suction port 51 to each air suction port 52, and the indoor blower 7 (and the indoor blower motor 7M) is provided in the ventilation space. In the ventilation space, the indoor heat exchanger 5 is provided at a position surrounding the indoor blower 7.

室内送風機7が動作すると、室内空気が空気吸込口51から筐体50内に吸込まれ、それが室内熱交換器5を通って各空気吹出口52から室内に吹出される。空気吸込口51の内側にフィルタ53が設けられ、このフィルタ53と室内送風機7との間の風路に室内温度センサ13が取付けられている。また、室内熱交換器5に熱交換器温度センサ12が取付けられている。   When the indoor blower 7 operates, indoor air is sucked into the housing 50 from the air suction port 51, and is blown into the room from each air outlet 52 through the indoor heat exchanger 5. A filter 53 is provided inside the air suction port 51, and an indoor temperature sensor 13 is attached to an air passage between the filter 53 and the indoor blower 7. A heat exchanger temperature sensor 12 is attached to the indoor heat exchanger 5.

制御回路を図1に示す。   The control circuit is shown in FIG.

室内機Yの室内制御部20が、商用交流電源30に接続される。そして、室内制御部20に電源ラインACLおよびシリアル信号ラインSLを介して室外機Xの室外制御部40が接続される。   The indoor control unit 20 of the indoor unit Y is connected to the commercial AC power supply 30. The outdoor control unit 40 of the outdoor unit X is connected to the indoor control unit 20 via the power line ACL and the serial signal line SL.

室内制御部20は、マイクロコンピュータおよびその周辺回路からなる。この室内制御部20に、受光部21、速度制御回路23、熱交換器温度センサ12、および室内温度センサ13が接続される。そして、速度制御回路23に、室外送風機モータ7Mが接続される。   The indoor control unit 20 includes a microcomputer and its peripheral circuits. The light receiving unit 21, the speed control circuit 23, the heat exchanger temperature sensor 12, and the indoor temperature sensor 13 are connected to the indoor control unit 20. The outdoor blower motor 7M is connected to the speed control circuit 23.

受光部21は、リモートコントロール装置(以下、リモコンと略称する)22から送信される赤外線光を受光する。   The light receiving unit 21 receives infrared light transmitted from a remote control device (hereinafter, simply referred to as a remote controller) 22.

速度制御回路23は、室内送風機モータ7Mの速度(つまり風量)を他段階に制御する。速度制御の具体的な手段としては、ACモータの通電位相制御、DCモータおよびインバータ回路の採用によるインバータ駆動制御、あるいはタップ切換制御など、いずれでもよい。   The speed control circuit 23 controls the speed (that is, the air volume) of the indoor blower motor 7M to another stage. Specific means of the speed control may be any of an AC motor energization phase control, an inverter drive control using a DC motor and an inverter circuit, and a tap switching control.

室外制御部40は、マイクロコンピュータおよびその周辺回路からなる。この室外制御部40に、四方弁2、インバータ回路41、および室外送風機モータ6Mが接続される。そして、インバータ回路41に、圧縮機モータ1Mが接続される。   The outdoor control unit 40 includes a microcomputer and its peripheral circuits. The four-way valve 2, the inverter circuit 41, and the outdoor blower motor 6M are connected to the outdoor control unit 40. Then, the compressor motor 1M is connected to the inverter circuit 41.

インバータ回路41は、電源ラインACLの電圧を整流し、それを室外制御部40からの指令に応じた周波数(およびレベル)の電圧に変換し、出力する。この出力が圧縮機モータ1Mに駆動電力として供給される。   The inverter circuit 41 rectifies the voltage of the power supply line ACL, converts the rectified voltage to a frequency (and level) voltage according to a command from the outdoor control unit 40, and outputs the voltage. This output is supplied as drive power to the compressor motor 1M.

そして、室内制御部20および室外制御部40は、シリアル信号ラインSLを通して相互に電源電圧同期のデータ転送を行ないながら、当該空気調和機を制御するもので、主要な機能手段として次の[1]〜[9]を備える。   The indoor control unit 20 and the outdoor control unit 40 control the air conditioner while mutually performing power supply voltage synchronized data transfer through the serial signal line SL. The following [1] is a main functional means. To [9].

[1]圧縮機1の吐出冷媒を図2に示す実線矢印の方向に流し、これにより冷房サイクルを形成して室外熱交換器3を凝縮器、室内熱交換器5を蒸発器として機能させ、冷房運転(およびドライ運転)を実行する手段。   [1] The refrigerant discharged from the compressor 1 is caused to flow in the direction of the solid arrow shown in FIG. 2, whereby a cooling cycle is formed, and the outdoor heat exchanger 3 functions as a condenser and the indoor heat exchanger 5 functions as an evaporator. A means for performing a cooling operation (and a dry operation).

