JP2004162800A - Speed change controller of continuously-variable transmission - Google Patents

Speed change controller of continuously-variable transmission Download PDF

Info

Publication number
JP2004162800A
JP2004162800A JP2002329140A JP2002329140A JP2004162800A JP 2004162800 A JP2004162800 A JP 2004162800A JP 2002329140 A JP2002329140 A JP 2002329140A JP 2002329140 A JP2002329140 A JP 2002329140A JP 2004162800 A JP2004162800 A JP 2004162800A
Authority
JP
Japan
Prior art keywords
acceleration
speed
shift
ratio
vehicle speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002329140A
Other languages
Japanese (ja)
Other versions
JP4206256B2 (en
Inventor
Atsufumi Kobayashi
淳文 小林
Akihiro Makiyama
明裕 牧山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002329140A priority Critical patent/JP4206256B2/en
Priority to EP03025738A priority patent/EP1420194B1/en
Priority to DE60335697T priority patent/DE60335697D1/en
Priority to US10/704,853 priority patent/US7011602B2/en
Publication of JP2004162800A publication Critical patent/JP2004162800A/en
Application granted granted Critical
Publication of JP4206256B2 publication Critical patent/JP4206256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a speed change controller of a continuously-variable transmission capable of surely giving driving feeling in response to an acceleration intention of a driver during kickdown acceleration in spite of running resistance such as hauling works. <P>SOLUTION: The speed change controller comprises a controller 1 controlling speed change ratios of the continuously-variable transmission 10 based on a determined speed change ratios in response to vehicle speed VSP and the control input APO of an accelerator, an acceleration speed change characteristic determining means deciding magnitude of an acceleration request and determining respectively speed change characteristics for a down-shift and an up-shift based on the magnitude of an acceleration request. Further, the speed change controller provides an acceleration controlling means executing an up-shift based on the speed change characteristic of an up-shift after executing a down-shift to the speed change ratio controlled more than a speed change ratio determined by a speed change ratio determining means based on the speed change characteristic of a down-shift when the acceleration request is greater than a predetermined standard value. Further, the speed change controller comprises an accelerating slate deciding means deciding slowing down for extension of acceleration after down-shifted, and an up-shift targeted speed changerate compensation means compensating a targeted speed change rate of the up-shift to the down-shift side when the extension of acceleration is slowed down. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、無段変速機を備えた車両の変速制御装置に関するものである。
【0002】
【従来の技術】
従来の無段変速機の変速制御では、車速とアクセル操作量に応じた変速パターンを目標入力軸回転数のマップとして記憶し、運転状態に応じた目標入力軸回転数から目標変速比を決定していた(特開平4−54371号公報参照)。
【0003】
この従来例では、比較的小さなアクセル操作量でほぼ一定車速で走行する定常走行状態から、急加速を意図してアクセル操作量を急増させるキックダウン操作を行っても、このときのアクセル操作量に対応する目標変速比に実変速比が到達するまでにはある程度の時間がかかるため、エンジン回転数はすぐに上昇するにもかかわらず駆動力が増大せず、その間はエンジンが空吹かしされたような状態となり運転者に違和感を与える。
【0004】
この対策として、加速要求の大きなときには変速比変化を抑制することが考えられ、例えばスロットル開度がしきい値以上になったら変速比を一定に固定するものが提案されている(特許第2593432号等)。これは、一定変速比の決め方はスロットル開度がしきい値における変速マップ上の変速比になる。このように、大きな変速比になる前に変速比を固定することにより、エンジン回転の増加が速やかに駆動力の増加をもたらすので、スロットル増加から加速感が得られるまでの時間的遅れが短くなり、それだけ違和感が減少すると共に体感上の加速応答性が向上する。
【0005】
【特許文献1】
特開平4−54371号公報
【特許文献2】
特許第2593432号
【0006】
【発明が解決しようとする課題】
しかしながらその反面、このような一定変速比の決定方法では、スロットル開度を前記しきい値およびヒステリシス設定分から戻さない限り一定変速比に保たれたままとなり、運転者の当初の加速意図が満たされた後も変速比の変化が起こらないので、そのことが却って違和感をもたらすことになってしまう。換言すれば、変速比変化を発生させるためには、アクセルペダルを意図して大きく戻す操作が必要になってしまう。
【0007】
そこで、本発明は上記問題点に鑑みてなされたもので、牽引などによる走行抵抗の増加に係わらずキックダウン加速時には運転者の加速意図に応じた車速の上昇を確実に提供することを目的とする。
【0008】
【課題を解決するための手段】
第1の発明は、車速とアクセル操作量を含む車両の運転状態を検出する運転状態検出手段と、前記車速とアクセル操作量に応じた変速比を決定する変速比決定手段と、前記決定された変速比に基づいて無段変速機の変速比を制御する制御手段とを備えた無段変速機の変速制御装置において、
加速要求の大きさを判定する加速要求判定手段と、前記加速要求の大きさに基づいてダウンシフトの変速特性とアップシフトの変速特性をそれぞれ決定する加速用変速特性決定手段と、前記加速要求が予め設定した基準値よりも大きいときには、前記ダウンシフト変速特性に基づいて前記変速比決定手段で決まる目標変速比よりも抑制されたダウンシフト目標変速比へダウンシフトを行った後、前記アップシフト変速特性に基づくアップシフト目標変速比によりアップシフトを行う加速制御手段と、前記加速制御手段によるダウンシフト後に加速状態を判定する加速状態判定手段と、この加速状態が予め設定した値以下の場合には、前記アップシフトの目標変速比を加速状態に応じてダウンシフト側へ補正するアップシフト目標変速比補正手段とを備える。
【0009】
また、第2の発明は、前記第1の発明において、前記加速状態判定手段は、エンジンの出力トルクを検出または推定して駆動力を算出する駆動力演算手段と、算出された駆動力と予め設定された走行抵抗から現在の駆動力で実現可能な車速を先読み車速として演算する先読み車速演算手段と、この先読み車速と現在の車速の差により判定する。
【0010】
また、第3の発明は、前記第2の発明において、前記アップシフト目標変速比補正手段は、前記先読み車速と現在の車速の差が大きいほどアップシフト目標変速比をダウンシフト側へ補正する。
【0011】
また、第4の発明は、前記第1ないし第3の発明のいずれかひとつにおいて、前記加速用変速特性決定手段は、加速要求の大きさに応じて予め設定された複数のダウンシフト変速特性から一つを選択するとともに、加速要求の大きさに応じて予め設定された複数のアップシフト変速特性から一つを選択する。
【0012】
また、第5の発明は、前記第4の発明において、前記アップシフト変速特性は、ダウンシフト後の変速比から車速の増大に応じて変速比の小側へ変速する変速量を設定する。
【0013】
また、第6の発明は、前記第5の発明において、前記アップシフト変速特性は、加速要求が大きいほど車速の増大に応じて変速比の小側へ変速する変速量を小さく設定する。
【0014】
また、第7の発明は、前記第1ないし第6の発明のいずれか一つにおいて、前記加速要求判定手段は、アクセル操作量に基づいてアクセル操作速度を検出し、このアクセル操作速度とアクセル操作量に基づいて加速要求の大きさを判定する。
【0015】
また、第8の発明は、前記第1ないし第7の発明のいずれか一つにおいて、前記加速制御手段は、前記加速要求を比較する基準値を車速とアクセル操作量に応じて変更する。
【0016】
【発明の効果】
したがって、第1の発明は、加速要求が大きいとき(例えば、キックダウン加速時)には、変速比決定手段で決まる通常の変速よりも抑制されたダウンシフト変速特性のダウンシフト目標変速比でダウンシフトを行った後、アップシフト変速特性によるアップシフト目標変速比で変速比の小側へアップシフトを行うことで、加速途上のエンジン回転速度の過大な上昇と車両加速度の減少を抑制して、車両加速度の立ち上がりと落ち込みをバランスさせ、運転者の加速意図に応じた車両加速度を確実に得ることができ、ダウンシフト後に加速の伸びが鈍化したときには、アップシフトの目標変速比を加速の鈍化に応じてダウンシフト側へ補正するので、牽引や登坂などの走行抵抗が増加したときであっても、常時加速意図に応じた加速感を得ることができ、無段変速機を備えた車両の運転性を大幅に向上できるのである。
【0017】
また、第2の発明は、現在の駆動力で実現可能な先読み車速と実際の車速の差から加速状態を判定することで、アクセル操作量が大きいにも係わらず車速が伸びないような走行抵抗の増加を迅速かつ正確に判定できる。
【0018】
また、第3の発明は、ダウンシフト後のアップシフトでは、先読み車速と現在の車速の差が大きいほどアップシフト目標変速比をダウンシフト側へ補正するので、車速の鈍化が小さくなるように変速を行って、加速を維持することができる。
【0019】
また、第4の発明は、加速用の変速特性は、複数のダウンシフト変速特性と複数のアップシフト変速特性からそれぞれ一つを選択するので、運転状態の変化に関わらず、運転者の加速意図に応じた変速を実現できる。
【0020】
また、第5の発明は、アップシフト変速特性は、ダウンシフト後の変速比から車速の増大に応じて変速比の小側への変速量を設定したので、ダウンシフト後のアップシフト時に車両加速度の落ち込みを抑制でき、加速の伸びを提供することができる。
【0021】
また、第6の発明は、加速要求が大きいほど車速の増大に応じて変速比の小側へ変速する変速量を小さく設定したので、加速意図の大きさに沿ってエンジン回転速度を上昇させて、運転者の期待に応じた車両加速度を得ることができる。
【0022】
