JP2004162631A - Heat/electric power cogenerating device - Google Patents

Heat/electric power cogenerating device Download PDF

Info

Publication number
JP2004162631A
JP2004162631A JP2002330319A JP2002330319A JP2004162631A JP 2004162631 A JP2004162631 A JP 2004162631A JP 2002330319 A JP2002330319 A JP 2002330319A JP 2002330319 A JP2002330319 A JP 2002330319A JP 2004162631 A JP2004162631 A JP 2004162631A
Authority
JP
Japan
Prior art keywords
power
electric power
heat
power supply
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002330319A
Other languages
Japanese (ja)
Inventor
Masaki Takamatsu
正樹 高松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Electric Air Conditioning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Electric Air Conditioning Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002330319A priority Critical patent/JP2004162631A/en
Publication of JP2004162631A publication Critical patent/JP2004162631A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform economical freezing and refrigerating storage of foods or to heat, to reduce an installation space, and to improve a performance in an installation work. <P>SOLUTION: A first refrigerant circuit 8 provided with a compressor 23 driven by electric power is stored inside a housing 5 of the heat/electric power cogenerating device 1 in which a power generation part 6 provided with an internal combustion engine 10 and a generator 11, and a heat recovery part 7 are stored. Power supply of the compressor 23 is connected to an output side of a system interconnection device 12. Electric power of single-phase three-wire system is supplied to an electric lamp line power supply system from the heat/electric power cogenerating device 1. In a time zone other than a time zone in which nighttime electric power in the electric lamp line power supply system is usable, an operation of the power generation part 6 is started from a control part 32 to generate the electric power, and a part of the electric power is used to operate the first refrigerant circuit 8. In the time zone when the nighttime electric power is usable, the power generation part 6 is stopped, and the first refrigerant circuit 8 is operated by the electric power from the electric lamp line power supply system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
内燃機関で発電機を駆動し、電力供給と、熱供給とを行なう熱電併給装置に関する。
【0002】
【従来の技術】
従来の熱電併給装置は、エンジンなどの内燃機関と、この内燃機関の駆動力で駆動される発電機とを備え、前記内燃機関を運転させて前記発電機を駆動させ、この発電機により発電された電力を商用電源へ系統連携させて電力供給を行ない、昼間の電力ピークを低減し、電力消費の平準化と、使用者の電力料金の軽減を行なうとともに、前記内燃機関の排気ガスや、冷却水の排熱を水熱交換器などを介して温水へと回収し、例えば、給湯需要がある物件では、給湯用として前記温水を貯湯タンクへ貯湯し、前記給湯需要に応じて給湯を行なうという省エネルギー効果をもたらしていた(特許文献1参照)。
