JP2004159379A - Charging device - Google Patents

Charging device Download PDF

Info

Publication number
JP2004159379A
JP2004159379A JP2002319949A JP2002319949A JP2004159379A JP 2004159379 A JP2004159379 A JP 2004159379A JP 2002319949 A JP2002319949 A JP 2002319949A JP 2002319949 A JP2002319949 A JP 2002319949A JP 2004159379 A JP2004159379 A JP 2004159379A
Authority
JP
Japan
Prior art keywords
battery temperature
charging
battery
charging current
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002319949A
Other languages
Japanese (ja)
Other versions
JP3951297B2 (en
JP2004159379A5 (en
Inventor
Takahisa Aradate
卓央 荒舘
Nobuhiro Takano
信宏 高野
Toshio Mizoguchi
利夫 溝口
Eiji Nakayama
栄二 中山
Kazuhiko Funabashi
一彦 船橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koki Holdings Co Ltd
Original Assignee
Hitachi Koki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Koki Co Ltd filed Critical Hitachi Koki Co Ltd
Priority to JP2002319949A priority Critical patent/JP3951297B2/en
Publication of JP2004159379A publication Critical patent/JP2004159379A/en
Publication of JP2004159379A5 publication Critical patent/JP2004159379A5/ja
Application granted granted Critical
Publication of JP3951297B2 publication Critical patent/JP3951297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To shorten the charging time of a battery and lengthen its cycle life by selecting an appropriate charging current corresponding to the cooling of a battery pack with a cooling fan. <P>SOLUTION: When a battery temperature gradient is smaller than a first predetermined value in which a battery temperature decreases and which may be regarded as having a cooling effect after a predetermined time has passed since charging start, this charging device increases the charging current. When the battery temperature gradient is larger than the first predetermined value and is a second predetermined value or more in which the battery temperature increases and which may not be regarded as having the cooling effect, the charging device decreases the charging current. When the battery temperature gradient exists between the first predetermined value and the second predetermined value, in other words, a variation in the battery temperature is small, the charging current value is taken as appropriate for the battery life of the battery pack, thus preventing the charging current from being switched. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明はニッケルカドミウム電池やニッケル水素電池等の2次電池を充電する充電装置に関するものである。
【0002】
【従来の技術】
コードレス工具等の電源に用いられているニッケルカドミニウム電池やニッケル水素電池等を充電する時、大きな充電電流で充電すると短時間で充電できるが、充電時の電池の発熱も大きくなり、電池のサイクル寿命が短くなるため、電池の発熱を抑制するように小さい充電電流で長時間かけて充電する充電装置が提案されている。
【0003】
一方、充電装置に設けられた冷却ファンにより電池パックを冷却しながら充電を行い、充電時の電池の発熱を抑制して大きな充電電流で短時間で充電する充電装置も提案されている。
【0004】
上記2つの充電装置は電池パックが強制冷却に対応できるか否か、すなわち冷却ファンからの送風に対して電池パックが風穴等の構造を設けているか否かによってその充電方式が異なっている。
【0005】
このように冷却対応電池と冷却非対応電池とでは充電方式が異なることを鑑みて、充電時開始時の電池温度勾配が所定値以上であるか以下であるかを判断することにより、充電装置に設置された冷却ファンによる電池パックへの送風による冷却効果の有無を判断して、その結果に応じて、冷却効果が有る時は平均充電電流を大きくし、無い時は平均充電電流を小さくして充電する充電方法が提案されている(例えば特許文献1参照)。
【0006】
【特許文献1】
特開2000−312440号公報(請求項1)
【0007】
【発明が解決しようとする課題】
しかしながら、かかる充電装置においては、冷却効果の有無により電流を選択するという二者択一的な充電制御となってしまい、例えば、冷却効果が有ると判別する場合と無いと判別する場合の中間的な冷却の具合いに対しては冷却の具合を最大限に活かした充電制御ができるとは言い難い。
【0008】
本発明の目的は、上記した従来技術の欠点をなくし、冷却ファンによる電池の冷却の程度によって、適切な充電電流を選択し、充電時間の短縮及び電池のサイクル寿命を長くすることである。
【0009】
【課題を解決するための手段】
上記目的は、充電電流を制御する制御手段と、電池パックを冷却する冷却ファンと、電池温度を検出する電池温度検出手段と、電池温度検出手段の出力に基づいて電池温度を記憶する電池温度記憶手段と、電池温度検出手段及び電池温度記憶手段の出力に基づいて電池温度勾配を演算する電池温度勾配演算手段とを備え、充電開始から所定時間経過した後の電池温度勾配が、電池温度が下降し冷却効果があるとみなせる第一の所定値より小さい場合は充電電流を大きくし、電池温度が上昇し冷却効果が有るとみなせない第一の所定値より大きい第二の所定値以上である場合は充電電流を小さくし、第一の所定値と第二の所定値の間にある場合すなわち電池温度の変化が少ない時は、電流値が被充電電池パックの電池寿命にとって適正であるとし、充電電流を切換えないことを技術的特徴とする。
【0010】
【発明の実施の形態】