また、第7の発明は、アクセル操作速度とアクセル操作量に基づいて加速要求の大きさを判定するので、運転者の加速意図を的確に判定できる。
【0023】
また、第8の発明は、加速要求を比較する基準値を車速とアクセル操作量に応じて変更するので、運転状態の変化に関わらず運転者の加速意図に応じて、ダウンシフトを行うことができる。
【0024】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて説明する。
【0025】
図1は、本発明を適用した車両の概略構成を示し、エンジン11にトルクコンバータ12を備えた無段変速機10を連結して、走行状態に応じて最適な運転状態となるように、エンジン11の出力と無段変速機10の変速比を制御するコントローラ1を備えている。なお、無段変速機10の無段変速機構としては、Vベルト式やトロイダル式を採用することができる。
【0026】
コントローラ1は、運転状態に応じてエンジン11の燃料噴射量制御、点火時期制御などを行い、また、運転状態に応じて変速比を無段階に制御する。このコントローラ1は、エンジン制御手段と、変速制御手段を兼ね備える統合型の制御装置を示す。
【0027】
コントローラ1には、アクセルペダル操作量APO(またはアクセル操作量)を検出するアクセルセンサ5、車両の走行速度(以下車速VSP)を検出する車速センサ4、エンジン11の回転速度Neを検出するエンジン回転センサ2、無段変速機10の入力軸回転速度Ntを検出する入力軸回転センサ3などが接続され、車両の運転状態として検出する。なお、ここでは、車速センサ4は、無段変速機10の出力軸回転速度OutRevを検出し、これに終減速比や車両の仕様に応じた定数(タイヤ半径など)を乗じたものを車速VSPとする。
【0028】
図2は本発明による変速制御の一例を示すフローチャートで、コントローラ1のマイクロコンピュータにより周期的(例えば、数十msec毎)に実行される。
【0029】
本制御では、運転状態に応じて変速比を可変制御する制御モード(これを以下「ノーマルモード」という。)から所定の加速条件(キックダウン加速)を満たしたときに変速比の変化を抑制する制御モード(これを以下「リニアモード」という。)へと移行させ、さらに、キックダウン加速などの再加速時では検出した車速の伸びが鈍化したときには、走行抵抗増加時リニアモードへ切り換えるものである。
【0030】
なお、図には明記しないが、これらのルーチンのバックグラウンドにおいて運転状態としてアクセル操作量APOと車速VSPの検出処理が行われる。また、以下の説明中で符号Sを付して示した数字は図2の処理ステップに対応している。
【0031】
まず、ステップS1では、制御フラグFを参照して、前回の制御モードがノーマルモードとリニアモードの何れであるかを判定して、前回の制御モードがノーマルモードであれば、ステップS2のキックダウン操作判定へ進む一方、前回の制御モードがリニアモードであれば、ステップS4へ進んで、リニアモードの解除条件が成立したか否かを判定する。なお、制御フラグFは、例えば、1のときにリニアモードを、0のときにノーマルモードを示す。
【0032】
ステップS2では、キックダウン操作か否かを判定する。まず、検出したアクセル操作量APOと、このアクセル操作量APOの前回値との差からアクセル操作速度dAPOを求める。
【0033】
そして、現在の車速VSPとアクセル操作量APOから、図3に示すマップより、アクセル操作速度のしきい値となる基準値dAPOLを求め、アクセル操作速度dAPOが基準値dAPOLを超えていれば、キックダウン操作であると判定して、ステップS3に進み、キックダウン以外のアクセル操作であればステップS30に進んでノーマルモードの制御を行う。
【0034】
なお、図3のアクセル操作量APOと車速VSPに応じたアクセル操作速度の基準値dAPOLのマップは、アクセル操作量APOを複数の範囲に区分けし、また、車速VSPを複数の範囲に区分けして、アクセル操作量APOの範囲と車速VSPの範囲毎にそれぞれ基準値dAPOLが設定されている。
【0035】
次に、キックダウン操作と判定されたステップS3では、制御フラグF=1にセットした後、ステップS5に進んで運転者の加速意図(加速要求)を判定する。
【0036】
ステップS5では、上記ステップS2で求めたアクセル操作速度dAPOとアクセル操作量APOに基づいて、図4のマップから加速意図を検索する。このマップにおいて、アクセル操作量APOが大きい場合には、アクセル操作速度dAPOに関わらず、加速意図が大であると判定し、アクセル操作量APOが中間領域(例えば、APOが3/8〜6/5)では、アクセル操作速度dAPOが大きければ加速意図は中と判定し、アクセル操作速度dAPOが小さければ加速意図が小と判定する。なお、アクセル操作量APOの大きさに応じて変化する加速意図には所定のヒステリシスが設けられ、制御のハンチングを防止する。
【0037】
次に、ステップS6では、モードフラグMfを参照して、リニアモードの中でダウンシフトモードとアップシフトモードを切り替えるか否かを判定する。
【0038】
モードフラグMfが0の場合には、ダウンシフトモードからアップシフトモードへの切り換えが完了していないので、モード移行有りと判定し、また、モードフラグMf=1の場合には、ダウンシフトモードからアップシフトモードへの移行が完了しているので、モード移行なしと判定する。そして、モード移行有りの場合には、ステップS7へ進む一方、モード移行なしの場合にはステップS19へ進む。
【0039】
ステップS7では、ダウンシフトモードとアップシフトモードの何れであるかを判定する。
【0040】
ここでは、ダウンシフト変速比DW_ratio(0)が設定されていないか、または、実際の変速比(入力軸回転速度impRev/出力軸回転速度OutRev)がダウンシフト変速比DW_ratio(0)に到達していなければ、ダウンシフトモードと判定して、ステップS8に進む。
【0041】
一方、実変速比がダウンシフト量DW_ratio(0)に到達していれば、アップシフトモードと判定するとともに、モードフラグMfに1を加算してからステップS10へ進む。
【0042】
ダウンシフトモードのステップS8では、上記ステップS5で判定した加速意図に基づいて、図5のマップから加速意図に応じたダウンシフトの変速特性を選択する。
【0043】
そして、ステップS9で現在の車速VSPに応じて、上記ステップS8で選択した変速特性からダウンシフト変速比DW_ratio(0)を求めて記憶する。
【0044】
この後、ステップS16へ進んで、次式から目標変速比Dratioを演算する。
【0045】
Dratio=DW_ratio(0)−UP_ratio(0)+UP_ratio(n) ……(1)
ただし、UP_ratio(0)はアップシフト量初期値、UP_ratio(n)は車速の増加に応じたアップシフト量(変速比の小側への変速量)の補正量である。
【0046】
なお、上記ステップS9からステップS16へ進んだ時点では、アップシフト量初期値UP_ratio(0)及びアップシフト量UP_ratio(n)は、ともに0で、目標変速比Dratio=DW_ratio(0)となる。
【0047】
次に、ステップS17では、目標入力軸回転速度DsrRevを、
DsrRev=Dratio×OutRev ………(2)
として求め、ステップS18に進んで目標変速比Dratioを出力し、無段変速機10の変速比を制御する。
【0048】
一方、上記ステップS7の判定で、アップシフトモードと判定されたステップS10では、駆動力と車速VSPから先読み車速tVSPを求めて、現在の車速VSPと先読み車速tVSPの差が所定値以上であるか否かより、実車速VSPの上昇がアクセル操作量APOに対して鈍っていないかを判定し、この判定結果に基づいて通常時アップシフトモード(通常時リニアモード)と走行抵抗増加時アップシフトモード(走行抵抗増加時リニアモード)とを切り替える。
【0049】
先読み車速tVSPを求めるに当たって、まず、エンジン11の出力トルクを求める。
【0050】
エンジン出力トルクは、コントローラ1のエンジン制御部で算出される燃料噴射パルス幅(燃料噴射量)と、検出したエンジン回転速度Neなどから演算したり、エンジン11の特性図を備えている場合では、アクセル操作量APOとエンジン回転速度Neからエンジン出力トルクを推定する。
【0051】
そして、このエンジン出力トルクから次式により駆動力を算出する。
【0052】
駆動力 = エンジン出力トルク ×総減速比/タイヤ半径 ………(3)
ただし、総減速比は、現在の実変速比にディファレンシャルギアなどの減速比を合わせたものである。
【0053】
なお、トルクコンバータ12のロックアップクラッチ(図示省略)が解放状態のときには所定のトルク比に基づいてエンジン出力トルクを補正する。
【0054】
そして、図7に示すように、予め設定した走行抵抗マップ(平坦路相当)から平坦路において現車速を維持するための駆動力を算出し、上記(3)式で求めた駆動力との差を車速で割ることにより、車両で得られる加速度を算出し、加速度を積分して現車速に加算していくことにより、実現可能な車速を先読み車速tVSPとして求める。
【0055】
次に、現在の車速VSP(実車速)と先読み車速tVSPを、
先読み車速tVSP−実車速VSP > 所定値 ………(4)
により比較して、現在の駆動力による車速VSPが、先読み車速tVSPよりも所定値を超えて下回っていれば加速が鈍っていると判定して、ステップS11の走行抵抗増加時のアップシフトモードへ進む一方、先読み車速tVSPと実車速VSPの差が所定値以内であれば、駆動力に応じた加速が実現されていると判定して、ステップS14の通常のアップシフトモード処理を行う。
【0056】
加速性の判断のために、駆動力から得られる加速度を推定し、実際の加速度と比較しても良いが、アクセル操作によって推定加速度は大きく変化するため、ここでは、先読み車速へ換算することにより、確実にかつ誤判定の少ない加速の鈍化を判定できる。
【0057】
なお、上記(4)式の所定値は、車種や車両特性の設定事項で決定される。車速が低いほど加速鈍化が気になるため、例えば、車速が20Km/hでは所定値を5Km/hとして、車速が80Km/h以上では所定値を15Km/hとし、その間をリニアに補間して各車速における所定値を求める。
【0058】
また、車重は、例えば、車体重量と乗員2名分を足した値を用いる。乗員数の変化などによりこの車体重量は多少変化するが、通常、全重量の10%以内であり、登坂路や牽引時の走行抵抗の増減に比して小さい。
【0059】
ステップS11の走行抵抗増加時アップシフトモードでは、上記ステップS5で判定した加速意図に基づいて、図6のマップから加速意図に応じたアップシフトの変速特性を選択する。
【0060】
次に、ステップS12では、先読み車速tVSP−実車速VSPのを車速偏差eVSPとして、予め設定した図8に示すマップから、車速偏差eVSPに応じた変速比補正量ΔDawnを走行抵抗増加分の補正量(ダウンシフト量)として求める。
【0061】
また、ステップS13では、現在の車速VSPに応じて、上記ステップS11で選択したアップシフト変速特性からアップシフト量初期値UP_ratio(0)を求め、上記ステップS12で求めた走行抵抗増刊分の変速比補正量ΔDawnから、
UP_ratio(0)= UP_ratio(0)−ΔDawn ………(5)
により、アップシフト量初期値UP_ratio(0)をダウンシフト側に補正する。
【0062】
そして、ステップS16へ進んで、上記(1)式から目標変速比Dratioを演算し、ステップS17で目標変速比Dratioを求めた後、ステップS18で目標変速比Dratioを出力する。
【0063】
したがって、走行抵抗増加時アップシフトモードでは、アップシフト量初期値UP_ratio(0)が、ダウンシフト側の変速比補正量ΔDawnによって通常のアップシフトモードよりアップシフト量が抑制されることになる。あるいは、ダウンシフトによって車速VSPの増大が極めて低い場合(車速偏差eが極めて大きい場合)では、さらにダウンシフトした値が設定されて駆動力の増大が指令されることになる。
【0064】
なお、ステップS13からステップS16へ進んだ場合には、アップシフト量UP_ratio(n)は演算されていないので0とし、目標変速比Dratio=DW_ratio(0)−UP_ratio(0)となる。
【0065】
一方、上記ステップS10の判定で通常時アップシフトモードと判定されたステップS14では、上記ステップS5で判定した加速意図に基づいて、図6のマップから加速意図に応じたアップシフトの変速特性を選択する。
【0066】
次に、ステップS15では、現在の車速VSPに応じて、上記ステップS11で選択したアップシフト変速特性からアップシフト量初期値UP_ratio(0)を求めて記憶する。
【0067】
そして、ステップS16へ進んで、上記(1)式から目標変速比Dratioを演算し、ステップS17で目標変速比Dratioを求めた後、ステップS18で目標変速比Dratioを出力する。
【0068】
ただし、ステップS15からステップS16へ進んだ時点では、アップシフト量UP_ratio(n)は0で、目標変速比Dratio=DW_ratio(0)−UP_ratio(0)となる。
【0069】
こうして、ダウンシフトが完了したアップシフトモードの最初の制御サイクルでは、ステップS10〜S15で先読み車速tVSPと実車速VSPの偏差eVSPの大きさに応じて通常時アップシフトモードと走行抵抗増加時アップシフトモードのいずれかが選択され、走行抵抗増加時ではダウンシフト側の変速比補正量ΔDawnにより、通常のアップシフトモードよりアップシフト量が抑制されることになる。
【0070】