【0003】
しかし、熱電併給装置では、燃料を前記内燃機関内で燃焼させ、その熱エネルギーの一部を駆動力へと変換し、前記発電機を運転して発電エネルギーを生成しているため、この発電機から供給される電力供給量に比べ、前記内燃機関から回収できる熱供給量の方が、はるかに大きかった。
【0004】
このため、給湯要求を必要とされない現場への導入が難しいものとなっており、この給湯需要が無い物件では、前記内燃機関から回収できた前記熱供給量を、デシカント空調機や、吸収式冷凍機などの熱を利用して運転される空気調和装置の熱源として利用し、空調運転を行わせる熱電併給装置が発明され、上記電力と、温水とを供給する熱電併給装置と同様に、省エネルギー効果をもたらしていた(特許文献2参照)。
【0005】
【特許文献1】
特開2002−48005号公報(第3−5頁、第1図)
【0006】
【特許文献2】
特開2002−13759号公報(第3−4頁、第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、前記給湯需要が余り無いスーパーマーケットや、コンビニエンスストアなどの店舗では、空調などのほかにも食品などの冷凍冷蔵保存を行なう冷凍冷蔵機を設置する必要があるため、前記特許文献1、或いは、前記特許文献2で示される熱電併給装置を設置したとしても、前記冷凍冷蔵機用の室外ユニットを別途設置しなければならなかった。
【0008】
また、1台の熱電併給装置では、電灯用の電力(単相100V)、或いは、冷凍冷蔵機用の電力(3相200V)のいずれか一方のみしか電力供給できなかったため、双方の商用電源の電力を前記熱電併給装置からの電力で賄おうとした場合、それぞれの前記商用電源に対応させた熱電併給装置を設置するか、別途、変圧トランスなどを設けて、それぞれの商用電源へ接続する必要があった。
【0009】
さらに、熱電併給装置と、前記冷凍冷蔵機用の室外ユニットとは、別体となっていたため、前記熱電併給装置の設置スペースと、前記室外ユニットの設置スペースとが必要となるだけでなく、前記熱電併給装置と、前記室外ユニットとをそれぞれ前記商用電源へ接続する設置工事が必要となっていた。
【0010】
このため、前記スーパーマーケットや、コンビニエンスストアなどの店舗では、前記店舗内の空調と、食品などとの冷凍冷蔵保存のための設備として、広い面積の設置スペースを確保する必要があり、さらに、これら設置工事費用も多額となっていた。
【0011】
そこで、本願発明の目的は、経済的な食品の冷凍冷蔵保存、或いは、加温が行なえるとともに、設置スペースを少なくでき、かつ、設置工事性を改善した熱電併給装置を提供することにある。
【0012】
【課題を解決するための手段】
請求項1に記載の発明は、エンジンなどの内燃機関と、この内燃機関の駆動力で駆動される発電機と、系統連携させて商用電源への電力供給を行なう系統連携装置とを同一の筐体内に備え、電力供給と、熱供給とを行なう熱電併給装置において、前記筐体内へ前記商用電源からの電力で駆動される圧縮機を備えた少なくとも1系統の冷媒回路を設けたことを特徴とするものである。
【0013】
請求項2に記載の発明は、請求項1に記載の発明において、前記商用電源からの電力で駆動される圧縮機を、前記系統連携装置の出力側と前記商用電源との間に接続したことを特徴とするものである。
【0014】
【発明の実施の形態】
以下、本願発明の一実施の形態について、図を参照しながら説明する。
【0015】
図1は、本願発明による設置スペースを少なくできるとともに、設置工事性を改善した熱電併給装置の第1の実施形態について示した図で、熱電併給装置1へ、食品などを冷凍冷蔵保存する冷凍冷蔵機2と、デシカント空調機3とが接続されて設けられている。
【0016】
まず、例えば、単相3線式100Vの電灯線電源系統である商用電源へ熱電併給装置1が、電力供給線34により接続されている。そして、熱電併給装置1は、主に発電部6と、熱回収部7と、第1冷媒回路部8とが筐体5に納められて構成されている。前記電灯線電源系統は、電灯負荷等へと接続されている。
【0017】
発電部6は、エンジンなどの内燃機関10と、この内燃機関10の駆動力により駆動される発電機11と、前記発電機11で発電された電力を前記電灯線電源系統へ系統連携させて出力する系統連携装置12と、この系統連携装置12から出力された電力を前記電灯線電源系統へ供給する電力供給線34と、前記電灯線電源系統の位相、および、前記系統連携装置12から供給される電力の方向を検出する電力供給センサ33とで構成される。
【0018】
この系統連携装置12は、上記の様に単相3線式100Vとして、前記電灯線電源系統へ電力供給されるものとなっており、図中、R相と、S相との間、および、S相と、T相との間にそれぞれ単相100Vの電源を、R相と、T相との間に単相200Vの電源を供給出来るものとなっている。
【0019】
また、この発電部6から供給される供給電力量は、後述する第1圧縮機23の消費電力量よりも大きいものとなっている。
【0020】
熱回収部7は、内燃機関10の排気から前記内燃機関10を冷却する冷却水への熱回収を行なわせる排気熱交換器13と、前記排気を大気へと排出させる排気トップ14と、前記冷却水を循環させる冷却水ポンプ15と、デシカント空調機3への熱供給を行なう水熱交換器17と、この水熱交換器17での熱供給で余剰となった熱を大気へ放熱させるラジエータ16と、前記冷却水の温度により、前記冷却水が循環する水路を切り替える第1三方弁18、および、第2三方弁19と、前記ラジエータ16への送風を行なう放熱送風機20と、前記デシカント空調機3へ接続される温水バルブ21、22とで構成されている。
【0021】