[2]圧縮機1の吐出冷媒を四方弁2の切換により図2に示す破線矢印の方向に流し、これにより暖房サイクルを形成して室内熱交換器5を凝縮器、室外熱交換器3を蒸発器として機能させ、暖房運転を実行する手段。   [2] The refrigerant discharged from the compressor 1 is caused to flow in the direction of the dashed arrow shown in FIG. 2 by switching the four-way valve 2, thereby forming a heating cycle, turning the indoor heat exchanger 5 into a condenser and the outdoor heat exchanger 3. A means for performing a heating operation by functioning as an evaporator.

[3]冷房および暖房時、室内温度センサ13の検知温度Taとリモコン設定温度Tsとの差ΔTを空調負荷として求め、その温度差ΔTに応じてインバータ回路41の出力周波数(圧縮機1の運転周波数)Fを制御する手段。   [3] During cooling and heating, the difference ΔT between the detected temperature Ta of the indoor temperature sensor 13 and the set temperature Ts of the remote controller is determined as the air conditioning load, and the output frequency of the inverter circuit 41 (the operation of the compressor 1) is determined according to the temperature difference ΔT. Means for controlling the frequency (F).

[4]冷房および暖房のいずれか一方の運転を自動的に選択して実行する冷暖自動運転モードの運転手段。   [4] A cooling / heating automatic operation mode operation means for automatically selecting and executing one of the cooling operation and the heating operation.

[5]冷房および暖房のいずれか一方の運転をリモコン22の操作による外部からの要求に応じて選択的に実行する通常運転モードの運転手段。   [5] Operating means in a normal operation mode for selectively executing either one of the cooling operation and the heating operation in response to an external request by operating the remote controller 22.

[6]室内温度センサ13の検知温度Taとリモコン22での設定室内温度Tsとの差ΔTに応じて室内送風機7の風量(つまり速度)を制御するとともに、この風量値を、冷暖自動運転モード時は通常運転モード時より大きく設定する自動風量制御手段。   [6] The air flow (that is, the speed) of the indoor blower 7 is controlled according to the difference ΔT between the detected temperature Ta of the indoor temperature sensor 13 and the set indoor temperature Ts by the remote controller 22, and this air flow value is set to the cooling / heating automatic operation mode. Automatic air volume control means that is set larger than in normal operation mode.

[7]暖房時、室内温度センサ13の検知温度Taが所定値(たとえば25℃)以上、熱交換器温度センサ12の検知温度Tcが所定値(たとえば30℃)以上になると、室内送風機7の最小風量を所定以上に制限する制御手段。   [7] At the time of heating, if the detected temperature Ta of the indoor temperature sensor 13 is equal to or higher than a predetermined value (for example, 25 ° C.) and the detected temperature Tc of the heat exchanger temperature sensor 12 is equal to or higher than a predetermined value (for example, 30 ° C.), Control means for limiting the minimum air flow to a predetermined value or more.

[8]暖房時、熱交換器温度センサ12の検知温度Tcが所定値(たとえば56℃または58℃のいずれか)以上になると、冷凍サイクルの高圧側圧力を抑制するための処置(圧縮機1の運転周波数低減や高圧側から低圧側の冷媒バイパス等のレリース制御)を実行する高圧保護手段。   [8] During heating, if the detected temperature Tc of the heat exchanger temperature sensor 12 becomes equal to or higher than a predetermined value (for example, either 56 ° C. or 58 ° C.), a measure for suppressing the high pressure side pressure of the refrigeration cycle (compressor 1 High-pressure protection means for reducing the operating frequency of the motor or performing release control such as refrigerant bypass from the high-pressure side to the low-pressure side.

[9]高圧保護手段の上記所定値を、熱交換器温度センサ12の検知温度Tcが設定値(たとえば40℃)以上のときは58℃と高く設定し、検知温度Tcが同設定値(40℃)未満のときは56℃と低く設定する制御手段。   [9] When the detected temperature Tc of the heat exchanger temperature sensor 12 is equal to or higher than a set value (for example, 40 ° C.), the predetermined value of the high-pressure protection means is set as high as 58 ° C., and the detected temperature Tc is set to the same set value (40 ° C.). Control means to set as low as 56 ° C when the temperature is lower.

つぎに、上記の構成の作用を図5および図6のフローチャートを参照して説明する。   Next, the operation of the above configuration will be described with reference to the flowcharts of FIGS.