次に、上記ステップS6の判定で、モード移行なしと判定されたステップS19では、上記ステップS10と同様に駆動力から先読み車速tVSPを求め、実車速VSPとの差である車速偏差eの大きさに基づいて通常時アップシフトモードと走行抵抗増加時アップシフトモードの何れであるかを判定する。
【0071】
車速偏差eVSPが所定値を超えていれば車速の伸びが足りないため、走行抵抗増加時アップシフトモードと判定してステップS20に進む一方、車速偏差eが所定値以内であればアクセル操作量APOに応じた加速力(車速VSPの増大)が達成されているので、通常時アップシフトモードと判定してステップS23に進む。
【0072】
まず、走行抵抗増加時アップシフトモードであるステップS20では、上記ステップS5で判定した加速意図に基づいて、図6のマップから加速意図に応じたアップシフトの変速特性を選択する。
【0073】
ステップS21では、上記図8のマップから車速偏差eに基づいて変速比補正量ΔDawnを求める。
【0074】
次に、ステップS22では、現在の車速VSPに応じて、上記ステップS20で選択したアップシフト変速特性から車速の増加に応じたアップシフト量UP_ratio(n)を求めてから、上記ステップS21で求めた変速比補正量ΔDawnで、アップシフト量UP_ratio(n)を、
UP_ratio(n)= UP_ratio(n)−ΔDawn ………(6)
により補正する。
【0075】
そして、ステップS16へ進んで、上記(1)式から目標変速比Dratioを演算し、ステップS17、S18で目標変速比Dratioを出力する。
【0076】
一方、上記ステップS19の判定で、通常時アップシフトモードと判定されたステップS23では、上記ステップS5で判定した加速意図に基づいて、図6のマップから加速意図に応じたアップシフトの変速特性を選択する。
【0077】
そして、ステップS24で現在の車速VSPに応じて、上記ステップS23で選択したアップシフト変速特性から車速の増加に応じたアップシフト量UP_ratio(n)を求め、次回以降ではこのアップシフト量UP_ratio(n)を更新し、ステップS16へ進んで、上記(1)式から目標変速比Dratioを演算し、ステップS17、S18で目標変速比Dratioを出力する。
【0078】
次に、上記ステップS1で前回の制御モードがリニアモードであった場合に進むステップS4では、リニアモードとなった後に、アクセル操作量APOが0/8等の所定値以下に戻され、かつ、リニアモードとなってから所定時間を経過していれば、リニアモードを解除してステップS30へ進みノーマルモードの制御を行う。なお、リニアモードを解除する際には、制御フラグF、モードフラグMf、ダウンシフト変速比DW_ratio(0)、アップシフト量初期値UP_ratio(0)、アップシフト量UP_ratio(n)、変速比補正量ΔDawnをそれぞれ0にリセットする。
【0079】
なお、ノーマルモードの制御は、図9の変速マップに基づいて現在の車速VSPとアクセル操作量APOから目標入力軸回転速度DsrRevを求め、これを出力軸回転速度OutRevで除したものを目標変速比Dratioとしてから、ステップS17で出力する。
【0080】
一方、アクセル操作量APOが所定値以上を維持していれば運転者は加速を継続する意図を持っていると判定して、ステップS5に進んでリニアモードの制御を継続する。
【0081】
上記制御により、アクセル操作速度dAPOに基づいてキックダウン操作が判定されると、加速意図に応じたダウンシフト変速特性でダウンシフトが行われた後は、現在の駆動力で達成可能な先読み車速tVSPと実車速VSPの偏差eVSPの大きさに応じて、走行抵抗増加時アップシフトモードと通常時アップシフトモードのいずれかが選択されて、通常時アップシフトモードでは車速VSPの伸びに応じて徐々にアップシフトが行われ、走行抵抗増加時アップシフトモードでは車速偏差eの大きさに応じて、変速比補正量ΔDawnが変更されて、アップシフトモードでのアップシフト量が規制され、走行抵抗増刊分によって加速が鈍くなった分を補償するのである。
【0082】
以下に走行抵抗増加分の違いによる制御の作用を説明する。
【0083】
<A.通常時のキックダウン操作>
ノーマルモードで平坦路または降坂路を走行中に、アクセルを踏み込んでアクセル操作速度dAPOが図3の基準値dAPOLを超えると、通常のキックダウン加速制御が開始されてリニアモードへ移行し、図4のマップから加速意図が判定される。
【0084】
まず、初回の制御では、モードフラグMf=0であるので、ステップS9、S10では、ダウンシフト変速比DW_ratio(0)が設定される。
【0085】
ここで、ダウンシフト変速比DW_ratio(0)は、図5で示したように、車速毎にダウンシフト変速比DW_ratio(0)が設定され、かつ、加速意図の大きさに応じて異なる変速特性が設定され、加速意図が大きいほどダウンシフト量(変速比の大側への変速量)が大きくなるように設定されている。
【0086】
そして、図10で示すように、キックダウン操作があった時点のダウンシフト変速比DW_ratio(0)が目標変速比Dratioとして設定される。
【0087】
次に、実変速比がダウンシフト変速比DW_ratio(0)=目標変速比Dratioに到達すると、このときの実車速VSPと、現在の駆動力で実現可能な先読み車速tVSPの比較が行われ、実車速VSPと先読み車速tVSPの偏差eVSPが所定値以下であれば通常時アップシフトモードが選択され、図11の破線で示すように、ダウン操作時の車速VSPに対応したダウンシフト完了時のアップシフト量初期値UP_ratio(0)が設定され、通常時アップシフトモードへ移行する。
【0088】
ここで、アップシフト量初期値UP_ratio(0)は、図6で示したように、車速毎にアップシフト量が設定され、かつ、加速意図の大きさに応じて異なる変速特性が設定され、加速意図が大きいほど車速に応じたアップシフト量が小さくなるように設定され、上記(1)式より、このアップシフト量に応じて変速比の小(Hi)側への変速が開始される。
【0089】
そして、リニアモードの解除条件が成立するまでは、制御周期毎にアップシフト量UP_ratio(n)が車速VSPの増大に応じて更新されて行くのである。
【0090】
したがって、図12で示すように、キックダウン操作後のダウンシフトモードでは、図5のマップによる変速特性に応じてダウンシフト量がノーマルモードの図9のノーマルモードの変速特性に比して規制され、図中A点からB点までの入力軸回転速度impRevに抑制されて、加速初期での車両加速度の高さと車両加速度の応答性を向上させる。
【0091】
ダウンシフトの目標変速比であるダウンシフト変速比DW_ratio(0)に到達した後には、加速意図に応じた図6のアップシフト変速特性と車速VSPよりアップシフト量初期値UP_ratio(0)が設定され、ダウンシフト変速比DW_ratio(0)からこのアップシフト量初期値UP_ratio(0)を差し引いた値が目標変速比となり、図12において、B点以降は車速VSPの増大に応じて、図中実線のように徐々に変速比が小側に変更されて、加速途上のエンジン回転速度Neの過大な上昇と車両加速度の減少を抑制して、運転者の加速意図に応じた車両加速度を得ることができるのである。
【0092】
また、図12において図中波線は前記従来例(特願2001−182803号)によるもので、この従来例によれば、ダウンシフト量は本願発明のB点よりも大きく、その後小側への変速が本願発明よりも過大になっている。
【0093】
このため、図13で示すように、図中一点鎖線または実線で示す本願リニアモードでは、車両加速度の最大値までの到達時間は、図中波線で示す従来例よりも速く、また、このときのエンジン回転速度Neは、従来例よりも低く抑制されている。このため、車両加速度の大きさと最大加速度までの到達時間を最適に設定でき、さらに、アップシフトモードでは、変速比の減少が従来例よりも抑制されるので、エンジン回転速度Neの上昇を確保して車両加速度の落ち込みを抑制でき、加速の伸びを体感することができる。
【0094】
そして、キックダウン操作時には、複数の変速特性から運転者の加速意図に応じた変速特性をダウンシフト側、アップシフト側でそれぞれ設定するようにしたので、車速毎のキックダウン加速要求に対してエンジン回転速度Neの設定の自由度を得ることができ、特に、加速意図に応じた変速特性を複数設定しておくことで、コントローラ1の演算負荷を低減しながら、車両加速度の立ち上がりと落ち込みのバランスを確保することができ、幅広い速度範囲で良好なキックダウン加速を実現することが可能となる。
【0095】
また、ダウンシフト後のアップシフトモードでは、図6で示したように、加速意図が大きいときほど車速に応じたアップシフト量を小さく設定したので、加速意図の大きさに沿ってエンジン回転速度を上昇させて、運転者の期待に応じた車両加速度を得ることができる。
【0096】
<B.走行抵抗増加時のキックダウン操作>
次に、他の車両を牽引中や登坂路など走行抵抗が大きいノーマルモードでアクセルを踏み込んでアクセル操作速度dAPOが図3の基準値dAPOLを超えるとキックダウン操作と判定され、図4のマップから加速意図が判定された後、上記と同様にリニアモードへ移行する。
【0097】
ここで、ダウンシフト変速比DW_ratio(0)は、上記と同様であり、図5で示したように、加速意図が大きいほどダウンシフト量(変速比の大側への変速量)が大きくなるように設定された変速特性から設定される。
【0098】
ダウンシフトが完了したときに、実車速VSPと先読み車速tVSPの車速偏差eVSPが所定値を超えていれば、走行抵抗増加時アップシフトモードが選択され、車速偏差eの大きさに応じて変速比補正量ΔDawnが設定される。
【0099】
この変速比補正量ΔDawnによって、アップシフト量は通常時アップシフトモードに比してダウンシフト側(変速比の大側)に規制され、車速偏差eVSPが比較的小さい場合には、図11の特性Aのように、徐々にアップシフトが行われるが、車速偏差eVSPが大きい場合には、図中特性Bのようにアップシフト量=0となって、ダウンシフト変速比DW_ratio(0)で車両の加速が継続され、さらに、車速偏差eVSPが極めて大きい場合(例えば、車速VSPが低下した場合)には、アップシフト量は負(ダウンシフト側)に反転して図中特性Cのように、ダウンシフト変速比DW_ratio(0)よりさらにダウンシフトを行って、車両の加速を行う。
【0100】
こうして、キックダウン操作時には、運転者の加速意図に応じたダウンシフト量でダウンシフトを行った後、アップシフトモードでは走行抵抗の大きさを車速VSPの伸びにより検出し、車速偏差eが少なくなるようにアップシフト量が補正されるので、走行抵抗の大きさに係わらず、加速のレスポンスと加速の伸びを実現して運転者の加速意図に応じた加速感を実現できるのである。
【0101】
例えば、図13に示すように、図中実線の走行抵抗増加時リニアモードは、図中一点鎖線の通常時リニアモードに比して車両加速度(図中前後G)のピークは走行抵抗の大きさに応じて低下するものの、加速度のピークは、図中破線の前記従来例よりも早く発生し、通常時リニアモードと同様に加速開始時の応答性を確保できる。その後のアップシフトでは、走行抵抗増加時リニアモードも通常時リニアモードと同様に、図中破線の前記従来例のような加速度の落ち込みを抑制して、運転者の加速意図に応じた車速VSPの伸びを実現できるのである。
【図面の簡単な説明】
【図1】本発明の一実施形態を無段変速機の概略構成図。
【図2】コントローラで行われる変速制御の一例を示すフローチャート。
【図3】アクセル操作量APOと車速VSPに応じたアクセル操作速度dAPOの基準値dAPOLのマップ。
【図4】アクセル操作量APOとアクセル操作速度dAPOに応じた加速意図のマップ。
【図5】加速意図をパラメータとして車速に応じたダウンシフト変速比DW_ratio(0)のマップ。
【図6】加速意図をパラメータとして車速に応じたアップシフト量のマップ。
【図7】車速に応じた平坦路相当の走行抵抗を示すマップである。
【図8】車速偏差の大きさに応じたダウンシフト側への変速比補正量のマップである。
【図9】ノーマルモードで用いられるアクセル操作量APOをパラメータとした車速VSPに応じた目標入力軸回転速度のマップ。
【図10】ダウンシフト変速比DW_ratio(0)を決定する様子を示す車速VSPに応じたダウンシフト変速比のマップ。
【図11】アップシフト量を決定する様子を示す車速VSPに応じたアップシフト量のマップ。
【図12】キックダウン加速を行ったときの車速VSPに応じた入力軸回転速度impRevのマップで、図中実線が本願通常時リニアモードの回転速度impRevの軌跡を示し、図中一点鎖線が走行抵抗増加時リニアモードの軌跡を示し、図中波線が従来例による回転速度impRevの軌跡を示す。
【図13】同じく、キックダウン加速を行ったときのアクセル操作量APO、エンジン回転速度、車両加速度G(前後G)と時間の関係を示すグラフで、図中実線が走行抵抗増加時リニアモード、図中一点鎖線が通常時リニアモードを示し、図中波線が従来例を示す。
【符号の説明】
1 コントローラ
2 エンジン回転センサ
3 入力軸回転センサ
4 車速センサ
5 アクセルセンサ
10 無段変速機
11 エンジン
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a shift control device for a vehicle having a continuously variable transmission.
[0002]
[Prior art]