第1冷媒回路部8は、電力により駆動され、冷媒を圧縮する第1圧縮機23と、冷媒の循環方向を反転させる第1四方弁25と、前記冷媒と大気との熱交換を行わせる第1冷媒熱交換器26と、前記冷媒の減圧を行なう第1減圧弁27と、前記冷凍冷蔵機2を循環して戻った前記冷媒の気液分離を行なう第1アキュームレータ28と、前記冷凍冷蔵機2へ接続される第1冷媒バルブ30、31とが冷媒配管で接続されて構成されている。また、この第1冷媒回路8には、前記第1冷媒熱交換器26への送風を行ない、大気との熱交換を促す第1冷媒送風機29と、前記第1圧縮機23を運転させるための第1キャパシタ24とが設けられている。
【0022】
前記第1圧縮機23の電源は、前記系統連携装置12の出力側から前記電灯線電源系統へ接続されている電力供給線34の両端の相、つまり、図中でR相と、T相との単相200V側へ接続されており、前記電力供給センサ33は、前記電力供給線34上で、前記第1圧縮機23の電源が接続されている位置よりも前記電灯線電源系統側の位置に設けられている。
【0023】
さらに、前記筐体5には、これら発電部6や、熱回収部7、および、第1冷媒回路部8の制御を行なう制御部32が内蔵されて、熱電併給装置1が構成されている。この制御部32には、図示しないタイマが内蔵されており、夜間電力の利用可能な時間帯であるか否かを判断し、前記発電部6の運転開始、および、運転停止を行なわせるものとなっている。
【0024】
そして、この熱電併給装置1の運転について説明すると、発電部6では、前記制御部32に内蔵された図示しないタイマが、夜間電力の利用可能な時間であることを判断すると、制御部32から内燃機関10、および、系統連携装置12へ運転停止の指示が行なわれて発電部6が停止される。
【0025】
また、前記タイマが、夜間電力の利用可能な時間帯以外の時間帯であることを判断すると、制御部32から内燃機関10、および、系統連携装置12へ運転開始の指示が行なわれて発電部6の運転が開始されるものとなっている。そして、内燃機関10は、運転中、最も運転効率が良い回転数での運転を行ない、その駆動力で発電機11を駆動して発電を行なうものとなっている。
【0026】
発電機11で発電された電力が供給十分な電力となると、制御部32より系統連携装置12へ運転開始の指示が出される。系統連携装置12では、電力供給センサ33で検出された前記電灯線電源系統の位相と、電力供給線34上を流れる電流の方向とに基づいて、系統連携装置12からの電力が前記電灯線電源系統側へと流れる様に前記制御部32で制御されて電力供給を行なう。これにより、前記電灯負荷等へ発電電力の供給が行なえる。
【0027】
また、熱回収部7では、制御部32から内燃機関10の運転が開始されると、同時に前記制御部32から冷却水ポンプ15の運転が開始される。この時、内燃機関10も暖まっていないため、前記冷却水の温度も低い温度状態にある。これにより、前記冷却水は、冷却水ポンプ15と、内燃機関10と、排気熱交換器13と、第1三方弁18とを循環する経路で流れ、前記内燃機関10の暖機運転を行なう。そして、前記冷却水の温度が上昇し、例えば、70℃付近になると、第1三方弁18の流通方向が切り替わり、冷却水ポンプ15と、内燃機関10と、排気熱交換器13と、第1三方弁18と、水熱交換器17と、第2三方弁19とを循環する経路となり、前記デシカント空調器3への熱供給が開始され、空調運転が開始される。さらに、前記冷却水の温度が上昇し、例えば、80℃以上となると、第2三方弁19の流通方向も切り替わり、冷却水ポンプ15と、内燃機関10と、排気熱交換器13と、第1三方弁18と、水熱交換器17と、第2三方弁19と、ラジエータ16とを循環する経路となり、前記デシカント空調器3への熱供給と、前記デシカント空調器3への熱供給で余剰となった熱の放熱とが行なわれる。この時、このラジエータ16近傍に設けられた放熱送風機20の運転も開始され、ラジエータ16を流通する前記冷却水から前記大気への放熱が促される。
【0028】
第1冷媒回路部8では、前記制御部32内の図示しないタイマで、夜間電力の利用可能な時間帯であるとの判断がされている場合には、上記発電部6が停止しているため、前記電灯線電源系統からの電力供給を受けて第1圧縮機23の運転を行ない、前記食品などの冷凍冷蔵保存などを行なう冷凍冷蔵機2へ前記第1圧縮機23から吐出された冷媒を循環させる。また、前記タイマで、夜間電力の利用可能な時間帯以外の時間帯であるとの判断がされている場合には、上記発電部6の運転が行なわれ、前記系統連携装置12から前記電灯線電源系統へ電力供給線34を通じて供給される発電電力の一部を受けて、第1圧縮機23の運転が行なわれる。
【0029】
そして、前記冷凍冷蔵機2が、上記の様に食品などの冷凍冷蔵保存を行うものであれば、第1圧縮機23で圧縮されて吐出された冷媒は、第1四方弁25、第1冷媒熱交換器26、第1減圧弁27、第1冷媒バルブ30、冷凍冷蔵機2、第1冷媒バルブ31第1四方弁25、第1アキュームレータ28、第1圧縮機23の順路で循環し、冷凍冷蔵機2内を冷凍冷蔵する。前記冷凍冷蔵機2が、食品などの加温を行うものであれば、前記第1四方弁が反転して、第1圧縮機23で圧縮され、吐出された前記冷媒は、第1四方弁25、第1冷媒バルブ31、第1冷媒バルブ30、第1減圧弁27、第1冷媒熱交換器26、第1四方弁25、第1アキュームレータ28の順路で循環し、冷凍冷蔵機2内を加温する。
【0030】
これにより、前記第1冷媒回路部8は、夜間は、前記夜間電力の電力を利用して、運転を行うことができ、昼間は、発電部6から供給される発電電力を利用した運転を行なうことができて前記電灯線電源系統から供給される商用電源の電力消費量を低減できるとともに、昼夜での消費電力の平準化も行なえる。
【0031】
この様に、熱電併給装置1を、発電部6と、熱回収部7と、第1冷媒回路部8とを同一の筐体内に備えた熱電併給装置とすることにより、前記食品などが経済的に冷凍冷蔵保存でき、前記食品などを冷凍冷蔵保存する冷凍冷蔵機用の室外ユニットを設置する設置スペースをする必要が無くなるとともに、前記室外ユニットと、熱電併給装置1とを接続する手間も省けるため、少ない設置スペースでも設置することが可能となるとともに、設置工事性も改善されることとなる。