図1は本発明の一実施形態を示す回路図である。1は交流電源、2は電池パックであり、複数の電池セルを直列接続した電池パック2aと、電池パック2aに接触または近接して電池温度を検出する例えばサーミスタ等からなる感温素子2bが装備されている。3は電池パック2に流れる充電電流を検出する電流検出手段、4は充電の開始及び停止を制御する信号を伝達する充電制御信号伝達手段、5は充電電流の信号をPWM制御IC23に帰還する充電電流信号伝達手段である。充電制御伝達信号手段4及び充電電流信号伝達手段5はホトカプラ等からなる。6は電池パック2を冷却する冷却ファン、7は冷却ファン6を駆動する駆動手段であり、トランジスタ7a、抵抗7b、7cから構成され、マイコン50の出力ポート56bの出力に応じて冷却ファン6の駆動を制御する。10は全波整流回路11と平滑用コンデンサ12からなる整流平滑回路、20は高周波トランス21、MOSFET22とPWM制御IC23からなるスイッチング回路である。PWM制御IC23はMOSFET22の駆動パルス幅を変えて整流平滑回路30の出力電圧を調整するスイッチング電源ICである。30はダイオード31、32、チョークコイル33、平滑用コンデンサ34からなる整流平滑回路、40は抵抗41、42からなる電池電圧検出手段で、電池パック2の端子電圧を分圧する。50は演算手段(CPU)51、ROM52、RAM53、タイマ54、A/Dコンバータ55、出力ポート56a、56b、リセット入力ポート57からなるマイコンである。CPU51は、最新の電池温度とRAM53に記憶した所定サンプリング時間前にサンプリングした電池温度とから電池温度勾配の演算等を行う。60は演算増幅器61、62、抵抗63〜66からなる充電電流制御手段、70は電源トランス71、全波整流回路72、3端子レギュレータ73、74、平滑コンデンサ75〜77、リセットIC78からなる定電圧電源で、冷却ファン6、マイコン50、充電電流制御手段60等の電源となる。リセットIC78はマイコン50を初期状態にするためにリセット入力ポート57にリセット信号を出力する。80は充電電流を設定する充電電流設定手段であって、前記出力ポート56aからの信号に対応して演算増幅器62の反転入力端に印加する電圧値を変えるものである。90は抵抗91、92からなる電池温度検出手段であり、5Vの定電圧源と接続された抵抗91と、抵抗92と電池パック2内の感温素子2bとによって分圧された電圧を前記マイコン50のA/Dコンバータ55に入力し、電池温度を検出し充電を制御する構成となっている。
【0011】
電源を投入するとマイコン50は出力ポート56a、56bをイニシャルセットし、電池パック2の接続待機状態となる(ステップ201)。電池パック2を接続すると、マイコン50は電池接続を電池電圧検出手段40からの信号により判別する。次いで、出力ポート56bより駆動手段7を介して冷却ファン6を作動し(ステップ202)、出力ポート56aより充電制御信号伝達手段4を介しPWM制御IC23に充電開始信号を伝達すると共に出力ポート56aより充電電流設定手段80を介して充電電流設定基準電圧値Vi0を演算増幅器62に印加し、充電電流I0で充電を開始する(ステップ203)。充電開始と同時に電池パック2に流れる充電電流を電流検出手段3により検出し、この充電電流に対応する電圧と充電電流設定基準値Vi0との差を充電電流制御手段60より信号伝達手段5を介してPWM制御IC23に帰還をかける。すなわち、充電電流が大きい場合はパルス幅を狭めたパルスを、逆の場合パルス幅を広げたパルスを高周波トランス21に与え整流平滑回路30で直流に平滑し、充電電流を一定に保つ。すなわち、電流検出手段3、充電電流制御手段60、信号伝達手段5、スイッチング回路20、整流平滑回路30を介して充電電流を所定電流値I0となるように制御する。
【0012】
次いでRAM53における記憶データである36サンプリング前までの電池温度Ti−36、Ti−35、……、Ti−01と,冷却効果判断終了フラグをイニシャルリセットし(ステップ204)、電池温度サンプリングタイマをスタートさせる(ステップ205)。サンプリングタイマ時間が△tを経過したら(ステップ206)、再度サンプリングタイマをスタートさせる(ステップ207)。本実施形態において、△tは5秒とする。
【0013】
次いで、感温素子2aからの電圧を電池温度検出手段90の抵抗91,92で分圧し、その分圧値をA/Dコンバータ55でA/D変換し、電池温度Tinとして取り込む(ステップ208)。そしてCPU51にてTinと36サンプリング前のデータTi−36との差から最新の電池温度勾配としてのdT/dt(in)=Tin−Ti−36を求め(ステップ209)、Ti−36が∞か否かの判別を行う(ステップ210)。ステップ210において、Ti−36が∞でない場合は、所定時間(この場合は、電池温度を36サンプリング分サンプリングするだけの時間)が経過したので、冷却判断終了フラグが1であるか否かの判別を行う(ステップ211)。ステップ210において、T−36が∞である場合は、所定時間(この場合は、電池温度を36サンプリング分サンプリングするだけの時間すなわち3分)が経過していないので、ステップ217において満充電の検出を行う。ステップ211において、冷却判断終了フラグが1でない場合は、現在の電池温度勾配dT/dt(in)が所定値P未満であるか否かを判別する(ステップ212)。ステップ211において、冷却判断終了フラグが1の場合は、冷却効果の判別に基づく充電電流の切換えが終了しているので、ステップ217において満充電の検出を行う。ステップ212において、現在の電池温度勾配dT/dt(in)が所定値P未満である場合は、冷却効果があると判別し、充電開始時の充電電流I0を充電電流I1(I1>I0)と大きくする(ステップ213)。ステップ212において、現在の電池温度勾配dT/dt(in)が所定値P以上である場合は、現在の電池温度勾配dT/dt(in)が所定値Q(>P)より大きいか否かの判別を行う(ステップ214)。ステップ214において、現在の電池温度勾配dT/dt(in)が所定値Qより大きい場合は、冷却効果が無いと判別し、充電開始時の充電電流I0を充電電流I2(I0>I2)と小さくする(ステップ215)。ステップ214において、現在の電池温度勾配dT/dt(in)が所定値Q以下である場合は、電池温度の変化が少なく、充電電流値が電池パック2の電池寿命にとって適正であるとし、充電電流を切換えない。
【0014】
次に、電池温度勾配による充電電流の切換えが終了した時点で、冷却判断終了フラグを1にする(ステップ216)。その後、満充電の検出を行う(ステップ217)。ステップ217の満充電判別は、周知の如く種々の検出方法があるが,例えば,電池電圧検出手段40の出力に基づいて充電末期のピーク電圧から所定量降下したこと検出して充電を制御する−ΔV検出や,電池電圧がピークに達する前に充電を停止することにより過充電を低減し,電池のサイクル寿命を向上させることを目的とし,電池電圧の時間による2階微分値が負になるのを検出して充電を制御する2階微分検出法,電池温度検出手段90の出力に基づいて充電開始からの電池の温度上昇値が所定の温度上昇値以上になるのを検出して充電を制御するΔT検出法,特開昭62−193518号,特開平2−246739号,実開平3−34638号公報等に記載されている充電時における所定時間当りの電池温度上昇率(温度勾配)が所定値以上になるのを検出して充電を制御するdT/dt検出法等の一つないし複数の満充電検出法を用いて行えばよい。
【0015】
ステップ217において,電池パック2が満充電なら,マイコン50は出力ポート56bより充電制御信号伝達手段4を介して充電停止信号をPWM制御IC23に伝達し,充電を停止する(ステップ219)。次いで電池パック2が取り出されるのを判別する(ステップ220)。電池パック2の取り出しが判別したら、出力ポート56bより駆動手段7を介して冷却ファン6を停止し(ステップ221)、ステップ201に戻り次の充電の待機状態となる。
【0016】
ステップ217において、電池パック2が満充電でないと判別した場合は記憶手段53における記憶データである36サンプリング前までの電池温度Ti−36、Ti−35、……、Ti−01を,Ti−35→Ti−36、Ti−34→Ti−35、………、Tin→Ti−01にそれぞれの記憶データを1サンプリング前の記憶エリアに移し替え(ステップ218)、再度ステップ206からの処理を行う。
【0017】
上記実施形態においては、冷却効果を判別するまでの所定時間をマイコン50が電池温度を36サンプリング分サンプリングするだけの時間としたが、これに限るものではなく、例えば充電開始から3分後の電池温度勾配から冷却効果を判別してもよい。
【0018】
【発明の効果】
以上のように本発明によれば、冷却ファンによる電池の冷却の程度によって、適切な充電電流を選択し、充電時間の短縮及び電池のサイクル寿命を長くすることができる。
【図面の簡単な説明】
【図1】本発明充電装置の一実施形態を示す回路図。
【図2】本発明充電装置の動作説明用フローチャートの一例
【符号の説明】
2は電池パック、2aは電池パック、6は冷却ファン、50は演算手段51、記憶手段53、A/Dコンバータ55等の機能を有する制御手段であるマイコン、90は電池温度検出手段である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a charging device for charging a secondary battery such as a nickel cadmium battery or a nickel hydride battery.