通常運転モードで(ステップ101 のNO)、かつ風量自動モードの非設定時は(ステップ102 のNO)、リモコン22からの指令に応じて室内送風機7の風量が設定される(ステップ103 )。   In the normal operation mode (NO in step 101) and when the automatic air volume mode is not set (NO in step 102), the air volume of the indoor blower 7 is set according to a command from the remote controller 22 (step 103).

通常運転モードで(ステップ101 のNO)、風量自動モードで(ステップ102 のYES )、かつ冷房時(ステップ104 のNO)は、温度差ΔT(=Ta−Ts)と図7の通常時の冷房用風量設定条件Bcとの対照により、室内送風機7の風量が設定される(ステップ105 )。   In the normal operation mode (NO in step 101), the automatic air flow mode (YES in step 102), and during cooling (NO in step 104), the temperature difference ΔT (= Ta−Ts) and the normal cooling in FIG. The air volume of the indoor blower 7 is set by contrast with the air volume setting condition Bc (step 105).

たとえば、温度差ΔTが+1℃以上なら室内送風機モータ7の高速度運転による大風量H、温度差ΔTが+1℃未満かつ+0.5℃以上では室内送風機モータ7の中(上)速度運転による中風量(高)M+、温度差ΔTが+0.5℃未満かつ0℃以上では室内送風機モータ7の中速度運転による中風量M、温度差ΔTが0℃未満かつ−0.5℃以上では室内送風機モータ7の低(上)速度運転による小風量(高)L+、温度ΔTが−0.5℃未満では室内送風機モータ7の低速度運転による小風量L、サーモオフ(運転中断)時は室内送風機モータ7の超低速度運転による微風量ULが設定される。   For example, if the temperature difference ΔT is + 1 ° C. or more, the large air volume H due to the high speed operation of the indoor blower motor 7, and if the temperature difference ΔT is less than + 1 ° C. and + 0.5 ° C. or more, the large air flow H occurs during the middle (up) speed operation of the indoor blower motor 7. When the air volume (high) M + and the temperature difference ΔT are less than + 0.5 ° C. and 0 ° C. or more, the indoor air blower motor 7 has a medium air volume M due to the medium speed operation and the temperature difference ΔT is less than 0 ° C. and −0.5 ° C. or more. Small air volume (high) L + due to low (up) speed operation of motor 7, small air volume L due to low speed operation of indoor fan motor 7 when temperature ΔT is less than -0.5 ° C, indoor fan motor when thermo-off (operation interrupted) 7 is set.

通常運転モードで(ステップ101 のNO)、風量自動モードで(ステップ102 のYES )、かつ暖房時(ステップ104 のYES )は、温度差ΔTと図8の通常時の暖房用風量設定条件Bhとの対照により、室内送風機7の風量が設定される(ステップ106 )。   In the normal operation mode (NO in step 101), in the automatic air volume mode (YES in step 102), and during heating (YES in step 104), the temperature difference ΔT and the normal heating air volume setting condition Bh in FIG. Is set, the air volume of the indoor blower 7 is set (step 106).

たとえば、温度差ΔTが−1℃未満なら室内送風機モータ7の高速度運転による大風量H、温度差ΔTが−1℃以上かつ−0.5℃未満では室内送風機モータ7の中(上)速度運転による中風量(高)M+、温度差ΔTが−0.5℃以上かつ0℃未満では室内送風機モータ7の中速度運転による中風量M、温度差ΔTが0℃以上かつ+0.5℃未満では室内送風機モータ7の低(上)速度運転による小風量(高)L+、温度ΔTが+0.5℃以上では室内送風機モータ7の低速度運転による小風量L、サーモオフ(運転中断)時は室内送風機モータ7の超低速度運転による微風量ULが設定される。   For example, if the temperature difference ΔT is less than −1 ° C., the large air volume H due to the high speed operation of the indoor fan motor 7, and if the temperature difference ΔT is −1 ° C. or more and less than −0.5 ° C., the middle (upper) speed of the indoor fan motor 7 When the middle air volume (high) M + and the temperature difference ΔT due to the operation are −0.5 ° C. or more and less than 0 ° C., the middle air volume M and the temperature difference ΔT due to the medium speed operation of the indoor blower motor 7 are 0 ° C. or more and less than + 0.5 ° C. In this case, the small air volume (high) L + due to the low (upper) speed operation of the indoor blower motor 7 and the small air volume L due to the low speed operation of the indoor blower motor 7 when the temperature ΔT is + 0.5 ° C. or more, and the room when the thermo-off (operation is interrupted) A small air volume UL due to the ultra-low speed operation of the blower motor 7 is set.