【0032】
また、この第1の実施形態では、デシカント空調機3により店舗内の空調を行なう様説明したが、上述の様に、内燃機関10は、制御部32に内蔵された前記タイマで、夜間電力が利用可能な時間帯であることが判断されると、前記制御部32から運転停止の指示を受け、前記デシカント空調器3の熱源である温水の供給が行なえ無くなってしまうため、コンビニエンスストアなどの24時間営業を行なっている店舗などでは、この夜間電力が利用可能な時間帯の前記デシカント空調機3での空調運転を行うことができない。
【0033】
そこで、第2の実施形態では、そのデシカント空調器3が運転不可能な、夜間電力が利用可能な時間帯での空調運転を行なえる様に改善したものである。
【0034】
図2に示す様に、第2の実施形態では、上記図1の熱電併給装置1の筐体5内へ第2冷媒回路部9を追加し、店舗内空調用の室内ユニット4を設けたものである。
【0035】
この第2冷媒回路部9は、電力により駆動され、冷媒を圧縮する第2圧縮機35と、冷媒の循環方向を反転させる第2四方弁36と、前記冷媒と大気との熱交換を行わせる第2冷媒熱交換器37と、前記冷媒の減圧を行なう第2減圧弁38と、前記室内ユニット4を循環して戻った前記冷媒の気液分離を行なう第2アキュームレータ39と、前記室内ユニット4へ接続される第2冷媒バルブ40、41とが冷媒配管で接続されて構成されている。また、前記第2冷媒熱交換器37への送風を行ない、大気との熱交換を促す第2冷媒送風機42と、前記第2圧縮機35を運転させるための第2キャパシタ43とが設けられている。
【0036】
また、室内ユニット4は、冷媒配管で、第2冷媒バルブ40、41へ接続された室内熱交換器44と、この室内熱交換器44への送風を行なう室内送風機45とが内蔵されている。
【0037】
なお、発電部6、熱回収部7、第1冷媒回路部8については、上記図1と同じであるため、説明は省略する。
【0038】
第2冷媒回路部9は、上記制御部32の前記タイマが、夜間電力の利用可能な時間帯であると判断すると、前記制御部32からの指示により運転するものとされている。この第2冷媒回路部9での冷媒の循環について説明すると、冷房運転では、第2圧縮機35から吐出された冷媒は、第2四方弁36、第2冷媒熱交換器37、第2減圧弁38、第2冷媒バルブ40、室内熱交換器44、第2冷媒バルブ41、第2四方弁36、第2アキュームレータ39、第2圧縮機35の順路で循環し、暖房運転では、第2四方弁36が反転して、第2圧縮機35で圧縮され、吐出された前記冷媒は、第2四方弁36、第2冷媒バルブ41、室内熱交換器44、第2冷媒バルブ40、第2減圧弁38、第2冷媒熱交換器37、第2四方弁36、第2アキュームレータ39の順路で循環し、前記店舗内の空調を行なう。
【0039】
これにより、制御部32の前記タイマで夜間電力が利用可能な時間帯であると判断され、前記発電部6が停止状態となり、デシカント空調器3への熱供給が行なわれない状態となっても、前記店舗内の空調運転を行うことができる。また、この第2冷媒回路部9での前記電灯線電源系統の電力を利用した空調運転は、夜間電力が利用可能な時間帯のみであり、昼間は、前記デシカント空調機3で、熱電併給装置1からの排熱を利用した空調運転となるため経済的である。
【0040】
この様に、第1の実施形態で説明した熱電併給装置1へ、前記電力で駆動される圧縮機を備えた第2冷媒回路部9を設けることにより、24時間の経済的な空調運転が行なえるとともに、経済的な前記食品などの冷凍冷蔵が行なえ、かつ、設置工事性を改善し、少ない設置スペースでも設置することが可能な熱電併給装置となる。
【0041】
なお、本実施の形態では、内燃機関10の排熱を回収して運転させるものを、デシカント空調機3として説明したが、冬季など、前記店舗内の暖房が必要な時には、前記デシカント空調機3に併設して温水暖房器等を備えておき、昼間、内燃機関10の運転中、水熱交換器17からの温水を前記温水暖房器へと循環させるものとしても良い。
【0042】
また、第1の実施形態では、前記食品などの冷凍冷蔵保存を行なう必要が無い場合は、第1冷媒回路部8へ接続される冷凍冷蔵機2を空調用の室内ユニットとし、デシカント空調機3とは別系統の空調を行わせるものとしても構わない。
【0043】
さらに、本実施の形態では、前記第1圧縮機23、第2圧縮機35を上述の様に、単相200Vの電源供給を受け、第1キャパシタ24、第2キャパシタ43により運転するものと説明したが、電力供給線34と、第1圧縮機23、および、第2圧縮機35との間に、それぞれインバータ回路を設け、前記第1圧縮機23、第2圧縮機35の能力を可変制御させられるものとしても構わない。
【0044】
【発明の効果】
以上の説明より、内燃機関と、この内燃機関で駆動される発電機を同一の筐体内に備え、電力供給と、熱供給とを行なう熱電併給装置の前記筐体内へ、電力で駆動される圧縮機を備えた少なくとも1系統の冷媒回路を設けることにより、食品などの経済的な冷凍冷蔵保存、或いは、加温が行なえるとともに、設置スペースを少なくでき、かつ、設置工事性をも改善した熱電併給装置とすることが可能となる。
【図面の簡単な説明】
【図1】本願発明の熱電併給装置について示した構成図である。
【図2】図1に示した熱電併給装置の夜間時の空調運転を改善した構成図である。
【符号の説明】
1 熱電併給装置
5 筐体
6 発電部
7 熱回収部
8 第1冷媒回路部
9 第2冷媒回路部
10 内燃機関
11 発電機
12 系統連携装置
23 第1圧縮機
33 電力供給センサ
34 電力供給線
35 第2圧縮機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cogeneration system that drives a generator with an internal combustion engine to supply power and heat.
[0002]
[Prior art]
A conventional cogeneration system includes an internal combustion engine such as an engine, and a generator driven by the driving force of the internal combustion engine.The internal combustion engine is driven to drive the generator, and power is generated by the generator. System power to the commercial power source to supply power, reduce daytime power peaks, level power consumption and reduce user power charges, as well as exhaust gas and cooling of the internal combustion engine. Collecting waste heat of water into warm water via a water heat exchanger, for example, in a property that has hot water demand, storing the hot water in a hot water storage tank for hot water supply and supplying hot water according to the hot water demand This has resulted in an energy saving effect (see Patent Document 1).
[0003]
However, in the cogeneration system, fuel is burned in the internal combustion engine, a part of the heat energy is converted into driving force, and the generator is operated to generate power generation energy. The amount of heat supply recoverable from the internal combustion engine was much larger than the amount of power supply supplied from the company.
[0004]
For this reason, it is difficult to introduce a hot water supply request to a site where the hot water supply request is not required, and in a property where there is no demand for hot water supply, the heat supply amount recovered from the internal combustion engine is transferred to a desiccant air conditioner or an absorption refrigeration system. A heat and power cogeneration system was invented to perform air conditioning operation by using as a heat source of an air conditioner that is operated by using heat of a heat source, and the same energy saving effect as in the cogeneration system that supplies the electric power and hot water. (See Patent Document 2).
[0005]
[Patent Document 1]
JP-A-2002-48005 (page 3-5, FIG. 1)
[0006]
[Patent Document 2]
JP-A-2002-13759 (page 3-4, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, in supermarkets where there is not much demand for hot water, or in stores such as convenience stores, it is necessary to install a freezer and refrigerator for performing freezing and refrigeration of foods and the like, in addition to air conditioning and the like, the Patent Document 1, or Even if the cogeneration system shown in Patent Document 2 is installed, an outdoor unit for the refrigerator must be separately installed.
[0008]
In addition, in one cogeneration system, only one of the electric power for electric lamps (single-phase 100 V) and the electric power for refrigerators (three-phase 200 V) could be supplied. When power is to be supplied by the power from the cogeneration system, it is necessary to install a cogeneration system corresponding to each of the commercial power sources or separately provide a transformer or the like, and connect to each of the commercial power sources. there were.
[0009]
Further, since the combined heat and power unit and the outdoor unit for the refrigerator / freezer were separate, not only the installation space for the combined heat and power unit and the installation space for the outdoor unit were required, but also Installation work for connecting the cogeneration system and the outdoor unit to the commercial power source, respectively, has been required.
[0010]
For this reason, in stores such as the supermarkets and convenience stores, it is necessary to secure a large installation space as equipment for air conditioning in the store and for freezing and refrigeration storage of foods and the like. The construction cost was also large.
[0011]
Therefore, an object of the present invention is to provide a cogeneration system that can perform economical freezing and refrigeration or heating of food, can reduce installation space, and has improved installation workability.
[0012]
[Means for Solving the Problems]
According to the first aspect of the present invention, an internal combustion engine such as an engine, a generator driven by the driving force of the internal combustion engine, and a system cooperation device that supplies power to a commercial power supply in system cooperation are provided in the same housing. In the combined heat and power supply device that is provided in the body and supplies power and heat, at least one refrigerant circuit including a compressor driven by electric power from the commercial power supply is provided in the housing. Is what you do.
[0013]
According to a second aspect of the present invention, in the first aspect of the invention, a compressor driven by electric power from the commercial power supply is connected between an output side of the system cooperation device and the commercial power supply. It is characterized by the following.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[0015]
FIG. 1 is a view showing a first embodiment of a combined heat and power supply apparatus in which installation space according to the present invention can be reduced and installation workability is improved. The machine 2 and the desiccant air conditioner 3 are connected and provided.
[0016]
First, for example, the cogeneration system 1 is connected to a commercial power supply, which is a single-phase three-wire 100V power line power supply system, via a power supply line 34. The cogeneration system 1 mainly includes a power generation unit 6, a heat recovery unit 7, and a first refrigerant circuit unit 8 housed in a housing 5. The light line power system is connected to a light load or the like.
[0017]
The power generation unit 6 outputs an internal combustion engine 10 such as an engine, a generator 11 driven by the driving force of the internal combustion engine 10, and power generated by the generator 11, which is system-linked to the power line power supply system. Power supply line 34 for supplying the power output from the power supply system to the power line power supply system, the phase of the power line power supply system, and the power supply line 34 And a power supply sensor 33 for detecting the direction of the electric power.
[0018]
As described above, the system linking device 12 is configured to supply power to the power line power system as a single-phase three-wire system 100V. In the figure, between the R phase and the S phase, and A single-phase power of 100 V can be supplied between the S phase and the T phase, and a single-phase power of 200 V can be supplied between the R and T phases.
[0019]
The amount of power supplied from the power generation unit 6 is larger than the amount of power consumed by the first compressor 23 described later.
[0020]
The heat recovery unit 7 includes an exhaust heat exchanger 13 that recovers heat from the exhaust gas of the internal combustion engine 10 into cooling water that cools the internal combustion engine 10, an exhaust top 14 that discharges the exhaust gas to the atmosphere, A cooling water pump 15 for circulating water, a water heat exchanger 17 for supplying heat to the desiccant air conditioner 3, and a radiator 16 for radiating surplus heat from the heat supply in the water heat exchanger 17 to the atmosphere. A first three-way valve 18 and a second three-way valve 19 for switching a water passage through which the cooling water circulates according to a temperature of the cooling water; a radiator blower 20 for blowing air to the radiator 16; and the desiccant air conditioner 3 are connected to hot water valves 21 and 22.
[0021]
The first refrigerant circuit unit 8 is driven by electric power, compresses the refrigerant, a first compressor 23, a first four-way valve 25 that reverses the direction of circulation of the refrigerant, and a heat exchange unit that exchanges heat between the refrigerant and the atmosphere. (1) a refrigerant heat exchanger 26, a first pressure reducing valve 27 for depressurizing the refrigerant, a first accumulator 28 for gas-liquid separation of the refrigerant circulated through the refrigeration unit 2, and a refrigeration unit The first refrigerant valves 30 and 31 connected to the second refrigerant valve 2 are connected by refrigerant piping. Further, the first refrigerant circuit 8 is configured to blow air to the first refrigerant heat exchanger 26 and to operate a first refrigerant blower 29 for promoting heat exchange with the atmosphere and the first compressor 23. A first capacitor 24 is provided.
[0022]
The power supply of the first compressor 23 is a phase at both ends of a power supply line 34 connected from the output side of the system cooperation device 12 to the power line power system, that is, an R phase and a T phase in the drawing. And the power supply sensor 33 is located on the power supply line 34 at a position closer to the electric power line system than a position to which the power supply of the first compressor 23 is connected. It is provided in.
[0023]
Further, the housing 5 has a built-in control unit 32 for controlling the power generation unit 6, the heat recovery unit 7, and the first refrigerant circuit unit 8, and the cogeneration system 1 is configured. The control unit 32 has a built-in timer (not shown) that determines whether or not it is a time zone in which nighttime power can be used, and starts and stops the operation of the power generation unit 6. Has become.
[0024]
The operation of the cogeneration system 1 will be described. In the power generation unit 6, when a timer (not shown) built in the control unit 32 determines that it is a time during which nighttime power can be used, the control unit 32 outputs An instruction to stop the operation is issued to the engine 10 and the system cooperation device 12, and the power generation unit 6 is stopped.
[0025]
When the timer determines that the time is outside the time zone in which nighttime power is available, the control unit 32 instructs the internal combustion engine 10 and the system cooperation device 12 to start operating, and 6 is to be started. During operation, the internal combustion engine 10 operates at the rotational speed with the highest operating efficiency, and drives the generator 11 with the driving force to generate power.
[0026]
When the power generated by the generator 11 becomes sufficient to supply power, the control unit 32 issues an operation start instruction to the system cooperation device 12. In the power system linking device 12, the power from the power system linking device 12 is changed based on the phase of the power line power system detected by the power supply sensor 33 and the direction of the current flowing on the power supply line 34. The power is supplied under the control of the control unit 32 so as to flow to the system side. As a result, the generated power can be supplied to the electric light load or the like.
[0027]
In the heat recovery unit 7, when the operation of the internal combustion engine 10 is started from the control unit 32, the operation of the cooling water pump 15 is started from the control unit 32 at the same time. At this time, the temperature of the cooling water is also low because the internal combustion engine 10 is not warmed. Accordingly, the cooling water flows through a path that circulates through the cooling water pump 15, the internal combustion engine 10, the exhaust heat exchanger 13, and the first three-way valve 18, and performs the warm-up operation of the internal combustion engine 10. Then, when the temperature of the cooling water rises and becomes, for example, around 70 ° C., the flow direction of the first three-way valve 18 is switched, and the cooling water pump 15, the internal combustion engine 10, the exhaust heat exchanger 13, and the first The path circulates through the three-way valve 18, the water heat exchanger 17, and the second three-way valve 19, heat supply to the desiccant air conditioner 3 is started, and air conditioning operation is started. Furthermore, when the temperature of the cooling water rises and becomes, for example, 80 ° C. or more, the flow direction of the second three-way valve 19 is also switched, and the cooling water pump 15, the internal combustion engine 10, the exhaust heat exchanger 13, and the first A route for circulating the three-way valve 18, the water heat exchanger 17, the second three-way valve 19, and the radiator 16, and surplus due to heat supply to the desiccant air conditioner 3 and heat supply to the desiccant air conditioner 3 Is dissipated. At this time, the operation of the heat radiation blower 20 provided near the radiator 16 is also started, and heat radiation from the cooling water flowing through the radiator 16 to the atmosphere is promoted.
[0028]
In the first refrigerant circuit unit 8, when the timer (not shown) in the control unit 32 determines that the time period is during which nighttime power can be used, the power generation unit 6 is stopped. The first compressor 23 is operated by receiving power supply from the power line power supply system, and the refrigerant discharged from the first compressor 23 is supplied to the refrigerator 2 for performing freezing and refrigeration of the food and the like. Circulate. When it is determined by the timer that the time is outside the time zone in which nighttime power is available, the power generation unit 6 is operated, and the power supply line The first compressor 23 is operated by receiving a part of the generated power supplied to the power supply system through the power supply line 34.
[0029]
If the freezing / refrigerating machine 2 performs the freezing / refrigerating preservation of the food or the like as described above, the refrigerant compressed and discharged by the first compressor 23 is discharged from the first four-way valve 25, the first refrigerant. The heat exchanger 26, the first pressure reducing valve 27, the first refrigerant valve 30, the refrigerating refrigerator 2, the first refrigerant valve 31, the first four-way valve 25, the first accumulator 28, and the first compressor 23 The refrigerator 2 is frozen and refrigerated. If the refrigerator / freezer 2 warms food or the like, the first four-way valve is inverted, and the refrigerant compressed and discharged by the first compressor 23 is supplied to the first four-way valve 25. The first refrigerant valve 31, the first refrigerant valve 30, the first pressure reducing valve 27, the first refrigerant heat exchanger 26, the first four-way valve 25, and the first accumulator 28 circulate in a forward path, and the inside of the refrigerator-freezer 2 is heated. Warm up.
[0030]
Thereby, the first refrigerant circuit unit 8 can operate using the power of the nighttime electric power at night, and performs the operation using the generated electric power supplied from the power generation unit 6 during the daytime. As a result, the power consumption of the commercial power supplied from the power line power supply system can be reduced, and the power consumption during the day and night can be leveled.
[0031]
As described above, the food and the like can be economically manufactured by using the cogeneration device 1 as the cogeneration device including the power generation unit 6, the heat recovery unit 7, and the first refrigerant circuit unit 8 in the same housing. In addition to eliminating the need for an installation space for installing an outdoor unit for a refrigerator that freezes and stores the food and the like, the labor for connecting the outdoor unit and the cogeneration unit 1 can be saved. In addition, installation can be performed in a small installation space, and installation workability can be improved.
[0032]
Further, in the first embodiment, the desiccant air conditioner 3 is used to perform air conditioning in the store. However, as described above, the internal combustion engine 10 uses the timer built in the control unit 32 to control the nighttime electric power. If it is determined that the time period is available, an instruction to stop the operation is received from the control unit 32, and supply of hot water as a heat source of the desiccant air conditioner 3 becomes impossible. In stores that are open for hours, air-conditioning operation by the desiccant air conditioner 3 cannot be performed during the time period when nighttime power is available.
[0033]
Therefore, in the second embodiment, the desiccant air conditioner 3 is improved so that the air conditioning operation can be performed in a time zone where nighttime power is available, in which the desiccant air conditioner 3 cannot operate.
[0034]
As shown in FIG. 2, in the second embodiment, the second refrigerant circuit unit 9 is added to the inside of the housing 5 of the cogeneration system 1 of FIG. 1, and an indoor unit 4 for air conditioning in a store is provided. It is.
[0035]
The second refrigerant circuit section 9 is driven by electric power, and causes the second compressor 35 that compresses the refrigerant, the second four-way valve 36 that reverses the circulation direction of the refrigerant, and performs heat exchange between the refrigerant and the atmosphere. A second refrigerant heat exchanger 37, a second pressure reducing valve 38 for depressurizing the refrigerant, a second accumulator 39 for circulating the refrigerant circulating through the indoor unit 4 and separating the refrigerant, and a second accumulator 39. And the second refrigerant valves 40 and 41 connected to the refrigerant pipes are connected by refrigerant pipes. Further, a second refrigerant blower 42 for blowing air to the second refrigerant heat exchanger 37 to promote heat exchange with the atmosphere, and a second capacitor 43 for operating the second compressor 35 are provided. I have.
[0036]
The indoor unit 4 has a built-in indoor heat exchanger 44 connected to the second refrigerant valves 40 and 41 via a refrigerant pipe, and an indoor blower 45 for blowing air to the indoor heat exchanger 44.
[0037]
The power generation unit 6, the heat recovery unit 7, and the first refrigerant circuit unit 8 are the same as those in FIG.
[0038]
When the timer of the control unit 32 determines that the time is in a time zone during which nighttime electric power can be used, the second refrigerant circuit unit 9 operates according to an instruction from the control unit 32. The circulation of the refrigerant in the second refrigerant circuit 9 will be described. In the cooling operation, the refrigerant discharged from the second compressor 35 is supplied to the second four-way valve 36, the second refrigerant heat exchanger 37, and the second pressure reducing valve. 38, the second refrigerant valve 40, the indoor heat exchanger 44, the second refrigerant valve 41, the second four-way valve 36, the second accumulator 39, and the second compressor 35. The refrigerant, which has been inverted and compressed by the second compressor 35, is discharged into the second four-way valve 36, the second refrigerant valve 41, the indoor heat exchanger 44, the second refrigerant valve 40, the second pressure reducing valve. 38, the second refrigerant heat exchanger 37, the second four-way valve 36, and the second accumulator 39 circulate in the normal route to perform air conditioning in the store.
[0039]
Thereby, even if it is determined by the timer of the control unit 32 that the nighttime power is available, the power generation unit 6 is stopped and the heat supply to the desiccant air conditioner 3 is not performed. The air conditioning operation in the store can be performed. The air conditioning operation using the power of the power line power supply system in the second refrigerant circuit unit 9 is performed only in a time zone during which night power can be used. In the daytime, the desiccant air conditioner 3 uses the cogeneration system. It is economical because the air conditioning operation using the exhaust heat from No. 1 is performed.
[0040]
Thus, by providing the second refrigerant circuit unit 9 including the compressor driven by the electric power to the cogeneration system 1 described in the first embodiment, a 24-hour economic air-conditioning operation can be performed. In addition, the combined heat and power supply apparatus that can perform economical freezing and refrigeration of the food, improve the installation workability, and can be installed in a small installation space.
[0041]
In the present embodiment, the desiccant air conditioner 3 is described as a device that recovers and operates the exhaust heat of the internal combustion engine 10. However, when the inside of the store needs to be heated, such as in winter, the desiccant air conditioner 3 is used. A hot water heater or the like may be provided in parallel with the hot water heater, and hot water from the water heat exchanger 17 may be circulated to the hot water heater during the operation of the internal combustion engine 10 in the daytime.
[0042]
In the first embodiment, when it is not necessary to perform freezing and refrigeration of the food or the like, the refrigeration unit 2 connected to the first refrigerant circuit unit 8 is used as an indoor unit for air conditioning, and the desiccant air conditioner 3 is used. Alternatively, air conditioning of a different system may be performed.
[0043]
Further, in the present embodiment, as described above, the first compressor 23 and the second compressor 35 are operated by the first capacitor 24 and the second capacitor 43 by receiving a single-phase 200 V power supply as described above. However, an inverter circuit is provided between the power supply line 34, the first compressor 23, and the second compressor 35 to variably control the capacity of the first compressor 23 and the second compressor 35. It doesn't matter if you let me do it.
[0044]
【The invention's effect】
As described above, the internal combustion engine and the generator driven by the internal combustion engine are provided in the same housing, and the power-driven compression and heat supply is performed in the housing of the combined heat and power supply device. By installing at least one refrigerant circuit equipped with a heat exchanger, it is possible to perform economical freezing and refrigeration or preservation of foods, or to heat, to reduce the installation space, and to improve the installation workability. It becomes possible to be a co-supply device.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a cogeneration system according to the present invention.
FIG. 2 is a configuration diagram showing an improved air-conditioning operation of the cogeneration system shown in FIG. 1 at night.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 cogeneration system 5 housing 6 power generation unit 7 heat recovery unit 8 first refrigerant circuit unit 9 second refrigerant circuit unit 10 internal combustion engine 11 power generator 12 system linking device 23 first compressor 33 power supply sensor 34 power supply line 35 2nd compressor

Claims (2)

エンジンなどの内燃機関と、この内燃機関の駆動力で駆動される発電機と、系統連携させて商用電源への電力供給を行なう系統連携装置とを同一の筐体内に備え、電力供給と、熱供給とを行なう熱電併給装置において、
前記筐体内へ前記商用電源からの電力で駆動される圧縮機を備えた少なくとも1系統の冷媒回路を設けたことを特徴とする熱電併給装置。
An internal combustion engine such as an engine, a generator driven by the driving force of the internal combustion engine, and a system cooperation device for supplying power to a commercial power supply in system cooperation are provided in the same housing. In the combined heat and power supply device that supplies
At least one refrigerant circuit including a compressor driven by electric power from the commercial power supply is provided in the housing.
前記商用電源からの電力で駆動される圧縮機を、前記系統連携装置の出力側と前記商用電源との間に接続したことを特徴とする請求項1に記載の熱電併給装置。The cogeneration system according to claim 1, wherein a compressor driven by electric power from the commercial power supply is connected between an output side of the system cooperation device and the commercial power supply.
JP2002330319A 2002-11-14 2002-11-14 Heat/electric power cogenerating device Pending JP2004162631A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002330319A JP2004162631A (en) 2002-11-14 2002-11-14 Heat/electric power cogenerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002330319A JP2004162631A (en) 2002-11-14 2002-11-14 Heat/electric power cogenerating device

Publications (1)

Publication Number Publication Date
JP2004162631A true JP2004162631A (en) 2004-06-10

Family

ID=32808050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002330319A Pending JP2004162631A (en) 2002-11-14 2002-11-14 Heat/electric power cogenerating device

Country Status (1)

Country Link
JP (1) JP2004162631A (en)

Similar Documents

Publication Publication Date Title
US20060283967A1 (en) Cogeneration system
US20060123823A1 (en) Cogeneration system
US20070012058A1 (en) Cogeneration system
US20070012418A1 (en) Cogeneration system
JPH0219379B2 (en)
KR102537052B1 (en) Thermal management system
EP1744109A2 (en) Cogeneration system
KR20060112844A (en) Cogeneration system
JP4240837B2 (en) Refrigeration equipment
JP2000111198A (en) Composite heat pump device and air conditioning device using the same
KR200339349Y1 (en) Regenerative heat pump system using geothermy
KR100638225B1 (en) Cogeneration system and its control method
JP2004162631A (en) Heat/electric power cogenerating device
JP2004020143A (en) Heat pump equipment using wind force
JP2004293881A (en) Engine driven heat pump device
JPS59225267A (en) Supply system of energy in supermarket and use thereof
JP2003139434A (en) Regenerative air conditioning and hot water supply system
KR100634811B1 (en) Cogeneration system
KR100790829B1 (en) Electric generation air condition system and the Control method for the Same
JP2005037008A (en) Air conditioner
JP3999874B2 (en) Air conditioning system
JP2004324545A (en) Cogeneration device
JP2004156805A (en) Heat pump system
JP3654017B2 (en) Multi-function heat pump system
KR100755323B1 (en) Electric generation air condition system