[0002]
[Prior art]
When charging nickel cadmium batteries or nickel-metal hydride batteries used as power supplies for cordless tools, etc., charging with a large charging current can charge the battery in a short time, but the battery generates more heat during charging, and the cycle life of the battery Therefore, a charging device that charges over a long time with a small charging current so as to suppress heat generation of a battery has been proposed.
[0003]
On the other hand, there has also been proposed a charging device that performs charging while cooling a battery pack by a cooling fan provided in the charging device, suppresses heat generation of the battery during charging, and charges the battery pack with a large charging current in a short time.
[0004]
The charging methods of the above two charging devices differ depending on whether or not the battery pack can cope with forced cooling, that is, whether or not the battery pack has a structure such as an air hole for blowing air from a cooling fan.
[0005]
In consideration of the fact that the charging method is different between the cooling-capable battery and the non-cooling-compatible battery in this way, by determining whether the battery temperature gradient at the start of charging is equal to or greater than a predetermined value, the charging device Judgment of the presence or absence of the cooling effect by the air blow to the battery pack by the installed cooling fan, and according to the result, increase the average charging current when there is a cooling effect and decrease the average charging current when there is no cooling effect. A charging method for charging has been proposed (for example, see Patent Document 1).
[0006]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2000-31440 (Claim 1)
[0007]
[Problems to be solved by the invention]
However, in such a charging device, an alternative charging control of selecting a current depending on the presence or absence of a cooling effect is performed, and for example, an intermediate between a case where it is determined that there is a cooling effect and a case where it is determined that it is not. It is difficult to say that charging control that makes the most of the degree of cooling can be performed with respect to the degree of cooling.
[0008]
SUMMARY OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned disadvantages of the prior art and to select an appropriate charging current depending on the degree of cooling of a battery by a cooling fan, thereby shortening the charging time and extending the cycle life of the battery.
[0009]
[Means for Solving the Problems]
The object is to provide a control means for controlling a charging current, a cooling fan for cooling a battery pack, a battery temperature detecting means for detecting a battery temperature, and a battery temperature storage for storing a battery temperature based on an output of the battery temperature detecting means. Means, and battery temperature gradient calculating means for calculating a battery temperature gradient based on the outputs of the battery temperature detecting means and the battery temperature storing means. If the cooling effect is smaller than the first predetermined value, the charging current is increased, and the battery temperature rises and is equal to or greater than the second predetermined value larger than the first predetermined value, which is not considered to have the cooling effect. Reduces the charging current, and when it is between the first predetermined value and the second predetermined value, that is, when the change in the battery temperature is small, it is determined that the current value is appropriate for the battery life of the battery pack to be charged. , And technical features that no switching the charging current.