In the shift control of a conventional continuously variable transmission, a shift pattern corresponding to a vehicle speed and an accelerator operation amount is stored as a map of a target input shaft speed, and a target speed ratio is determined from the target input shaft speed according to a driving state. (See JP-A-4-54371).
[0003]
In this conventional example, even if a kick-down operation for rapidly increasing the accelerator operation amount with the intention of rapid acceleration is performed from a steady running state in which the vehicle travels at a substantially constant vehicle speed with a relatively small accelerator operation amount, the accelerator operation amount at this time is reduced. Since it takes some time for the actual gear ratio to reach the corresponding target gear ratio, the driving force does not increase despite the engine speed rising immediately, and during that time, the engine seems to be blowing. It gives a strange feeling to the driver.
[0004]
As a countermeasure against this, it is conceivable to suppress a change in the gear ratio when the acceleration demand is large. For example, a method has been proposed in which the gear ratio is fixed to a constant value when the throttle opening exceeds a threshold value (Japanese Patent No. 25933432). etc). This means that the method of determining the constant speed ratio is the speed ratio on the speed change map when the throttle opening is a threshold value. As described above, by fixing the gear ratio before the gear ratio becomes large, an increase in engine rotation quickly increases the driving force, so that a time delay from the increase in the throttle to the feeling of acceleration is reduced. Accordingly, the uncomfortable feeling is reduced and the acceleration responsiveness on the bodily sensation is improved.
[0005]
[Patent Document 1]
JP-A-4-54371 [Patent Document 2]
Patent No. 2593432 [0006]
[Problems to be solved by the invention]
On the other hand, however, in such a method of determining the constant speed ratio, the constant speed ratio is maintained as long as the throttle opening is not returned from the threshold value and the hysteresis setting, thereby satisfying the driver's initial acceleration intention. Since the change in the gear ratio does not occur even after the start, this leads to a feeling of strangeness. In other words, in order to generate a change in the gear ratio, an operation of intentionally returning the accelerator pedal to a large value is required.
[0007]
Therefore, the present invention has been made in view of the above problems, and it is an object of the present invention to reliably provide a vehicle speed increase according to the driver's acceleration intention during kickdown acceleration regardless of an increase in running resistance due to traction or the like. I do.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a driving state detecting unit that detects a driving state of a vehicle including a vehicle speed and an accelerator operation amount, a gear ratio determining unit that determines a gear ratio according to the vehicle speed and an accelerator operation amount, Control means for controlling the speed ratio of the continuously variable transmission based on the speed ratio.
Acceleration request determining means for determining the magnitude of the acceleration request; acceleration shift characteristic determining means for respectively determining a downshift shift characteristic and an upshift shift characteristic based on the magnitude of the acceleration request; When it is larger than a preset reference value, after performing a downshift to a downshift target gear ratio suppressed from a target gear ratio determined by the gear ratio determining means based on the downshift gear characteristics, the upshift gearshift is performed. Acceleration control means for performing an upshift with an upshift target gear ratio based on characteristics; acceleration state determination means for determining an acceleration state after a downshift by the acceleration control means; and if the acceleration state is equal to or less than a preset value, An upshift target gear ratio correction means for correcting the upshift target gear ratio to the downshift side in accordance with the acceleration state. Provided with a door.
[0009]
In a second aspect based on the first aspect, the acceleration state determining means calculates a driving force by detecting or estimating an output torque of the engine, and a driving force calculating means for calculating the driving force. A look-ahead vehicle speed calculating means for calculating, as a look-ahead vehicle speed, a vehicle speed achievable with the current driving force from the set running resistance, and a determination based on a difference between the look-ahead vehicle speed and the current vehicle speed.
[0010]
In a third aspect based on the second aspect, the upshift target speed ratio correction means corrects the upshift target speed ratio toward the downshift side as the difference between the pre-read vehicle speed and the current vehicle speed increases.
[0011]
In a fourth aspect based on any one of the first to third aspects, the acceleration shift characteristic determining means includes a plurality of downshift shift characteristics preset in accordance with the magnitude of an acceleration request. One is selected and one is selected from a plurality of upshift characteristics set in advance according to the magnitude of the acceleration request.
[0012]
In a fifth aspect based on the fourth aspect, the upshift speed change characteristic sets a shift amount at which the speed ratio is shifted from the speed ratio after the downshift to a lower speed ratio in accordance with an increase in the vehicle speed.
[0013]
In a sixth aspect based on the fifth aspect, the upshift speed change characteristic sets a smaller shift amount for shifting to a lower gear ratio in accordance with an increase in the vehicle speed, as the acceleration request increases.