一方、冷暖自動運転モードで(ステップ101 のYES )、風量自動モードで(ステップ107 のYES )、かつ冷房時(ステップ108 のNO)は、温度差ΔTと図7の冷暖自動時の冷房用風量設定条件Acとの対照により、室内送風機7の風量が設定される(ステップ109 )。   On the other hand, in the automatic cooling / heating operation mode (YES in step 101), in the automatic air volume mode (YES in step 107), and during cooling (NO in step 108), the temperature difference ΔT and the cooling air volume during automatic cooling / heating shown in FIG. The air volume of the indoor blower 7 is set by contrast with the set condition Ac (step 109).

たとえば、温度差ΔTが+1℃以上なら室内送風機モータ7の最高速度運転による大風量(高)H+、温度差ΔTが+1℃未満かつ+0.5℃以上では室内送風機モータ7の中(上)速度運転による中風量(高)M+、温度差ΔTが+0.5℃未満かつ0℃以上では室内送風機モータ7の中(上)速度運転による中風量(高)M+、温度差ΔTが0℃未満かつ−0.5℃以上では室内送風機モータ7の中速度運転による中風量M、温度ΔTが−0.5℃未満では室内送風機モータ7の低(上)速度運転による小風量(高)L+が設定される。   For example, if the temperature difference ΔT is + 1 ° C. or more, a large air volume (high) H + by the maximum speed operation of the indoor blower motor 7, and if the temperature difference ΔT is less than + 1 ° C. and more than + 0.5 ° C., the middle (upper) speed of the indoor blower motor 7 When the medium air flow (high) M + and the temperature difference ΔT due to the operation are less than + 0.5 ° C. and 0 ° C. or more, the medium air flow (high) M + due to the (up) speed operation of the indoor blower motor 7 and the temperature difference ΔT are less than 0 ° C. When the temperature is −0.5 ° C. or more, the medium air flow rate M due to the medium speed operation of the indoor blower motor 7 is set, and when the temperature ΔT is less than −0.5 ° C., the small air flow rate (high) L + due to the low (up) speed operation of the indoor blower motor 7 is set. Is done.

冷暖自動運転モードで(ステップ101 のYES )、風量自動モードで(ステップ107 のYES )、かつ暖房時(ステップ108 のYES )は、温度差ΔTと図8の冷暖自動時の暖房用風量設定条件Ahとの対照により、さらに熱交換器温度センサ 13の検知温度Tcと風量設定条件Cとの対照により、室内送風機7の風量が設定される(ステップ110 )。   In the automatic cooling / heating operation mode (YES in step 101), the automatic air volume mode (YES in step 107), and the heating time (YES in step 108), the temperature difference ΔT and the heating air flow rate setting condition in the automatic cooling / heating operation shown in FIG. The air volume of the indoor blower 7 is set by contrasting with Ah and further by comparing the detected temperature Tc of the heat exchanger temperature sensor 13 with the air volume setting condition C (step 110).

たとえば、温度差ΔTが−1℃未満なら室内送風機モータ7の最高速度運転による大風量(高)H+、温度差ΔTが−1℃以上かつ−0.5℃未満では室内送風機モータ7の中(上)速度運転による中風量(高)M+、温度差ΔTが−0.5℃以上かつ0℃未満では室内送風機モータ7の中(上)速度運転による中風量(高)M+、温度差ΔTが0℃以上かつ+0.5℃未満では室内送風機モータ7の中速度運転による中風量M、温度ΔTが+0.5℃以上では室内送風機モータ7の低速度運転による小風量(高)L+が設定される。   For example, if the temperature difference ΔT is less than −1 ° C., a large air volume (high) H + due to the maximum speed operation of the indoor blower motor 7, and if the temperature difference ΔT is −1 ° C. or more and less than −0.5 ° C., Above) Medium air flow (high) M + due to speed operation and temperature difference ΔT of −0.5 ° C. or more and less than 0 ° C., medium air flow (high) M + and temperature difference ΔT due to (up) speed operation in indoor blower motor 7 When the temperature is equal to or higher than 0 ° C. and lower than + 0.5 ° C., the medium air flow rate M due to the medium speed operation of the indoor blower motor 7 is set, and when the temperature ΔT is + 0.5 ° C. or higher, the small air flow (high) L + due to the low speed operation of the indoor blower motor 7 is set. You.

ただし、この場合、最大風量値であるところの大風量(高)H+については(温度差ΔTが−1℃未満の場合)、図9に示すように、熱交換器温度センサ13の検知温度Tcが47℃以上のQゾーンにあればそのまま設定されるが、検知温度Tcが47℃未満のPゾーンにあるうちは1ランク下の大風量Hに変更設定される。   However, in this case, as for the large air volume (high) H + which is the maximum air volume value (when the temperature difference ΔT is less than −1 ° C.), as shown in FIG. If the detected temperature Tc is in the P zone where the detected temperature Tc is lower than 47 ° C., it is set to be one rank lower than the large air volume H while the detected temperature Tc is in the P zone where the detected temperature Tc is lower than 47 ° C.

そして、冷房時は(ステップ111 のNO)、上記設定された風量で室内送風機7が運転される(ステップ117 のYES )。   Then, at the time of cooling (NO in step 111), the indoor blower 7 is operated at the set air volume (YES in step 117).

暖房時は(ステップ111 のYES )、室内温度センサ13の検知温度Taが25℃以上で(ステップ112 のYES )、熱交換器温度センサ13の検知温度Tcが30℃以上となり(ステップ113 のYES )、かつ室内送風機7に対する設定風量が所定未満たとえば[弱風(高)L+]未満であれば(ステップ114 のYES )、室内送風機7が強制的に[弱風(高)L+]で運転される(ステップ115 のYES )。この風量制限は、所定時間だけ、かつ運転開始ごとに1回だけ行なわれる。   During heating (YES in step 111), the detected temperature Ta of the room temperature sensor 13 is 25 ° C. or more (YES in step 112), and the detected temperature Tc of the heat exchanger temperature sensor 13 is 30 ° C. or more (YES in step 113). If the set airflow for the indoor blower 7 is less than a predetermined value, for example, less than [weak wind (high) L +] (YES in step 114), the indoor blower 7 is forcibly operated with [weak wind (high) L +]. (YES in step 115). This air volume restriction is performed only for a predetermined time and once each time the operation is started.

室内送風機7に対する設定風量が[弱風(高)L+]以上であれば(ステップ114 のNO)、その設定風量にて室内送風機7が運転される(ステップ117 のYES )。   If the set airflow for the indoor blower 7 is equal to or more than [weak wind (high) L +] (NO in step 114), the indoor blower 7 is operated at the set airflow (YES in step 117).

ただし、室内温度センサ13の検知温度Taが25℃以上でも(ステップ112 のYES )、熱交換器温度センサ13の検知温度Tcが30℃未満なら(ステップ113 のNO)、室内送風機7は設定風量で運転される(ステップ117 のYES )。   However, even if the detected temperature Ta of the indoor temperature sensor 13 is equal to or higher than 25 ° C. (YES in step 112), if the detected temperature Tc of the heat exchanger temperature sensor 13 is lower than 30 ° C. (NO in step 113), the indoor blower 7 sets the set air volume. (Step 117, YES).

暖房開始時(サーモオフ後の運転再開時、除霜後の運転復帰時を含む)のように、室内温度センサ13の検知温度Taが25℃未満(ステップ112 のYES )、熱交換器温度センサ13の検知温度Tcが30℃未満の状況では(ステップ113 のNO)、熱交換器温度センサ13の検知温度Tcが30℃に達するまで、待機状態となって室内送風機7の運転が保留される。   As in the case of starting heating (including resuming operation after thermo-off and resuming operation after defrosting), the detected temperature Ta of the room temperature sensor 13 is less than 25 ° C. (YES in step 112), and the heat exchanger temperature sensor 13 If the detected temperature Tc is less than 30 ° C. (NO in step 113), the standby state is set and the operation of the indoor blower 7 is suspended until the detected temperature Tc of the heat exchanger temperature sensor 13 reaches 30 ° C.

ところで、通常時の冷房用風量設定条件Bc、冷暖自動時の冷房用風量設定条件Ac、通常時の暖房用風量設定条件Bh、冷暖自動時の暖房用風量設定条件Ahは、室内温度Taと設定室内温度Tsとの差ΔTを複数のゾーンに区切ってこれらゾーン毎に風量値を割当てるととともに、これらゾーンのうち少なくとも一部のゾーンの風量値を冷暖自動運転モード時は通常運転モード時より大きく設定している。すなわち、冷暖自動運転モード時の最小風量値は、通常運転モード時の最小風量値より大きく設定されている。また、冷暖自動運転モード時の最大風量値は、通常運転モード時の最大風量値より大きく設定されている。   By the way, the cooling air flow rate setting condition Bc in the normal state, the cooling air flow rate setting condition Ac in the automatic cooling / heating operation, the heating air flow setting condition Bh in the normal operation, and the heating air flow setting condition Ah in the automatic cooling / heating operation are set to the room temperature Ta. The difference ΔT from the room temperature Ts is divided into a plurality of zones, and the airflow value is assigned to each of these zones, and the airflow values of at least some of these zones are set to be larger in the cooling / heating automatic operation mode than in the normal operation mode. You have set. That is, the minimum airflow value in the cooling / heating automatic operation mode is set to be larger than the minimum airflow value in the normal operation mode. The maximum airflow value in the cooling / heating automatic operation mode is set to be larger than the maximum airflow value in the normal operation mode.