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 is a circuit diagram showing one embodiment of the present invention. 1 is an AC power supply, 2 is a battery pack, and is equipped with a battery pack 2a in which a plurality of battery cells are connected in series, and a temperature-sensitive element 2b made of, for example, a thermistor or the like that detects or detects a battery temperature in contact with or close to the battery pack 2a. Have been. Reference numeral 3 denotes current detecting means for detecting a charging current flowing through the battery pack 2, 4 denotes a charging control signal transmitting means for transmitting a signal for controlling start and stop of charging, and 5 denotes charging for returning a signal of the charging current to the PWM control IC 23. It is a current signal transmission means. The charging control transmission signal means 4 and the charging current signal transmission means 5 comprise a photocoupler or the like. Reference numeral 6 denotes a cooling fan for cooling the battery pack 2, and reference numeral 7 denotes driving means for driving the cooling fan 6. The driving means 6 includes transistors 7a, resistors 7b, and 7c. Control the drive. Reference numeral 10 denotes a rectifying / smoothing circuit including a full-wave rectifying circuit 11 and a smoothing capacitor 12, and reference numeral 20 denotes a switching circuit including a high-frequency transformer 21, a MOSFET 22, and a PWM control IC 23. The PWM control IC 23 is a switching power supply IC that adjusts the output voltage of the rectifying and smoothing circuit 30 by changing the drive pulse width of the MOSFET 22. Reference numeral 30 denotes a rectifying / smoothing circuit including diodes 31 and 32, a choke coil 33, and a smoothing capacitor 34. Reference numeral 40 denotes a battery voltage detecting unit including resistors 41 and 42, which divides the terminal voltage of the battery pack 2. Reference numeral 50 denotes a microcomputer including an arithmetic unit (CPU) 51, a ROM 52, a RAM 53, a timer 54, an A / D converter 55, output ports 56a and 56b, and a reset input port 57. The CPU 51 calculates a battery temperature gradient from the latest battery temperature and the battery temperature sampled before the predetermined sampling time stored in the RAM 53. Reference numeral 60 denotes a charging current control unit including operational amplifiers 61 and 62 and resistors 63 to 66. Reference numeral 70 denotes a constant voltage including a power transformer 71, a full-wave rectifier circuit 72, three-terminal regulators 73 and 74, smoothing capacitors 75 to 77, and a reset IC 78. The power supply serves as a power supply for the cooling fan 6, the microcomputer 50, the charging current control means 60, and the like. The reset IC 78 outputs a reset signal to a reset input port 57 to bring the microcomputer 50 into an initial state. Reference numeral 80 denotes charging current setting means for setting a charging current, which changes a voltage value applied to the inverting input terminal of the operational amplifier 62 in accordance with a signal from the output port 56a. Reference numeral 90 denotes a battery temperature detecting means including resistors 91 and 92. The microcomputer 90 converts the voltage divided by the resistor 91 connected to a constant voltage source of 5V, the resistor 92 and the temperature sensing element 2b in the battery pack 2 into the microcomputer. The A / D converter 50 is configured to detect the battery temperature and control charging.
[0011]