[0014]
In a seventh aspect based on any one of the first to sixth aspects, the acceleration request determining means detects an accelerator operation speed based on an accelerator operation amount, and determines the accelerator operation speed and the accelerator operation speed. The magnitude of the acceleration request is determined based on the amount.
[0015]
In an eighth aspect based on any one of the first to seventh aspects, the acceleration control means changes a reference value for comparing the acceleration request in accordance with a vehicle speed and an accelerator operation amount.
[0016]
【The invention's effect】
Therefore, according to the first invention, when the acceleration demand is large (for example, during kickdown acceleration), the downshift is performed at the downshift target speed ratio having the downshift speed characteristic that is more suppressed than the normal speed determined by the speed ratio determining means. After performing the shift, by performing an upshift to the lower side of the gear ratio at the upshift target gear ratio based on the upshift gear characteristic, it is possible to suppress an excessive increase in the engine speed and a decrease in vehicle acceleration during acceleration. By balancing the rise and fall of the vehicle acceleration, it is possible to reliably obtain the vehicle acceleration according to the driver's intention to accelerate, and when the acceleration growth slows down after the downshift, the target gear ratio for the upshift is reduced to the acceleration slowdown. Correction to the downshift side in accordance with it, so even when running resistance such as towing or climbing a slope increases, a feeling of acceleration consistent with the intention of acceleration is always obtained. Bets can be, at the driveability of a vehicle equipped with a continuously variable transmission can be greatly improved.
[0017]
Further, the second invention determines the acceleration state from the difference between the look-ahead vehicle speed achievable with the current driving force and the actual vehicle speed, so that the vehicle speed does not increase despite the large accelerator operation amount. Can be determined quickly and accurately.
[0018]
Further, in the third invention, in the upshift after the downshift, the upshift target speed ratio is corrected toward the downshift side as the difference between the pre-read vehicle speed and the current vehicle speed increases, so that the speed change is performed so that the vehicle speed slowdown is reduced. To maintain acceleration.
[0019]
According to the fourth aspect of the present invention, since the speed change characteristic for acceleration selects one from each of a plurality of downshift speed characteristics and a plurality of upshift speed characteristics, regardless of a change in the driving state, the acceleration intention of the driver is selected. Can be achieved.
[0020]
According to the fifth aspect of the present invention, in the upshift speed change characteristic, the shift amount is set to a smaller side of the speed ratio from the speed ratio after the downshift in accordance with the increase of the vehicle speed. Can be suppressed, and the acceleration can be increased.
[0021]
According to the sixth aspect of the present invention, the larger the request for acceleration, the smaller the shift amount for shifting to a smaller gear ratio in accordance with the increase in vehicle speed. Therefore, the engine speed is increased in accordance with the magnitude of the acceleration intention. Thus, it is possible to obtain the vehicle acceleration according to the driver's expectation.
[0022]
In the seventh aspect, the magnitude of the acceleration request is determined based on the accelerator operation speed and the accelerator operation amount, so that the driver's acceleration intention can be accurately determined.
[0023]
Further, in the eighth invention, the reference value for comparing the acceleration request is changed according to the vehicle speed and the accelerator operation amount, so that the downshift can be performed according to the driver's acceleration intention regardless of the change in the driving state. it can.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0025]
FIG. 1 shows a schematic configuration of a vehicle to which the present invention is applied, in which an engine 11 is connected to a continuously variable transmission 10 having a torque converter 12 so that an optimal driving state is obtained according to a driving state. The controller 1 controls the output of the transmission 11 and the gear ratio of the continuously variable transmission 10. The continuously variable transmission mechanism of the continuously variable transmission 10 may be a V-belt type or a toroidal type.
[0026]
The controller 1 performs fuel injection amount control, ignition timing control, and the like of the engine 11 according to the operation state, and controls the speed ratio steplessly according to the operation state. The controller 1 is an integrated control device having both engine control means and shift control means.
[0027]
The controller 1 includes an accelerator sensor 5 for detecting an accelerator pedal operation amount APO (or an accelerator operation amount), a vehicle speed sensor 4 for detecting a running speed of a vehicle (hereinafter, a vehicle speed VSP), and an engine rotation for detecting a rotation speed Ne of the engine 11. A sensor 2, an input shaft rotation sensor 3 for detecting an input shaft rotation speed Nt of the continuously variable transmission 10 and the like are connected, and detect as a driving state of the vehicle. Here, the vehicle speed sensor 4 detects the output shaft rotation speed OutRev of the continuously variable transmission 10 and multiplies it by a final reduction ratio or a constant (such as a tire radius) according to the vehicle specification to obtain a vehicle speed VSP. And
[0028]
FIG. 2 is a flowchart showing an example of the shift control according to the present invention, which is executed periodically (for example, every several tens of msec) by the microcomputer of the controller 1.
[0029]
In this control, a change in the gear ratio is suppressed when a predetermined acceleration condition (kickdown acceleration) is satisfied from a control mode in which the gear ratio is variably controlled in accordance with the operation state (hereinafter, referred to as “normal mode”). The control mode is shifted to a control mode (hereinafter referred to as a "linear mode"), and when the detected vehicle speed elongates slowly during re-acceleration such as kick-down acceleration, the mode is switched to the linear mode when the running resistance increases. .
[0030]
Although not explicitly shown in the figure, detection processing of the accelerator operation amount APO and the vehicle speed VSP is performed as an operating state in the background of these routines. Further, in the following description, the numbers indicated by the reference symbols S correspond to the processing steps in FIG.
[0031]
First, in step S1, it is determined whether the previous control mode is the normal mode or the linear mode with reference to the control flag F. If the previous control mode is the normal mode, the kick down in step S2 is performed. On the other hand, if the previous control mode is the linear mode, the process proceeds to step S4 to determine whether or not the condition for releasing the linear mode is satisfied. The control flag F indicates, for example, a linear mode when it is 1, and a normal mode when it is 0.
[0032]
In step S2, it is determined whether or not a kick down operation has been performed. First, an accelerator operation speed dAPO is obtained from a difference between the detected accelerator operation amount APO and the previous value of the accelerator operation amount APO.
[0033]
Then, from the map shown in FIG. 3, a reference value dAPOL which is a threshold value of the accelerator operation speed is obtained from the current vehicle speed VSP and the accelerator operation amount APO, and if the accelerator operation speed dAPO exceeds the reference value dAPOL, the kick is determined. It is determined that the operation is the down operation, and the process proceeds to step S3. If the accelerator operation is other than the kick down operation, the process proceeds to step S30 to control the normal mode.
[0034]
Note that the map of the accelerator operation amount APO and the reference value dAPOL of the accelerator operation speed according to the vehicle speed VSP in FIG. 3 divides the accelerator operation amount APO into a plurality of ranges, and divides the vehicle speed VSP into a plurality of ranges. The reference value dAPOL is set for each of the range of the accelerator operation amount APO and the range of the vehicle speed VSP.
[0035]
Next, in step S3 where it is determined that the kick-down operation has been performed, the control flag F is set to 1, and then the process proceeds to step S5 to determine the driver's intention to accelerate (acceleration request).
[0036]
In step S5, based on the accelerator operation speed dAPO and the accelerator operation amount APO obtained in step S2, an acceleration intention is searched from the map of FIG. In this map, when the accelerator operation amount APO is large, it is determined that the acceleration intention is large irrespective of the accelerator operation speed dAPO, and the accelerator operation amount APO is in the middle region (for example, APO is 3/8 to 6 / In 5), if the accelerator operation speed dAPO is high, the intention to accelerate is determined to be medium, and if the accelerator operation speed dAPO is low, the intention to accelerate is determined to be low. A predetermined hysteresis is provided for the acceleration intention that changes according to the magnitude of the accelerator operation amount APO, thereby preventing control hunting.
[0037]
Next, in step S6, it is determined with reference to the mode flag Mf whether or not to switch between the downshift mode and the upshift mode in the linear mode.
[0038]
When the mode flag Mf is 0, it is determined that there is a mode shift because the switching from the downshift mode to the upshift mode has not been completed, and when the mode flag Mf = 1, the mode is switched from the downshift mode to the upshift mode. Since the shift to the upshift mode has been completed, it is determined that there is no mode shift. If there is a mode transition, the process proceeds to step S7, whereas if there is no mode transition, the process proceeds to step S19.
[0039]
In step S7, it is determined whether the mode is the downshift mode or the upshift mode.
[0040]
Here, the downshift speed ratio DW_ratio (0) is not set, or the actual speed ratio (input shaft rotation speed impRev / output shaft rotation speed OutRev) has reached the downshift speed ratio DW_ratio (0). If not, it is determined that the mode is the downshift mode, and the process proceeds to step S8.
[0041]
On the other hand, if the actual gear ratio has reached the downshift amount DW_ratio (0), it is determined that the upshift mode has been set, and 1 is added to the mode flag Mf, and then the process proceeds to step S10.
[0042]
In step S8 of the downshift mode, a downshift shift characteristic according to the acceleration intention is selected from the map of FIG. 5 based on the acceleration intention determined in step S5.
[0043]
Then, in step S9, according to the current vehicle speed VSP, the downshift speed ratio DW_ratio (0) is obtained from the speed change characteristics selected in step S8 and stored.
[0044]
Thereafter, the process proceeds to step S16, and the target speed ratio Dratio is calculated from the following equation.
[0045]
Ratio = DW_ratio (0) −UP_ratio (0) + UP_ratio (n) (1)
Here, UP_ratio (0) is an initial value of the upshift amount, and UP_ratio (n) is a correction amount of the upshift amount (shift amount to a smaller gear ratio) according to an increase in vehicle speed.
[0046]
When the process proceeds from step S9 to step S16, the upshift amount initial value UP_ratio (0) and the upshift amount UP_ratio (n) are both 0, and the target speed ratio Dratio = DW_ratio (0).
[0047]
Next, in step S17, the target input shaft rotation speed DsrRev is
DsrRev = Dratio × OutRev (2)
The process proceeds to step S18 to output the target speed ratio Dratio, and controls the speed ratio of the continuously variable transmission 10.