このように、空調負荷に相当する温度差ΔTに応じて室内送風機7の風量を制御しながら、その風量値を、冷暖自動運転モード時は通常運転モード時より大きく設定することにより、冷暖自動運転モード時の省エネルギ運転を行なうべく空調能力(圧縮機1の運転周波数)が小さく設定された場合でも、その空調能力の削減分を室内送風機7の風量アップ分で補うことができ、よって適切な室内温度制御が可能である。   As described above, while controlling the air volume of the indoor blower 7 in accordance with the temperature difference ΔT corresponding to the air conditioning load, the air volume value is set to be larger in the cooling / heating automatic operation mode than in the normal operation mode, whereby the cooling / heating automatic operation is performed. Even when the air-conditioning capacity (operating frequency of the compressor 1) is set to be small in order to perform the energy-saving operation in the mode, the reduced air-conditioning capacity can be compensated for by the increase in the air volume of the indoor blower 7, so that appropriate Room temperature control is possible.

また、冷暖自動運転モードの風量設定条件では、室内温度Taが設定室内温度Tsに近付くに従って風量値のダウン量を少なく設定しており、しかも、最小風量値を通常運転モード時より大きく設定しているので、室内温度Taを設定室内温度Tsへと迅速に収束させることができる。   Further, in the air volume setting condition of the cooling / heating automatic operation mode, the amount of reduction of the air volume value is set to be smaller as the indoor temperature Ta approaches the set indoor temperature Ts, and the minimum air volume value is set to be larger than that in the normal operation mode. Therefore, the room temperature Ta can be quickly converged to the set room temperature Ts.

さらに、冷暖自動運転モードの暖房時は、最大風量値であるところの大風量(高)H+を、熱交換器温度センサ13の検知温度Tcが47℃以上のQゾーンにあればそのまま設定するが、検知温度Tcが47℃未満のPゾーンにあるうちは1ランク下の大風量Hに変更設定するので、室内への吹出空気温度を最適な所定温度以上の状態に維持することができる。   Further, during heating in the cooling / heating automatic operation mode, the large air volume (high) H + which is the maximum air volume value is set as it is if the detection temperature Tc of the heat exchanger temperature sensor 13 is in the Q zone of 47 ° C. or higher. While the detected temperature Tc is in the P zone of less than 47 ° C., the large air volume H is changed and set to be one rank lower, so that the temperature of the air blown into the room can be maintained at an optimal predetermined temperature or higher.

暖房時、室内温度Taが25℃以上と高く、しかも熱交換器温度Tcが30℃以上の条件では、室内送風機7の風量が少ないと、冷凍サイクルの高圧側圧力が異常上昇し、これに伴い熱交換器温度Tcが所定値(たとえば56℃または58℃のいずれか)以上に上昇して高圧保護手段(圧縮機1の運転周波数低減や高圧側から低圧側の冷媒バイパス等のレリース制御)が作動し(ステップ120 )、最悪の場合は高圧スイッチ(図示しない)が作動して運転停止に至ることがあるが、そのような条件の下では室内送風機7の最小風量を所定以上に制限するようにしているので、高圧保護機能が作動する前に高圧側圧力の上昇を抑えることができる。高圧スイッチの作動による不要な運転停止も避けることができるので、中断のない効率的な空調が可能であり、省エネルギ効果の向上に貢献できる。   At the time of heating, when the indoor temperature Ta is as high as 25 ° C. or more and the heat exchanger temperature Tc is at least 30 ° C., if the air volume of the indoor blower 7 is small, the high-pressure side pressure of the refrigeration cycle rises abnormally. When the heat exchanger temperature Tc rises above a predetermined value (for example, either 56 ° C. or 58 ° C.), the high-pressure protection means (reducing the operating frequency of the compressor 1 or releasing control of the refrigerant bypass from the high-pressure side to the low-pressure side) is performed. It operates (step 120), and in the worst case, a high-pressure switch (not shown) is operated to stop the operation. Under such conditions, the minimum air flow of the indoor blower 7 is limited to a predetermined value or more. Therefore, it is possible to suppress an increase in the high pressure side pressure before the high pressure protection function is activated. Unnecessary stoppage of operation due to the operation of the high-voltage switch can be avoided, so that efficient air-conditioning without interruption is possible, and it is possible to contribute to an improvement in energy saving effect.

しかも、室内送風機7の最小風量を所定以上に制限することにより、高圧側圧力の上昇に対する熱交換器温度Tcの上昇の追従性が良好となり、高圧保護機能の適正な作動が可能である。   In addition, by limiting the minimum air volume of the indoor blower 7 to a predetermined value or more, the followability of the rise in the heat exchanger temperature Tc to the rise in the high-pressure side pressure is improved, and the high-pressure protection function can be properly operated.

とくに、高圧保護手段の作動点である所定値として、熱交換器温度Tcが40℃以上の場合は高い方の58℃を選定(ステップ118 のYES 、ステップ119 )するが、検知温度Tcが40℃未満で、例えば暖房開始時(サーモオフ後の運転再開時、除霜後の運転復帰時を含む)のように高圧側圧力の上昇に熱交換器温度Tcの上昇が追い付かなくなるような状況では、低い方の56℃を選定(ステップ118 のYES 、ステップ120 )するようにしているので、たとえ追従が遅くても、高圧側圧力の異常上昇に対し高圧保護機能を確実に作動させることができる。   In particular, when the heat exchanger temperature Tc is 40 ° C. or higher, the higher value of 58 ° C. is selected (YES in step 118, step 119) as the predetermined value which is the operating point of the high-pressure protection means. In a situation in which the rise in the heat exchanger temperature Tc cannot keep up with the rise in the high-pressure side pressure, for example, when the heating is started (including when the operation is restarted after the thermo-off and when the operation is restored after the defrosting), Since the lower 56 ° C. is selected (YES in step 118, step 120), the high-pressure protection function can be reliably activated even if the follow-up is slow, even if the high-pressure side pressure rises abnormally.

なお、この発明は上記実施例に限定されるものではなく、要旨を変えない範囲で種々変形実施可能である。   The present invention is not limited to the above-described embodiment, and can be variously modified without changing the gist.

一実施例の制御回路のブロック図。FIG. 2 is a block diagram of a control circuit according to one embodiment. 同実施例の冷凍サイクルの構成図。The block diagram of the refrigeration cycle of the embodiment. 同実施例の室内機の構成を断面して側方から見た図。The figure which looked at the cross section of the structure of the indoor unit of the embodiment from the side. 同実施例の室内機の構成を断面して上方から見た図。The figure which looked at the cross section of the structure of the indoor unit of the embodiment from above. 同実施例の作用を説明するためのフローチャート。4 is a flowchart for explaining the operation of the embodiment. 図5に続くフローチャート。The flowchart following FIG. 同実施例における冷房時の風量設定条件を示す図。The figure which shows the air volume setting condition at the time of cooling in the same Example. 同実施例における暖房時の風量設定条件を示す図。The figure which shows the air volume setting condition at the time of the heating in the same Example. 同実施例における暖房時の風量設定条件を示す図。The figure which shows the air volume setting condition at the time of the heating in the same Example.

符号の説明Explanation of reference numerals

1…能力可変圧縮機、3…室外熱交換器、5…室内熱交換器、7…室内送風機、12…熱交換器温度センサ、13…室内温度センサ、20…室内制御部、23…速度制御回路、40…室外制御部、41…インバータ回路。   DESCRIPTION OF SYMBOLS 1 ... Variable capacity compressor, 3 ... Outdoor heat exchanger, 5 ... Indoor heat exchanger, 7 ... Indoor blower, 12 ... Heat exchanger temperature sensor, 13 ... Indoor temperature sensor, 20 ... Indoor control part, 23 ... Speed control Circuit, 40 ... Outdoor control unit, 41 ... Inverter circuit.

Claims (4)

圧縮機、室外熱交換器、室内熱交換器、および風量可変の室内送風機を備え、冷房および暖房が可能な空気調和機において、
室内空気の温度を検知する室内温度センサと、
前記室内熱交換器の温度を検知する熱交換器温度センサと、
暖房時、前記室内温度センサの検知温度が所定値以上、前記熱交換器温度センサの検知温度が所定値以上になると、前記室内送風機の最小風量を所定以上に制限する制御手段と、
を具備したことを特徴とする空気調和機。
An air conditioner that includes a compressor, an outdoor heat exchanger, an indoor heat exchanger, and an indoor blower having a variable air volume, and capable of cooling and heating.
An indoor temperature sensor for detecting the temperature of indoor air,
A heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger,
At the time of heating, when the detection temperature of the indoor temperature sensor is equal to or higher than a predetermined value, and when the detection temperature of the heat exchanger temperature sensor is equal to or higher than a predetermined value, a control unit that limits the minimum air flow of the indoor blower to a predetermined value or higher,
An air conditioner comprising:
請求項1において、制御手段は、制限を所定時間だけ行なうことを特徴とする空気調和機。 2. The air conditioner according to claim 1, wherein the control unit performs the restriction for a predetermined time. 請求項1において、制御手段は、制限を運転開始ごとに1回行なうことを特徴とする空気調和機。 2. The air conditioner according to claim 1, wherein the control unit performs the restriction once each time the operation is started. 圧縮機、室外熱交換器、室内熱交換器などを接続して冷媒を循環させる冷凍サイクルを備え、冷房および暖房が可能な空気調和機において、
前記室内熱交換器の温度を検知する熱交換器温度センサと、
暖房時、前記熱交換器温度センサの検知温度が所定値以上になると、前記冷凍サイクルの高圧側圧力を抑制するための処置を実行する高圧保護手段と、
この高圧保護手段の前記所定値を、前記熱交換器温度センサの検知温度が設定値未満のときは設定値以上のときより低く設定する制御手段と、
を具備したことを特徴とする空気調和機。
Compressor, outdoor heat exchanger, equipped with a refrigeration cycle to connect the indoor heat exchanger and circulate the refrigerant, in an air conditioner capable of cooling and heating,
A heat exchanger temperature sensor for detecting the temperature of the indoor heat exchanger,
At the time of heating, when the temperature detected by the heat exchanger temperature sensor is equal to or higher than a predetermined value, high-pressure protection means for performing a measure for suppressing the high-pressure side pressure of the refrigeration cycle,
Control means for setting the predetermined value of the high-pressure protection means, when the detected temperature of the heat exchanger temperature sensor is less than a set value, than when the detected temperature is equal to or more than a set value;
An air conditioner comprising:
JP2003427813A 2003-12-24 2003-12-24 Air conditioner Pending JP2004163099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427813A JP2004163099A (en) 2003-12-24 2003-12-24 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003427813A JP2004163099A (en) 2003-12-24 2003-12-24 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14190097A Division JP3526393B2 (en) 1997-05-30 1997-05-30 Air conditioner

Publications (1)

Publication Number Publication Date
JP2004163099A true JP2004163099A (en) 2004-06-10

Family

ID=32821859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427813A Pending JP2004163099A (en) 2003-12-24 2003-12-24 Air conditioner

Country Status (1)

Country Link
JP (1) JP2004163099A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125669A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Air conditioner
WO2018073904A1 (en) * 2016-10-19 2018-04-26 三菱電機株式会社 Indoor unit of air conditioner and air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006125669A (en) * 2004-10-26 2006-05-18 Matsushita Electric Ind Co Ltd Air conditioner
WO2018073904A1 (en) * 2016-10-19 2018-04-26 三菱電機株式会社 Indoor unit of air conditioner and air conditioner
JPWO2018073904A1 (en) * 2016-10-19 2019-06-24 三菱電機株式会社 Air conditioner indoor unit and air conditioner

Similar Documents

Publication Publication Date Title
US10168066B2 (en) Air conditioner with outdoor fan control in accordance with suction pressure and suction superheating degree of a compressor
JP6338761B2 (en) Air conditioning system
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
JP3475014B2 (en) Air conditioner
KR101711837B1 (en) Air conditioner and control method thereof
WO2016016918A1 (en) Air conditioning device
JPWO2018179137A1 (en) Air conditioner
JP2009264718A (en) Heat pump hot water system
KR20080070239A (en) A multi-air conditioner system and driving method thereof
JP3526393B2 (en) Air conditioner
JP6105270B2 (en) Air conditioner
JP2001304651A (en) Air conditioner and its operation control method
KR102558826B1 (en) Air conditioner system and control method
JP2006118732A (en) Air conditioner
KR101596680B1 (en) Air-conditioner and method
WO2021224962A1 (en) Air conditioning device
JP2004163099A (en) Air conditioner
JP2005016884A (en) Air conditioner
JP2015117881A (en) Air conditioner
JP3789620B2 (en) Air conditioner
JP2005055053A (en) Air conditioner
JP3181111B2 (en) Air conditioner
JP6251429B2 (en) Air conditioner
JP2006207983A (en) Air conditioner
JP3330194B2 (en) Air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060912