When the power is turned on, the microcomputer 50 initially sets the output ports 56a and 56b and enters a connection standby state of the battery pack 2 (step 201). When the battery pack 2 is connected, the microcomputer 50 determines the battery connection based on a signal from the battery voltage detecting means 40. Next, the cooling fan 6 is operated from the output port 56b via the drive means 7 (step 202), and a charge start signal is transmitted from the output port 56a to the PWM control IC 23 via the charge control signal transmission means 4 and the output port 56a. The charging current setting reference voltage value Vi0 is applied to the operational amplifier 62 via the charging current setting means 80, and charging is started with the charging current I0 (step 203). The charging current flowing to the battery pack 2 is detected by the current detecting means 3 simultaneously with the start of charging, and the difference between the voltage corresponding to this charging current and the charging current setting reference value Vi0 is transmitted from the charging current control means 60 via the signal transmission means 5. To the PWM control IC 23. That is, when the charging current is large, a pulse with a narrowed pulse width is supplied to the high frequency transformer 21 when the pulse width is widened, and the pulse is widened to the high frequency transformer 21 to be smoothed to a direct current by the rectifying and smoothing circuit 30 to keep the charging current constant. That is, the charging current is controlled to the predetermined current value I0 via the current detecting means 3, the charging current control means 60, the signal transmitting means 5, the switching circuit 20, and the rectifying / smoothing circuit 30.
[0012]
Next, the battery temperatures Ti-36, Ti-35,..., Ti-01 up to 36 samples before the storage data in the RAM 53 and the cooling effect determination end flag are initially reset (step 204), and the battery temperature sampling timer is started. (Step 205). When the sampling timer time has exceeded Δt (step 206), the sampling timer is started again (step 207). In the present embodiment, Δt is 5 seconds.
[0013]
Next, the voltage from the temperature sensing element 2a is divided by the resistors 91 and 92 of the battery temperature detecting means 90, and the divided voltage value is A / D-converted by the A / D converter 55 and taken in as the battery temperature Tin (step 208). . Then, the CPU 51 calculates dT / dt (in) = Tin-Ti-36 as the latest battery temperature gradient from the difference between Tin and the data Ti-36 before sampling 36 (step 209). It is determined whether or not it is (step 210). If Ti-36 is not ∞ in step 210, a predetermined time (in this case, time for sampling the battery temperature for 36 samplings) has elapsed, so it is determined whether the cooling determination end flag is 1 or not. Is performed (step 211). If T-36 is ∞ in step 210, the predetermined time (in this case, the time required to sample the battery temperature for 36 samplings, ie, 3 minutes) has not elapsed, and in step 217, the detection of full charge is performed. I do. If the cooling determination end flag is not 1 in step 211, it is determined whether or not the current battery temperature gradient dT / dt (in) is less than a predetermined value P (step 212). If the cooling determination end flag is 1 in step 211, the switching of the charging current based on the determination of the cooling effect has been completed, and therefore, in step 217, full charge is detected. In step 212, when the current battery temperature gradient dT / dt (in) is less than the predetermined value P, it is determined that there is a cooling effect, and the charging current I0 at the start of charging is set to the charging current I1 (I1> I0). Increase it (step 213). In step 212, if the current battery temperature gradient dT / dt (in) is equal to or larger than the predetermined value P, it is determined whether the current battery temperature gradient dT / dt (in) is larger than a predetermined value Q (> P). A determination is made (step 214). In step 214, if the current battery temperature gradient dT / dt (in) is larger than the predetermined value Q, it is determined that there is no cooling effect, and the charging current I0 at the start of charging is reduced to the charging current I2 (I0> I2). (Step 215). In step 214, when the current battery temperature gradient dT / dt (in) is equal to or less than the predetermined value Q, it is determined that the change in the battery temperature is small, the charging current value is appropriate for the battery life of the battery pack 2, and the charging current is determined. Does not switch.