[0048]
On the other hand, in step S10 in which the upshift mode is determined in the determination in step S7, the pre-read vehicle speed tVSP is obtained from the driving force and the vehicle speed VSP, and the difference between the current vehicle speed VSP and the pre-read vehicle speed tVSP is equal to or more than a predetermined value. It is determined whether or not the increase in the actual vehicle speed VSP is not slowed down with respect to the accelerator operation amount APO based on whether or not the vehicle speed VSP is normal. (Linear mode when running resistance increases).
[0049]
In determining the pre-read vehicle speed tVSP, first, the output torque of the engine 11 is determined.
[0050]
The engine output torque is calculated from the fuel injection pulse width (fuel injection amount) calculated by the engine control unit of the controller 1 and the detected engine rotation speed Ne, or when the characteristic diagram of the engine 11 is provided, The engine output torque is estimated from the accelerator operation amount APO and the engine rotation speed Ne.
[0051]
Then, a driving force is calculated from the engine output torque by the following equation.
[0052]
Driving force = engine output torque x total reduction ratio / tire radius ... (3)
However, the total reduction ratio is the sum of the current actual transmission ratio and the reduction ratio of a differential gear or the like.
[0053]
When a lock-up clutch (not shown) of the torque converter 12 is in a released state, the engine output torque is corrected based on a predetermined torque ratio.
[0054]
Then, as shown in FIG. 7, a driving force for maintaining the current vehicle speed on a flat road is calculated from a preset running resistance map (corresponding to a flat road), and the difference between the driving force and the driving force obtained by the above equation (3) is calculated. Is divided by the vehicle speed to calculate the acceleration obtained by the vehicle, and the integrated vehicle acceleration is added to the current vehicle speed to obtain a achievable vehicle speed as the look-ahead vehicle speed tVSP.
[0055]
Next, the current vehicle speed VSP (actual vehicle speed) and the look-ahead vehicle speed tVSP are
Look-ahead vehicle speed tVSP-actual vehicle speed VSP> predetermined value ... (4)
If the vehicle speed VSP due to the current driving force is lower than the predetermined vehicle speed tVSP by more than a predetermined value, it is determined that the acceleration is slow, and the process proceeds to the upshift mode when the running resistance increases in step S11. On the other hand, if the difference between the pre-read vehicle speed tVSP and the actual vehicle speed VSP is within a predetermined value, it is determined that acceleration according to the driving force has been realized, and the normal upshift mode processing of step S14 is performed.
[0056]
In order to determine the acceleration, the acceleration obtained from the driving force may be estimated and compared with the actual acceleration.However, since the estimated acceleration greatly changes by operating the accelerator, here, by converting to the pre-read vehicle speed, Thus, it is possible to reliably determine the acceleration slowdown with less erroneous determination.
[0057]
The predetermined value of the above equation (4) is determined by the setting items of the vehicle type and the vehicle characteristics. The lower the vehicle speed, the slower the acceleration becomes. For example, when the vehicle speed is 20 km / h, the predetermined value is 5 km / h, and when the vehicle speed is 80 km / h or more, the predetermined value is 15 km / h. A predetermined value at each vehicle speed is obtained.
[0058]
As the vehicle weight, for example, a value obtained by adding the weight of the vehicle body and two occupants is used. Although the weight of the vehicle body slightly changes due to a change in the number of occupants or the like, it is usually within 10% of the total weight, which is smaller than the increase or decrease in the running resistance when traveling on an uphill road or when towing.
[0059]
In the upshift mode during running resistance increase in step S11, the shift characteristic of the upshift corresponding to the acceleration intention is selected from the map in FIG. 6 based on the acceleration intention determined in step S5.
[0060]
Next, in step S12, the vehicle speed deviation eVSP is defined as the vehicle speed deviation eVSP, and the gear ratio correction amount ΔDawn corresponding to the vehicle speed deviation eVSP is used as the correction amount for the increase in the running resistance. (Downshift amount).
[0061]
In step S13, an upshift amount initial value UP_ratio (0) is obtained from the upshift speed characteristic selected in step S11 according to the current vehicle speed VSP, and the speed ratio corresponding to the running resistance increase obtained in step S12 is obtained. From the correction amount ΔDawn,
UP_ratio (0) = UP_ratio (0) −ΔDawn (5)
Thereby corrects the upshift amount initial value UP_ratio (0) to the downshift side.
[0062]
Then, the process proceeds to step S16, where the target speed ratio Dratio is calculated from the above equation (1). After the target speed ratio Dratio is obtained in step S17, the target speed ratio Dratio is output in step S18.
[0063]
Accordingly, in the upshift mode at the time of increasing the running resistance, the upshift amount of the initial upshift amount UP_ratio (0) is suppressed by the downshift-side speed ratio correction amount ΔDawn compared to the normal upshift mode. Alternatively, when the increase in the vehicle speed VSP is extremely low due to the downshift (when the vehicle speed deviation e is extremely large), a further downshifted value is set and an instruction to increase the driving force is issued.
[0064]
When the process proceeds from step S13 to step S16, the upshift amount UP_ratio (n) is not calculated because it has not been calculated, and the target gear ratio Dratio = DW_ratio (0) -UP_ratio (0).
[0065]
On the other hand, in step S14 in which the normal upshift mode is determined in step S10, the shift characteristic of the upshift corresponding to the acceleration intention is selected from the map of FIG. 6 based on the acceleration intention determined in step S5. I do.
[0066]
Next, in step S15, an upshift amount initial value UP_ratio (0) is obtained from the upshift speed characteristic selected in step S11 and stored according to the current vehicle speed VSP.
[0067]
Then, the process proceeds to step S16, where the target speed ratio Dratio is calculated from the above equation (1). After the target speed ratio Dratio is obtained in step S17, the target speed ratio Dratio is output in step S18.
[0068]
However, when the process proceeds from step S15 to step S16, the upshift amount UP_ratio (n) is 0, and the target speed ratio Dratio = DW_ratio (0) −UP_ratio (0).
[0069]
In this way, in the first control cycle of the upshift mode in which the downshift has been completed, in the steps S10 to S15, the normal upshift mode and the upshift when the running resistance increases according to the magnitude of the deviation eVSP between the pre-read vehicle speed tVSP and the actual vehicle speed VSP. One of the modes is selected, and when the running resistance increases, the downshift-side speed ratio correction amount ΔDawn suppresses the upshift amount from the normal upshift mode.
[0070]
Next, in step S19, in which it is determined in step S6 that there is no mode shift, the pre-read vehicle speed tVSP is obtained from the driving force in the same manner as in step S10, and the magnitude of the vehicle speed deviation e, which is the difference from the actual vehicle speed VSP, is obtained. It is determined whether the mode is the normal upshift mode or the running resistance increase upshift mode based on.
[0071]
If the vehicle speed deviation eVSP exceeds a predetermined value, the vehicle speed is insufficiently increased. Therefore, it is determined that the upshift mode is set when the running resistance increases, and the process proceeds to step S20. If the vehicle speed deviation e is within the predetermined value, the accelerator operation amount APO Since the acceleration force (increase of the vehicle speed VSP) according to the above is achieved, the normal upshift mode is determined, and the process proceeds to step S23.
[0072]
First, in step S20, which is the upshift mode when the running resistance increases, the shift characteristic of the upshift according to the acceleration intention is selected from the map of FIG. 6 based on the acceleration intention determined in step S5.
[0073]
In step S21, the gear ratio correction amount ΔDawn is obtained from the map of FIG. 8 based on the vehicle speed deviation e.
[0074]
Next, in step S22, the upshift amount UP_ratio (n) corresponding to the increase in the vehicle speed is obtained from the upshift speed change characteristic selected in step S20 according to the current vehicle speed VSP, and then obtained in step S21. With the gear ratio correction amount ΔDawn, the upshift amount UP_ratio (n) is
UP_ratio (n) = UP_ratio (n) −ΔDawn (6)
To correct.
[0075]
Then, the process proceeds to step S16 to calculate the target speed ratio Dratio from the above equation (1), and outputs the target speed ratio Dratio in steps S17 and S18.
[0076]
On the other hand, in step S23 where it is determined in the above-described step S19 that the normal upshift mode has been set, the shift characteristic of the upshift according to the acceleration intention is determined from the map of FIG. 6 based on the acceleration intention determined in step S5. select.
[0077]
Then, in step S24, the upshift amount UP_ratio (n) corresponding to the increase in the vehicle speed is obtained from the upshift speed change characteristic selected in step S23 according to the current vehicle speed VSP, and this upshift amount UP_ratio (n) will be obtained from the next time on. ) Is updated, the process proceeds to step S16, the target speed ratio Dratio is calculated from the above equation (1), and the target speed ratio Dratio is output in steps S17 and S18.
[0078]
Next, in step S4, which proceeds when the previous control mode was the linear mode in step S1, the accelerator operation amount APO is returned to a predetermined value such as 0/8 or the like after the linear mode is set, and If a predetermined time has elapsed since the shift to the linear mode, the linear mode is canceled and the process proceeds to step S30 to control the normal mode. When releasing the linear mode, the control flag F, the mode flag Mf, the downshift speed ratio DW_ratio (0), the upshift amount initial value UP_ratio (0), the upshift amount UP_ratio (n), the speed ratio correction amount ΔDawn is reset to 0, respectively.
[0079]
In the control in the normal mode, the target input shaft rotation speed DsrRev is obtained from the current vehicle speed VSP and the accelerator operation amount APO based on the shift map shown in FIG. After that, the output is made in step S17.
[0080]
On the other hand, if the accelerator operation amount APO is equal to or greater than the predetermined value, the driver determines that the driver intends to continue acceleration, and proceeds to step S5 to continue the control in the linear mode.
[0081]
When the kick down operation is determined based on the accelerator operation speed dAPO by the above control, after the downshift is performed with the downshift speed change characteristic according to the acceleration intention, the look-ahead vehicle speed tVSP achievable with the current driving force is performed. One of the upshift mode at the time of running resistance increase and the upshift mode at the normal time is selected according to the magnitude of the deviation eVSP between the vehicle speed VSP and the actual vehicle speed VSP. The upshift is performed, and in the upshift mode when the running resistance increases, the gear ratio correction amount ΔDawn is changed according to the magnitude of the vehicle speed deviation e, the upshift amount in the upshift mode is regulated, and the running resistance increase This compensates for the slowdown in acceleration.
[0082]
The operation of the control depending on the difference in the running resistance will be described below.
[0083]
<A. Normal kick-down operation>
When the accelerator operation speed dAPO exceeds the reference value dAPOL shown in FIG. 3 by depressing the accelerator while traveling on a flat road or a downhill road in the normal mode, normal kick-down acceleration control is started, and the mode shifts to the linear mode. Is determined from the map.
[0084]
First, in the first control, since the mode flag Mf = 0, the downshift speed ratio DW_ratio (0) is set in steps S9 and S10.
[0085]
Here, as shown in FIG. 5, the downshift speed ratio DW_ratio (0) is set to the downshift speed ratio DW_ratio (0) for each vehicle speed, and has different speed characteristics depending on the magnitude of the acceleration intention. It is set so that the downshift amount (the shift amount of the gear ratio to the larger side) increases as the intention of acceleration increases.
[0086]
Then, as shown in FIG. 10, the downshift speed ratio DW_ratio (0) at the time of the kick-down operation is set as the target speed ratio Dratio.
[0087]
Next, when the actual gear ratio reaches the downshift gear ratio DW_ratio (0) = the target gear ratio Dratio, the actual vehicle speed VSP at this time is compared with the look-ahead vehicle speed tVSP achievable with the current driving force. If the deviation eVSP between the speed VSP and the pre-read vehicle speed tVSP is equal to or less than a predetermined value, the normal upshift mode is selected, and as shown by the broken line in FIG. 11, the upshift upon completion of the downshift corresponding to the vehicle speed VSP during the down operation. The quantity initial value UP_ratio (0) is set, and the mode shifts to the normal upshift mode.
[0088]
Here, as the upshift amount initial value UP_ratio (0), as shown in FIG. 6, the upshift amount is set for each vehicle speed, and different shift characteristics are set according to the magnitude of the acceleration intention. The upshift amount according to the vehicle speed is set to be smaller as the intention is larger, and from the above equation (1), the shift to a smaller (Hi) side of the gear ratio is started according to the upshift amount.
[0089]
Until the linear mode release condition is satisfied, the upshift amount UP_ratio (n) is updated in accordance with the increase in the vehicle speed VSP in each control cycle.
[0090]
Therefore, as shown in FIG. 12, in the downshift mode after the kick down operation, the downshift amount is regulated in accordance with the shift characteristics in the map of FIG. 5 as compared with the shift characteristics in the normal mode in FIG. Accordingly, the input shaft rotation speed impRev from the point A to the point B in the drawing is suppressed to improve the height of the vehicle acceleration and the responsiveness of the vehicle acceleration at the initial stage of acceleration.
[0091]
After the downshift gear ratio DW_ratio (0), which is the downshift target gear ratio, is reached, the upshift amount initial value UP_ratio (0) is set based on the upshift gear characteristics shown in FIG. 6 and the vehicle speed VSP according to the acceleration intention. The value obtained by subtracting the upshift amount initial value UP_ratio (0) from the downshift speed ratio DW_ratio (0) becomes the target speed ratio. In FIG. 12, after the point B, as indicated by the solid line in FIG. As described above, the gear ratio is gradually changed to the small side, and an excessive increase in engine speed Ne during acceleration and a decrease in vehicle acceleration can be suppressed, and a vehicle acceleration according to the driver's acceleration intention can be obtained. It is.
[0092]
In FIG. 12, the dashed line in FIG. 12 is based on the conventional example (Japanese Patent Application No. 2001-182803). According to this conventional example, the downshift amount is larger than the point B of the present invention, and the shift to the smaller side is performed thereafter. Is larger than the present invention.
[0093]
For this reason, as shown in FIG. 13, in the linear mode of the present application indicated by a one-dot chain line or a solid line in the figure, the arrival time to the maximum value of the vehicle acceleration is faster than in the conventional example indicated by the dashed line in the figure. The engine rotation speed Ne is suppressed lower than in the conventional example. For this reason, the magnitude of the vehicle acceleration and the arrival time to the maximum acceleration can be set optimally. Further, in the upshift mode, the reduction of the gear ratio is suppressed as compared with the conventional example, so that the increase in the engine rotation speed Ne is ensured. As a result, a decrease in vehicle acceleration can be suppressed, and the acceleration can be felt.
[0094]
At the time of the kick down operation, the shift characteristics according to the driver's intention to accelerate are set on the downshift side and the upshift side based on the plurality of shift characteristics. The degree of freedom in setting the rotation speed Ne can be obtained. In particular, by setting a plurality of shift characteristics according to the intention of acceleration, the calculation load on the controller 1 can be reduced, and the rise and fall of the vehicle acceleration can be balanced. , And good kickdown acceleration can be realized in a wide speed range.
[0095]
Further, in the upshift mode after the downshift, as shown in FIG. 6, the upshift amount corresponding to the vehicle speed is set to be smaller as the acceleration intention is larger, so that the engine rotation speed is set in accordance with the magnitude of the acceleration intention. By increasing the vehicle speed, it is possible to obtain the vehicle acceleration according to the driver's expectation.
[0096]
<B. Kick-down operation when running resistance increases>
Next, when the accelerator operation speed dAPO exceeds the reference value dAPOL shown in FIG. 3 when the accelerator is depressed in the normal mode in which the running resistance is large, such as during towing another vehicle or on an uphill road, it is determined that the kick-down operation is performed. After the acceleration intention is determined, the mode shifts to the linear mode as described above.
[0097]
Here, the downshift speed ratio DW_ratio (0) is the same as described above, and as shown in FIG. 5, the downshift amount (the amount of shift toward a larger speed ratio) increases as the intention of acceleration increases. Is set based on the shift characteristics set in.
[0098]
When the downshift is completed, if the vehicle speed deviation eVSP between the actual vehicle speed VSP and the look-ahead vehicle speed tVSP exceeds a predetermined value, the upshift mode at the time of increasing running resistance is selected, and the gear ratio is set according to the magnitude of the vehicle speed deviation e. The correction amount ΔDawn is set.
[0099]
By the speed ratio correction amount ΔDawn, the upshift amount is restricted to the downshift side (larger speed ratio) than in the normal upshift mode, and when the vehicle speed deviation eVSP is relatively small, the characteristic shown in FIG. As shown in A, the upshift is performed gradually, but when the vehicle speed deviation eVSP is large, the upshift amount = 0 as shown by the characteristic B in the figure, and the vehicle shifts at the downshift speed ratio DW_ratio (0). When the acceleration is continued and the vehicle speed deviation eVSP is extremely large (for example, when the vehicle speed VSP decreases), the upshift amount is reversed to the negative (downshift side) and the downshift is performed as shown by the characteristic C in the figure. The vehicle is accelerated by further downshifting from the shift gear ratio DW_ratio (0).
[0100]
Thus, at the time of the kick down operation, after downshifting is performed with the downshift amount according to the driver's intention to accelerate, in the upshift mode, the magnitude of the running resistance is detected by the increase of the vehicle speed VSP, and the vehicle speed deviation e decreases. Since the upshift amount is corrected as described above, regardless of the magnitude of the running resistance, acceleration response and acceleration elongation can be realized, and an acceleration feeling according to the driver's intention to accelerate can be realized.
[0101]
For example, as shown in FIG. 13, the peak of the vehicle acceleration (front and rear G in the figure) is larger in the linear mode when the running resistance is increased as indicated by the solid line in FIG. However, the acceleration peak occurs earlier than in the conventional example indicated by the broken line in the figure, and the response at the start of acceleration can be ensured in the same manner as in the normal linear mode. In the subsequent upshift, the linear mode at the time of increasing the running resistance is also suppressed in the same manner as the normal mode at the time of acceleration, as in the conventional example indicated by the broken line in FIG. You can achieve elongation.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a continuously variable transmission according to an embodiment of the present invention.
FIG. 2 is a flowchart illustrating an example of shift control performed by a controller.
FIG. 3 is a map of a reference value dAPOL of an accelerator operation speed dAPO according to an accelerator operation amount APO and a vehicle speed VSP.
FIG. 4 is a map of an acceleration intention according to an accelerator operation amount APO and an accelerator operation speed dAPO.
FIG. 5 is a map of a downshift speed ratio DW_ratio (0) according to a vehicle speed using an acceleration intention as a parameter.
FIG. 6 is a map of an upshift amount according to a vehicle speed using an acceleration intention as a parameter.
FIG. 7 is a map showing a running resistance corresponding to a flat road according to a vehicle speed.
FIG. 8 is a map of a speed ratio correction amount to a downshift side according to a magnitude of a vehicle speed deviation.
FIG. 9 is a map of a target input shaft rotation speed corresponding to a vehicle speed VSP using an accelerator operation amount APO used in a normal mode as a parameter.
FIG. 10 is a map of the downshift speed ratio according to the vehicle speed VSP, showing how the downshift speed ratio DW_ratio (0) is determined.
FIG. 11 is a map of an upshift amount according to a vehicle speed VSP, showing how an upshift amount is determined.
FIG. 12 is a map of the input shaft rotation speed impRev according to the vehicle speed VSP when the kick-down acceleration is performed. The trajectory of the linear mode when the resistance increases is shown, and the dashed line in the figure shows the trajectory of the rotation speed impRev according to the conventional example.
FIG. 13 is a graph showing the relationship between accelerator operation amount APO, engine rotation speed, vehicle acceleration G (front and rear G) and time when kick-down acceleration is performed. In the figure, the dashed line indicates the normal linear mode, and the dashed line indicates the conventional example.
[Explanation of symbols]
Reference Signs List 1 controller 2 engine rotation sensor 3 input shaft rotation sensor 4 vehicle speed sensor 5 accelerator sensor 10 continuously variable transmission 11 engine

Claims (8)

車速とアクセル操作量を含む車両の運転状態を検出する運転状態検出手段と、
前記車速とアクセル操作量に応じた変速比を決定する変速比決定手段と、
前記決定された変速比に基づいて無段変速機の変速比を制御する制御手段とを備えた無段変速機の変速制御装置において、
加速要求の大きさを判定する加速要求判定手段と、
前記加速要求の大きさに基づいてダウンシフトの変速特性とアップシフトの変速特性をそれぞれ決定する加速用変速特性決定手段と、
前記加速要求が予め設定した基準値よりも大きいときには、前記ダウンシフト変速特性に基づいて前記変速比決定手段で決まる目標変速比よりも抑制されたダウンシフト目標変速比へダウンシフトを行った後、前記アップシフト変速特性に基づくアップシフト目標変速比によりアップシフトを行う加速制御手段と、
前記加速制御手段によるダウンシフト後に加速状態を判定する加速状態判定手段と、
この加速状態が予め設定した値以下の場合には、前記アップシフトの目標変速比を加速状態に応じてダウンシフト側へ補正するアップシフト目標変速比補正手段と、
を備えたことを特徴とする無段変速機の変速制御装置。
Driving state detecting means for detecting a driving state of the vehicle including a vehicle speed and an accelerator operation amount;
Speed ratio determining means for determining a speed ratio according to the vehicle speed and the accelerator operation amount,
Control means for controlling the speed ratio of the continuously variable transmission based on the determined speed ratio.
Acceleration request determination means for determining the magnitude of the acceleration request;
Speed-change characteristic determining means for determining the speed-change characteristic of the downshift and the speed-change characteristic of the upshift based on the magnitude of the acceleration request,
When the acceleration request is greater than a preset reference value, after performing a downshift to a downshift target speed ratio that is suppressed from a target speed ratio determined by the speed ratio determining means based on the downshift speed characteristics, Acceleration control means for performing an upshift with an upshift target gear ratio based on the upshift gear characteristic,
Acceleration state determination means for determining an acceleration state after a downshift by the acceleration control means,
When the acceleration state is equal to or less than a preset value, an upshift target gear ratio correction means for correcting the upshift target gear ratio to a downshift side according to the acceleration state,
A shift control device for a continuously variable transmission, comprising:
前記加速状態判定手段は、エンジンの出力トルクを検出または推定して駆動力を算出する駆動力演算手段と、算出された駆動力と予め設定された走行抵抗から現在の駆動力で実現可能な車速を先読み車速として演算する先読み車速演算手段と、この先読み車速と現在の車速の差により判定することを特徴とする請求項1に記載の無段変速機の変速制御装置。The acceleration state determination unit detects or estimates an output torque of the engine to calculate a driving force, and a vehicle speed achievable with the current driving force from the calculated driving force and a preset traveling resistance. 2. A shift control device for a continuously variable transmission according to claim 1, wherein a pre-reading vehicle speed calculating means for calculating the pre-reading vehicle speed and a difference between the pre-reading vehicle speed and the current vehicle speed. 前記アップシフト目標変速比補正手段は、前記先読み車速と現在の車速の差が大きいほどアップシフト目標変速比をダウンシフト側へ補正することを特徴とする請求項2に記載の無段変速機の変速制御装置。3. The continuously variable transmission according to claim 2, wherein the upshift target speed ratio correction unit corrects the upshift target speed ratio toward the downshift side as the difference between the pre-read vehicle speed and the current vehicle speed increases. Transmission control device. 前記加速用変速特性決定手段は、加速要求の大きさに応じて予め設定された複数のダウンシフト変速特性から一つを選択するとともに、加速要求の大きさに応じて予め設定された複数のアップシフト変速特性から一つを選択することを特徴とする請求項1ないし請求項3のいずれかひとつに記載の無段変速機の変速制御装置。The acceleration shift characteristic determining means selects one from a plurality of downshift shift characteristics preset according to the magnitude of the acceleration request and a plurality of upshifts preset according to the magnitude of the acceleration request. The shift control device for a continuously variable transmission according to any one of claims 1 to 3, wherein one is selected from shift shift characteristics. 前記アップシフト変速特性は、ダウンシフト後の変速比から車速の増大に応じて変速比の小側へ変速する変速量を設定したことを特徴とする請求項4に記載の無段変速機の変速制御装置。The speed change of the continuously variable transmission according to claim 4, wherein the upshift speed change characteristic sets a shift amount that shifts from a speed ratio after the downshift to a lower speed ratio in accordance with an increase in vehicle speed. Control device. 前記アップシフト変速特性は、加速要求が大きいほど車速の増大に応じて変速比の小側へ変速する変速量を小さく設定したことを特徴とする請求項5に記載の無段変速機の変速制御装置。6. The shift control of a continuously variable transmission according to claim 5, wherein the upshift speed change characteristic is set such that a shift amount for shifting to a lower gear ratio in accordance with an increase in vehicle speed decreases as the acceleration request increases. apparatus. 前記加速要求判定手段は、アクセル操作量に基づいてアクセル操作速度を検出し、このアクセル操作速度とアクセル操作量に基づいて加速要求の大きさを判定することを特徴とする請求項1ないし請求項6のいずれか一つに記載の無段変速機の変速制御装置。3. The acceleration request determining unit detects an accelerator operation speed based on an accelerator operation amount, and determines a magnitude of an acceleration request based on the accelerator operation speed and the accelerator operation amount. 7. The shift control device for a continuously variable transmission according to any one of 6. 前記加速制御手段は、前記加速要求を比較する基準値を車速とアクセル操作量に応じて変更することを特徴とする請求項1ないし請求項7のいずれか一つに記載の無段変速機の変速制御装置。8. The continuously variable transmission according to claim 1, wherein the acceleration control unit changes a reference value for comparing the acceleration request according to a vehicle speed and an accelerator operation amount. Transmission control device.
JP2002329140A 2002-11-13 2002-11-13 Shift control device for continuously variable transmission Expired - Lifetime JP4206256B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002329140A JP4206256B2 (en) 2002-11-13 2002-11-13 Shift control device for continuously variable transmission
EP03025738A EP1420194B1 (en) 2002-11-13 2003-11-10 Shift control for continuously-variable transmission
DE60335697T DE60335697D1 (en) 2002-11-13 2003-11-10 Shift control for a continuously variable transmission
US10/704,853 US7011602B2 (en) 2002-11-13 2003-11-12 Shift control for continuously-variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002329140A JP4206256B2 (en) 2002-11-13 2002-11-13 Shift control device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2004162800A true JP2004162800A (en) 2004-06-10
JP4206256B2 JP4206256B2 (en) 2009-01-07

Family

ID=32807224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002329140A Expired - Lifetime JP4206256B2 (en) 2002-11-13 2002-11-13 Shift control device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP4206256B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004734A1 (en) * 2005-07-05 2007-01-11 Toyota Jidosha Kabushiki Kaisha Acceleration sensation evaluating device and vehicle controller
JP2008069951A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Shift control device for vehicular continuously variable transmission
WO2015123261A1 (en) * 2014-02-12 2015-08-20 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for shift restraint control
WO2015146808A1 (en) * 2014-03-27 2015-10-01 アイシン・エィ・ダブリュ株式会社 Automatic transmission control device
CN113442949A (en) * 2021-07-30 2021-09-28 中汽创智科技有限公司 Vehicle control method, device, equipment and storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004734A1 (en) * 2005-07-05 2007-01-11 Toyota Jidosha Kabushiki Kaisha Acceleration sensation evaluating device and vehicle controller
US8073576B2 (en) 2005-07-05 2011-12-06 Toyota Jidosha Kabushiki Kaisha Acceleration sensation evaluating device and vehicle controller
JP2008069951A (en) * 2006-09-15 2008-03-27 Toyota Motor Corp Shift control device for vehicular continuously variable transmission
WO2015123261A1 (en) * 2014-02-12 2015-08-20 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for shift restraint control
US9523428B2 (en) 2014-02-12 2016-12-20 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for shift restraint control
WO2015146808A1 (en) * 2014-03-27 2015-10-01 アイシン・エィ・ダブリュ株式会社 Automatic transmission control device
JP2015190500A (en) * 2014-03-27 2015-11-02 アイシン・エィ・ダブリュ株式会社 Automatic transmission control device
CN113442949A (en) * 2021-07-30 2021-09-28 中汽创智科技有限公司 Vehicle control method, device, equipment and storage medium
CN113442949B (en) * 2021-07-30 2022-11-15 中汽创智科技有限公司 Vehicle control method, device, equipment and storage medium

Also Published As

Publication number Publication date
JP4206256B2 (en) 2009-01-07

Similar Documents

Publication Publication Date Title
JP5120102B2 (en) Shift control device for continuously variable transmission
JP4322926B2 (en) Control device for automatic transmission for vehicle
US6244986B1 (en) Shift control apparatus for continuously variable transmission
US7011602B2 (en) Shift control for continuously-variable transmission
US6671601B2 (en) Continuously variable transmission controller
JP4062848B2 (en) Control device for automatic transmission
JP3656548B2 (en) Vehicle driving force control device
JP4366333B2 (en) Speed change control device and speed change control method for continuously variable transmission
US20070208478A1 (en) Vehicle control apparatus and method
EP0889264A1 (en) Speed change ratio controller for continuously variable transmission
EP2754925B1 (en) Control device for continuously variable transmission
US8620541B2 (en) Vehicle driving-force control device
JP3423840B2 (en) Control device for continuously variable transmission
US6485391B2 (en) Control system for continuously variable automatic transmission
JP4348065B2 (en) Shift control device for continuously variable transmission
JP4206256B2 (en) Shift control device for continuously variable transmission
JPH09287489A (en) Driving-force controller for vehicle
JP4016822B2 (en) Shift control device for continuously variable transmission
JP4517719B2 (en) Control device for maintaining vehicle speed at low load of power train
US11796057B2 (en) Control method and control apparatus for continuously variable transmission
JP3804120B2 (en) Control device for automatic transmission
JP4340434B2 (en) Shift control device for continuously variable transmission
JP3915442B2 (en) Shift control system for continuously variable transmission with manual shift mode
JP2010175063A (en) Speed change control device and speed change control method
JPH0674321A (en) Speed change control device for automatic transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4206256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

EXPY Cancellation because of completion of term