[0014]
Next, when the switching of the charging current due to the battery temperature gradient ends, the cooling determination end flag is set to 1 (step 216). Thereafter, full charge is detected (step 217). As is well known, there are various detection methods for determining the full charge in step 217. For example, based on the output of the battery voltage detecting means 40, the charging is controlled by detecting that a predetermined amount has dropped from the peak voltage at the end of charging. The purpose of ΔV detection and to stop overcharging before the battery voltage reaches a peak is to reduce overcharge and improve the cycle life of the battery. And a second-order differential detection method for controlling charging by detecting the battery temperature, and controlling the charging by detecting that the temperature rise value of the battery from the start of charging becomes equal to or more than a predetermined temperature rise value based on the output of the battery temperature detecting means 90. The ΔT detection method described in Japanese Patent Application Laid-Open Nos. Sho 62-193518, Hei 2-24639, and Hei 3-34638 discloses a battery temperature rise rate (temperature gradient) per predetermined time during charging. It may be performed using one or a plurality of full charge detection methods such as a dT / dt detection method of controlling charging by detecting that the charge becomes equal to or more than a predetermined value.
[0015]
If the battery pack 2 is fully charged in step 217, the microcomputer 50 transmits a charge stop signal to the PWM control IC 23 from the output port 56b via the charge control signal transmitting means 4, and stops charging (step 219). Next, it is determined that the battery pack 2 is taken out (step 220). When the removal of the battery pack 2 is determined, the cooling fan 6 is stopped from the output port 56b via the driving means 7 (Step 221), and the process returns to Step 201 to be in a standby state for the next charging.
[0016]
If it is determined in step 217 that the battery pack 2 is not fully charged, the battery temperatures Ti-36, Ti-35,... → Ti-36, Ti-34 → Ti-35,..., Tin → Ti-01, transfer the respective storage data to the storage area one sample before (step 218), and perform the processing from step 206 again. .
[0017]
In the above-described embodiment, the predetermined time until the cooling effect is determined is the time for the microcomputer 50 to sample the battery temperature for 36 samplings. However, the present invention is not limited to this. For example, the battery may be three minutes after the start of charging. The cooling effect may be determined from the temperature gradient.
[0018]
【The invention's effect】
As described above, according to the present invention, it is possible to select an appropriate charging current depending on the degree of cooling of the battery by the cooling fan, thereby shortening the charging time and extending the cycle life of the battery.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the charging device of the present invention.
FIG. 2 is an example of a flowchart for explaining the operation of the charging device of the present invention.
Reference numeral 2 denotes a battery pack, 2a denotes a battery pack, 6 denotes a cooling fan, 50 denotes a microcomputer which is a control means having functions of an arithmetic means 51, a storage means 53, an A / D converter 55 and the like, and 90 denotes a battery temperature detecting means.

Claims (1)

充電電流を制御する制御手段と、電池パックを冷却する冷却ファンと、電池温度を検出する電池温度検出手段と、電池温度検出手段により検出された電池温度を記憶する電池温度記憶手段と、電池温度検出手段及び電池温度記憶手段の出力に基づいて電池温度勾配を演算する電池温度勾配演算手段とを備えた充電装置であって、
充電開始から所定時間経過した後の電池温度勾配が、電池温度が下降し冷却効果があるとみなせる第一の所定値より小さい場合は充電電流を大きくし、電池温度が上昇し冷却効果が有るとみなせない第一の所定値より大きい第二の所定値以上である場合は充電電流を小さくし、第一の所定値と第二の所定値の間にある場合すなわち電池温度の変化が少ない時は充電電流を切換えないことを特徴とする充電装置。
Control means for controlling the charging current; a cooling fan for cooling the battery pack; battery temperature detecting means for detecting the battery temperature; battery temperature storing means for storing the battery temperature detected by the battery temperature detecting means; A battery temperature gradient calculating means for calculating a battery temperature gradient based on the output of the detecting means and the battery temperature storing means,
If the battery temperature gradient after a lapse of a predetermined time from the start of charging is smaller than a first predetermined value that can be regarded as having a cooling effect when the battery temperature decreases, the charging current is increased, and when the battery temperature increases and a cooling effect is obtained. When the charge current is smaller than the second predetermined value that is larger than the first predetermined value that cannot be considered, the charging current is reduced, and when it is between the first predetermined value and the second predetermined value, that is, when the change in the battery temperature is small, A charging device characterized in that the charging current is not switched.
JP2002319949A 2002-11-01 2002-11-01 Charger Expired - Fee Related JP3951297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319949A JP3951297B2 (en) 2002-11-01 2002-11-01 Charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319949A JP3951297B2 (en) 2002-11-01 2002-11-01 Charger

Publications (3)

Publication Number Publication Date
JP2004159379A true JP2004159379A (en) 2004-06-03
JP2004159379A5 JP2004159379A5 (en) 2005-10-06
JP3951297B2 JP3951297B2 (en) 2007-08-01

Family

ID=32801029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319949A Expired - Fee Related JP3951297B2 (en) 2002-11-01 2002-11-01 Charger

Country Status (1)

Country Link
JP (1) JP3951297B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073406A (en) * 2004-09-03 2006-03-16 Sanyo Electric Co Ltd Charging method
US8148950B2 (en) * 2007-12-12 2012-04-03 Sanyo Electric Co., Ltd. Charging method
WO2012059551A1 (en) * 2010-11-05 2012-05-10 Renault S.A.S. Method for charging a battery for supplying power to a drive motor of a motor vehicle
WO2015075914A1 (en) * 2013-11-25 2015-05-28 Hitachi Koki Co., Ltd. Charging device
CN107863576A (en) * 2017-10-10 2018-03-30 南京金龙新能源汽车研究院有限公司 A kind of lithium ion battery heat management control method
CN114069771A (en) * 2021-10-27 2022-02-18 北京小米移动软件有限公司 Charging method, charging device, and storage medium
CN114122556A (en) * 2021-10-18 2022-03-01 三一重机有限公司 Battery cooling method, system and electric working machine

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073406A (en) * 2004-09-03 2006-03-16 Sanyo Electric Co Ltd Charging method
JP4716695B2 (en) * 2004-09-03 2011-07-06 三洋電機株式会社 Charging method
US8148950B2 (en) * 2007-12-12 2012-04-03 Sanyo Electric Co., Ltd. Charging method
WO2012059551A1 (en) * 2010-11-05 2012-05-10 Renault S.A.S. Method for charging a battery for supplying power to a drive motor of a motor vehicle
US9174544B2 (en) 2010-11-05 2015-11-03 Renault S.A.S. Method for charging a battery for supplying power to a drive motor of a motor vehicle
WO2015075914A1 (en) * 2013-11-25 2015-05-28 Hitachi Koki Co., Ltd. Charging device
CN107863576A (en) * 2017-10-10 2018-03-30 南京金龙新能源汽车研究院有限公司 A kind of lithium ion battery heat management control method
CN114122556A (en) * 2021-10-18 2022-03-01 三一重机有限公司 Battery cooling method, system and electric working machine
CN114122556B (en) * 2021-10-18 2024-02-23 三一重机有限公司 Battery cooling method, system and electric working machine
CN114069771A (en) * 2021-10-27 2022-02-18 北京小米移动软件有限公司 Charging method, charging device, and storage medium
CN114069771B (en) * 2021-10-27 2024-03-12 北京小米移动软件有限公司 Charging method, charging device, and storage medium

Also Published As

Publication number Publication date
JP3951297B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
US6949914B2 (en) Charging apparatus
US7592780B2 (en) Battery charging apparatus
US4712055A (en) Battery charger circuit
US7800343B2 (en) Battery charger with battery life judging function
JP4148183B2 (en) Charger
JP3637758B2 (en) Battery charging method
JPS62178124A (en) Method and apparatus for charging recharging type battery
JP3772665B2 (en) Battery charger
JP3951297B2 (en) Charger
JP2011078246A (en) Charger and charging system
JP2004171796A (en) Charging device
JP4345290B2 (en) Charger
JP4817054B2 (en) Charger
JP2001169473A (en) Method of discriminating full charging
JP3656379B2 (en) Battery charger
JP3951296B2 (en) Charger
JP4029591B2 (en) Charging method
JP4182543B2 (en) Charger
JP3945194B2 (en) Charger
JPH11185825A (en) Charging method of battery
JP2004135460A (en) Charger
JP3635900B2 (en) Battery charger
JP2000175371A (en) Battery charger
JPH0865910A (en) Battery charger
JP3484867B2 (en) Battery charger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050513

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070415

R150 Certificate of patent or registration of utility model

Ref document number: 3951297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150511

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees