JP2004158598A - Mim capacitor - Google Patents

Mim capacitor Download PDF

Info

Publication number
JP2004158598A
JP2004158598A JP2002322244A JP2002322244A JP2004158598A JP 2004158598 A JP2004158598 A JP 2004158598A JP 2002322244 A JP2002322244 A JP 2002322244A JP 2002322244 A JP2002322244 A JP 2002322244A JP 2004158598 A JP2004158598 A JP 2004158598A
Authority
JP
Japan
Prior art keywords
electrode
capacitor
capacitors
capacitance
mim
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002322244A
Other languages
Japanese (ja)
Other versions
JP4013734B2 (en
Inventor
Takuo Hino
拓生 日野
Yoshihisa Minami
善久 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002322244A priority Critical patent/JP4013734B2/en
Priority to TW092124060A priority patent/TW200403872A/en
Priority to PCT/JP2003/011132 priority patent/WO2004021439A1/en
Priority to US10/501,865 priority patent/US7030443B2/en
Priority to CNB038063603A priority patent/CN1300849C/en
Priority to EP03791437A priority patent/EP1533844A1/en
Publication of JP2004158598A publication Critical patent/JP2004158598A/en
Application granted granted Critical
Publication of JP4013734B2 publication Critical patent/JP4013734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem of characteristics degradation in a circuit comprising a conventional MIM capacitor due to a parasitic element between a metal layer and the substrate. <P>SOLUTION: The capacitor having a laminated metal-insulator-metal structure in a semiconductor device has a first insulating layer between a first metal layer and a second metal layer, and has a third metal layer between the substrate and the second metal layer. Further, a second insulating layer is provided between the second metal layer and the third metal layer, and the third metal layer is connected to the ground potential. The capacitance Q is adjusted by reducing the area of the third metal layer inserted between the second metal layer and making the substrate smaller than that of a metal layer constituting the MIM capacitor. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は半導体集積回路において結合回路に使用する容量の構造に関するものである。
【0002】
【従来の技術】
従来の半導体で構成されているMIM容量の従来の構造図を図5、図6に示す。
【0003】
図5において第1の電極1と第2の電極2と絶縁体3を備え、前記第1、第2の電極が前記絶縁体3を挟んだ構成を有しており、半導体基板5上に絶縁体4で分離されて形成されている(例えば特許文献1参照)。
【0004】
図6においては第1の電極1と第2の電極2と絶縁体3を備え、前記第1、第2の電極により前記絶縁体3を挟んだ構成を有しており、更に第2の電極2と半導体基板5の間には絶縁体4と絶縁体9で分離され、回路接地に接地された第3の電極8を設ける事で、前記第2の電極と半導体基板5の間を電気シールドする構成をしている。
【0005】
従来構造における図5、図6に示したMIM容量の等価回路をそれぞれ図9、図10に示す。
【0006】
図9において容量Cが図5における第1の電極と第2の電極の電極間容量であり、容量Csと抵抗Rsは第2の電極の半導体基板5に対する寄生素子である。
【0007】
図10において容量Cが図6における第1の電極と第2の電極の電極間容量であり、容量C2はシールド電極となる第3の電極と前記第2の電極間の容量であり、容量Csと抵抗Rsは前記第3の電極の半導体基板5に対する寄生素子であり、抵抗RIは前記第3の電極を回路接地に接続するために使用する配線の配線抵抗である。
【0008】
【特許文献1】
特開平7−326712号公報(第1頁、第1図)
【0009】
【発明が解決しようとする課題】
最近の通信分野ではGHz帯の高周波で動作する回路の利用が増え、MIM容量の高性能化が必要となってきている。例えば入出力回路等の整合回路で使用した場合、寄生素子の抵抗成分による損失が問題となるし、電圧制御発振器等で使用した場合は寄生素子の抵抗成分がQ値の劣化を招き発振器の性能を悪化させる。また、信号線路等に使用した場合も寄生素子の時定数の変動が伝送信号の遅延量を変動させシステムを不安定にするなどの問題が発生する。
【0010】
図6のように図5の第2の電極と半導体基板間に接地された第3の電極を付け加える構成により、第2の電極を半導体基板からシールドし第2の電極に付加される寄生容量を損失抵抗が無く、ばらつきの少ない容量に変換することができる。このことにより図10の容量Cの性能を向上させることができるが、図10の等価回路の容量C2を接地する配線の抵抗成分RIのために完全な対策とはなりえない。
【0011】
これらの、寄生素子の影響を取り除くために、本発明はMIM容量を使用する上で、これらの寄生容量の影響による回路性能の劣化を防ぐための技術を提供するものである。
【0012】
【課題を解決するための手段】
MIM容量を使用する上で、対基板寄生素子による損失等を削減するために、特に差動線路で使用する場合、2対の容量の半導体基板に近い側の電極と半導体基板間に前記2対の両方の容量から、寄生容量で結合状態にあり、更に前記2対の両方の基板側電極からの対基板への大半の電束を阻止できるぐらいの面積を持ち他の回路へは非接触の別の金属電極を設け、この非接触の電極が前記2対の容量に印加される同振幅、逆位相の信号からの、同量、逆位相の電荷の充放電を受けることでAC接地状態になり、このAC接地状態により非接触電極からの対基板寄生素子を無視する事ができ、結果として差動線路に挿入される2対の容量が対基板寄生素子の影響を受けないように構成する。
【0013】
【発明の実施の形態】
以下、本発明について、図面を参照しながら説明する。
【0014】
図1に本発明の第1の実施形態を示す。図1において1は第1の容量の第1の電極、2は前記第1の容量の第2の電極、3,4,9は絶縁層、5は半導体基板、6は第2の容量の第1の電極、7は前記第2の容量の第2の電極、8は前記第1、第2の容量の両方の第2の電極面に対して同時に面対向する様に前記第1、第2の容量の両方の第2の電極と前記半導体基板5の間に設けられる第3の電極である。
【0015】
前記、図1の等価回路を図11に示す。
【0016】
図11において100は前記第1の容量、101は前記第2の容量、102は前記第1の容量に寄生素子として付加される前記第1の容量の第2の電極と前記第3の電極間の容量、103は前記第2の容量に寄生素子として付加される前記第2の容量の第2の電極と前記第3の電極間の容量、105は前記第3の電極と半導体基板間の寄生容量、104は前記寄生容量105の内部損失抵抗、106は前記第3の電極に相当する部分である。
【0017】
前記、図1に示した構造の本発明第1の実施形態における、容量対を図12に示すような差動回路に差動信号を入力するための結合容量として使用すると、図11の前記第1、第2の容量の各第2の電極に相当するポイントc点、d点に加わる信号が同振幅、逆位相になり、前記第1、第2の各第2の電極の寄生容量102,103を通して前記第3の電極106に充放電される電荷の和が相殺して零になる。このことにより前記第3の電極106の電位はAC接地状態となり、前記図11における前記第3の電極106と半導体基板間に存在する寄生素子104,105の影響を受けなくなり、半導体基板の影響による損失や容量のQ値の劣化が無くなり、差動信号としての2つの信号の位相のずれ、振幅の差等の問題が生じなくなり、高精度での高品質な回路設計が可能となる。
【0018】
図2に本発明の第2の実施形態を示す。
【0019】
図2において、1は第1の容量の第1の電極、2は第2の容量の第2の電極としても共用される前記第1、第2の容量の共通の第2の電極、3,4は絶縁層、5は半導体基板である。
【0020】
前記、図2の等価回路を図13に示す。
【0021】
図13において、201は第1の容量、202は第2の容量、203,204は前記第1の容量、前記第2の容量の共通の第2の電極と基板間の寄生容量と寄生容量の損失抵抗であり、205は前記第1の容量、前記第2の容量の共通の第2の電極に相当する。
【0022】
前記、図2の構造の本発明第1の実施形態における容量を図14に示した差動信号間に挿入される容量Cのような条件で使用した場合においては、前記、図13の等価回路図の第2の電極205は端子eおよびfから前記第1の容量201と第2の容量202を通じて充放電される電荷の総和が零になるため、前記第2の電極205の電位がAC接地状態となり前記図2の第2の電極2と半導体基板5の間に存在する前記、図13の等価回路に示される寄生容量203と損失抵抗204の影響を受けなくなる。
【0023】
図3に本発明の第3の実施形態を示す。
【0024】
図3に示した実施形態は前記第1の請求項の実施形態の第3の電極を回路接地に接続するための取り出し配線を設け、前記第3の電極を回路設置に接続したものである。
【0025】
前記、第1の実施形態において第1の容量、第2の容量に加えられる信号に歪が含まれている場合や振幅が異なる場合、図11に示す前記第1の実施形態の第3の電極106にリップル電圧が発生し、前記図11における寄生素子104,105の影響を若干受けるため、前記第3の電極を回路接地に接続して、更に前記第3の電極のシールド効果を強化する構造を有し、前記第3の電極に接続される回路接地に対して、前記第1、第2の容量の各第2の電極から同一インピーダンスになるような構造で前記第3の電極に接地電位を接続することで、前記第1、第2の容量に加えられる2つの信号のバランスを保持する事ができる。
【0026】
図4に本発明の第4の実施形態を示す。
【0027】
図4に示した実施形態は前記第2の請求項の実施形態の第2の電極を回路接地に接続するための取り出し配線を設け、前記第2の電極を回路設置に接続したものである。
【0028】
前記、第2の実施形態において第1の容量、第2の容量に加えられる信号に歪が含まれている場合や振幅が異なる場合、図14に示す前記第2の実施形態の第2の電極205にリップル電圧が発生し、前記図14における寄生素子203,204の影響を若干受けるため、前記第2の電極を回路接地に接続する事でこの寄生素子の影響を無くす構造を有し、前記第2の電極に接続される回路接地に対して、前記第1、第2の容量の各第1の電極から同一インピーダンスになるような構造で前記第2の電極に接地電位を接続することで、前記第1、第2の容量に加えられる2つの信号のバランスを保持する事ができる。
【0029】
また、本発明1〜4の実施形態において、上部電極の上に更に別の電極を設けて、上部方向のシールド効果を得る構造にしてもよい。
【0030】
また、図2に示した第2の実施形態において、図8に示すように、第1の電極の周辺に第2の電極に接続されたガードを設けてシールド効果を増す構造にしてもよく、同様に第1の実施形態、第3の実施形態、第4の実施形態に対しても同様のガードを設けてもよい。
【0031】
【発明の効果】
以上のように本発明は、対基板寄生素子の影響を受けないような条件でのMIM容量を使用することが可能となり、高周波半導体集積回路において、より高い周波数、より精密な設計を可能とし、高周波半導体集積回路の特性を極めて向上させる事を可能とする手段を実現するための技術を提供するものである。
【図面の簡単な説明】
【図1】本発明におけるMIM容量において第1の実施形態を示す構造図
【図2】本発明におけるMIM容量において第2の実施形態を示す構造図
【図3】本発明におけるMIM容量において第3の実施形態を示す構造図
【図4】本発明におけるMIM容量において第4の実施形態を示す構造図
【図5】従来のMIM容量の構造図
【図6】従来のシールド方法を示すためのMIM容量の構造図
【図7】従来のMIM容量の使用方法を示すための容量構成図
【図8】本発明の実施形態を補足説明するためのMIM容量の構成図
【図9】従来の構造におけるMIM容量の等価回路図
【図10】従来のシールド方法を利用した場合のMIM容量の等価回路図
【図11】本発明の第1の実施形態におけるMIM容量の等価回路図
【図12】本発明の第1の実施形態の使用例を示す図
【図13】本発明の第2の実施形態におけるMIM容量の等価回路図
【図14】本発明の第2の実施形態の使用例を示す図
【符号の説明】
1,2,6,7,8 金属電極
3,4,9 絶縁層
5 半導体基板
10 コンタクト
11 ガード電極
100,101 本発明の第1の実施形態における電極間容量
102,103 本発明の第1の実施形態における寄生容量
104,105 本発明の第1の実施形態における寄生素子
106 本発明の第1の実施形態における第3の電極
201,202 本発明の第2の実施形態における電極間容量
203,204 本発明の第2の実施形態における寄生素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a structure of a capacitor used for a coupling circuit in a semiconductor integrated circuit.
[0002]
[Prior art]
FIGS. 5 and 6 show a conventional structure diagram of an MIM capacitor made of a conventional semiconductor.
[0003]
In FIG. 5, a first electrode 1, a second electrode 2, and an insulator 3 are provided, and the first and second electrodes have a configuration in which the insulator 3 is interposed. It is formed separately from the body 4 (for example, see Patent Document 1).
[0004]
In FIG. 6, a first electrode 1, a second electrode 2, and an insulator 3 are provided, and the insulator 3 is sandwiched between the first and second electrodes. By providing a third electrode 8 separated between the semiconductor substrate 5 and the insulator 4 by an insulator 4 and an insulator 9 and grounded to the circuit ground, an electric shield is provided between the second electrode and the semiconductor substrate 5. It is configured to be.
[0005]
FIGS. 9 and 10 show equivalent circuits of the MIM capacitors shown in FIGS. 5 and 6 in the conventional structure, respectively.
[0006]
In FIG. 9, the capacitance C is the capacitance between the first electrode and the second electrode in FIG. 5, and the capacitance Cs and the resistance Rs are parasitic elements of the second electrode with respect to the semiconductor substrate 5.
[0007]
In FIG. 10, the capacitance C is the capacitance between the first electrode and the second electrode in FIG. 6, the capacitance C2 is the capacitance between the third electrode serving as the shield electrode and the second electrode, and the capacitance Cs And a resistor Rs are parasitic elements of the third electrode with respect to the semiconductor substrate 5, and a resistor RI is a wiring resistance of a wiring used to connect the third electrode to circuit ground.
[0008]
[Patent Document 1]
JP-A-7-326712 (page 1, FIG. 1)
[0009]
[Problems to be solved by the invention]
In the recent communication field, the use of circuits operating at a high frequency in the GHz band has increased, and it has become necessary to improve the performance of MIM capacitors. For example, when used in a matching circuit such as an input / output circuit, loss due to the resistance component of the parasitic element becomes a problem. When used in a voltage controlled oscillator, the resistance component of the parasitic element causes deterioration of the Q value, and the performance of the oscillator is deteriorated. Worsen. Also, when used for a signal line or the like, a problem occurs that the fluctuation of the time constant of the parasitic element fluctuates the amount of delay of the transmission signal and makes the system unstable.
[0010]
As shown in FIG. 6, by adding a grounded third electrode between the second electrode and the semiconductor substrate of FIG. 5, the second electrode is shielded from the semiconductor substrate to reduce the parasitic capacitance added to the second electrode. There is no loss resistance and it is possible to convert to a capacitance with little variation. This can improve the performance of the capacitor C of FIG. 10, but cannot be a complete measure due to the resistance component RI of the wiring that grounds the capacitor C2 of the equivalent circuit of FIG.
[0011]
In order to eliminate the influence of the parasitic element, the present invention provides a technique for preventing the deterioration of the circuit performance due to the influence of the parasitic capacitance when using the MIM capacitor.
[0012]
[Means for Solving the Problems]
In order to reduce the loss due to parasitic elements to the substrate when using the MIM capacitor, particularly when used in a differential line, the two pairs of electrodes between the electrode near the semiconductor substrate and the semiconductor substrate have two pairs of capacitors. From the two capacitances, are coupled by parasitic capacitances, and have an area large enough to block most of the electric flux from the two electrodes on the substrate side to the substrate and have no contact with other circuits. Another metal electrode is provided, and the non-contact electrode is charged and discharged with the same amount and opposite phase from the same amplitude and opposite phase signals applied to the two pairs of capacitors, thereby setting the AC ground state. In this AC ground state, parasitic elements to the substrate from the non-contact electrode can be ignored, and as a result, two pairs of capacitors inserted into the differential line are not affected by the parasitic elements to the substrate. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
[0014]
FIG. 1 shows a first embodiment of the present invention. In FIG. 1, 1 is a first electrode of a first capacitor, 2 is a second electrode of the first capacitor, 3, 4, and 9 are insulating layers, 5 is a semiconductor substrate, and 6 is a second electrode of a second capacitor. One electrode 7 is a second electrode of the second capacitor, and 8 is the first and second electrodes so as to simultaneously face both the second electrode surfaces of the first and second capacitors. Is a third electrode provided between both the second electrodes having the above-mentioned capacitance and the semiconductor substrate 5.
[0015]
FIG. 11 shows the equivalent circuit of FIG.
[0016]
In FIG. 11, 100 is the first capacitor, 101 is the second capacitor, and 102 is a second capacitor between the second electrode and the third electrode of the first capacitor which is added to the first capacitor as a parasitic element. , A capacitance 103 between the second electrode and the third electrode of the second capacitance added to the second capacitance as a parasitic element, and a capacitance 105 between the third electrode and the semiconductor substrate. A capacitance 104 is an internal loss resistance of the parasitic capacitance 105, and 106 is a portion corresponding to the third electrode.
[0017]
When the capacitance pair in the first embodiment of the present invention having the structure shown in FIG. 1 is used as a coupling capacitance for inputting a differential signal to a differential circuit as shown in FIG. The signals applied to the points c and d corresponding to the second electrodes of the first and second capacitors have the same amplitude and opposite phases, and the parasitic capacitances 102 and 102 of the first and second second electrodes respectively. The sum of the charges charged and discharged to the third electrode 106 through 103 cancels to zero. As a result, the potential of the third electrode 106 becomes an AC ground state, and is not affected by the parasitic elements 104 and 105 existing between the third electrode 106 and the semiconductor substrate in FIG. Loss and deterioration of the Q value of the capacitance are eliminated, problems such as a phase shift and a difference in amplitude between two signals as a differential signal do not occur, and a high-precision and high-quality circuit design becomes possible.
[0018]
FIG. 2 shows a second embodiment of the present invention.
[0019]
In FIG. 2, 1 is a first electrode of a first capacitor, 2 is a common second electrode of the first and second capacitors, which is also used as a second electrode of a second capacitor. 4 is an insulating layer and 5 is a semiconductor substrate.
[0020]
FIG. 13 shows the equivalent circuit of FIG.
[0021]
In FIG. 13, reference numeral 201 denotes a first capacitance, 202 denotes a second capacitance, 203 and 204 denote the first capacitance, and the parasitic capacitance between the common second electrode of the second capacitance and the substrate and the parasitic capacitance. A loss resistance 205 corresponds to a common second electrode of the first capacitance and the second capacitance.
[0022]
When the capacitance according to the first embodiment of the present invention having the structure shown in FIG. 2 is used under conditions such as the capacitance C inserted between the differential signals shown in FIG. 14, the equivalent circuit shown in FIG. In the second electrode 205 shown in the figure, the sum of the charges charged and discharged from the terminals e and f through the first capacitor 201 and the second capacitor 202 becomes zero, so that the potential of the second electrode 205 becomes AC ground. In this state, there is no influence of the parasitic capacitance 203 and the loss resistance 204 shown between the second electrode 2 and the semiconductor substrate 5 shown in FIG.
[0023]
FIG. 3 shows a third embodiment of the present invention.
[0024]
In the embodiment shown in FIG. 3, an extraction wiring for connecting the third electrode of the first embodiment to a circuit ground is provided, and the third electrode is connected to a circuit installation.
[0025]
In the case where the signal added to the first capacitance and the second capacitance in the first embodiment includes distortion or has a different amplitude, the third electrode of the first embodiment shown in FIG. Since a ripple voltage is generated at 106 and slightly affected by the parasitic elements 104 and 105 in FIG. 11, the third electrode is connected to circuit ground, and the shield effect of the third electrode is further enhanced. And a ground potential is applied to the third electrode in such a structure that each of the second electrodes of the first and second capacitors has the same impedance with respect to the circuit ground connected to the third electrode. , The balance between the two signals applied to the first and second capacitors can be maintained.
[0026]
FIG. 4 shows a fourth embodiment of the present invention.
[0027]
In the embodiment shown in FIG. 4, a lead-out wire for connecting the second electrode of the second embodiment to circuit ground is provided, and the second electrode is connected to a circuit installation.
[0028]
In the second embodiment, when a signal added to the first capacitor and the second capacitor includes distortion or a different amplitude, the second electrode of the second embodiment shown in FIG. Since a ripple voltage is generated at 205 and slightly affected by the parasitic elements 203 and 204 in FIG. 14, the second electrode is connected to circuit ground to eliminate the effect of the parasitic element. By connecting a ground potential to the second electrode in such a structure that each of the first electrodes of the first and second capacitors has the same impedance with respect to the circuit ground connected to the second electrode. , The balance between the two signals applied to the first and second capacitors can be maintained.
[0029]
Further, in the embodiments of the present invention 1 to 4, another electrode may be provided on the upper electrode to obtain a shield effect in the upper direction.
[0030]
Further, in the second embodiment shown in FIG. 2, as shown in FIG. 8, a structure may be adopted in which a guard connected to the second electrode is provided around the first electrode to increase the shielding effect. Similarly, similar guards may be provided for the first, third, and fourth embodiments.
[0031]
【The invention's effect】
As described above, the present invention makes it possible to use the MIM capacitor under conditions that are not affected by the parasitic element with respect to the substrate, enabling higher frequency and more precise design in a high-frequency semiconductor integrated circuit, It is an object of the present invention to provide a technique for realizing means capable of extremely improving the characteristics of a high-frequency semiconductor integrated circuit.
[Brief description of the drawings]
FIG. 1 is a structural diagram showing a first embodiment of a MIM capacitor according to the present invention; FIG. 2 is a structural diagram showing a second embodiment of a MIM capacitor according to the present invention; FIG. 3 is a third diagram showing a MIM capacitor according to the present invention; FIG. 4 is a structural diagram showing a fourth embodiment of an MIM capacitor according to the present invention; FIG. 5 is a structural diagram of a conventional MIM capacitor; FIG. 6 is an MIM for showing a conventional shielding method; FIG. 7 is a structural diagram of a capacitor. FIG. 8 is a structural diagram of a MIM capacitor for illustrating a method of using a conventional MIM capacitor. FIG. 8 is a structural diagram of a MIM capacitor for supplementary explanation of an embodiment of the present invention. FIG. 10 is an equivalent circuit diagram of the MIM capacitor when a conventional shielding method is used. FIG. 11 is an equivalent circuit diagram of the MIM capacitor according to the first embodiment of the present invention. No. FIG. 13 is a diagram showing an example of use of the second embodiment. FIG. 13 is an equivalent circuit diagram of a MIM capacitor according to the second embodiment of the present invention. FIG. 14 is a diagram showing an example of use of the second embodiment of the present invention. ]
1, 2, 6, 7, 8 Metal electrodes 3, 4, 9 Insulating layer 5 Semiconductor substrate 10 Contact 11 Guard electrode 100, 101 Capacitance between electrodes 102, 103 in the first embodiment of the present invention Parasitic capacitances 104, 105 in the embodiment Parasitic element 106 in the first embodiment of the present invention Third electrodes 201, 202 in the first embodiment of the present invention Inter-electrode capacitance 203, 202 in the second embodiment of the present invention 204 Parasitic Element in Second Embodiment of Present Invention

Claims (4)

半導体基板上に、第1の電極(上部電極)、第2の電極(基板に近い側の下部電極)および前記第1の電極と第2の電極の間に第1の絶縁膜を配置した第1の容量と第2の容量を備え、前記第1の容量と第2の両方の容量の第2の電極と基板間に第3のフローティング電極を有し、前記第1の容量と第2の容量を近接させて配置し、前記第1、第2の容量の両方の第2の電極の面積を同時にほぼ全体と重なり合う様に第3の電極を形成、電気的浮遊状態で配置する構成をなし、前記第1の容量、第2の容量のそれぞれの第1、第2の電極間を、容量として使用する2対のMIM(Metal−Insulator−Metal)容量。A first electrode (upper electrode), a second electrode (lower electrode closer to the substrate), and a first insulating film disposed between the first and second electrodes on a semiconductor substrate. A first capacitor and a second capacitor, and a third floating electrode between the substrate and the second electrode of both the first capacitor and the second capacitor, and the first capacitor and the second capacitor. The third electrode is formed so that the capacitors are arranged close to each other, and the areas of the second electrodes of both the first and second capacitors are almost simultaneously overlapped with the whole area, and are arranged in an electrically floating state. , Two pairs of MIM (Metal-Insulator-Metal) capacitors used as a capacitor between the first and second electrodes of the first capacitor and the second capacitor. 半導体基板上に、第1の電極(上部電極)および第2の電極(基板に近い側の下部電極)を有し、前記第1の電極と第2の電極の間に第1の絶縁層間膜を配置した第1の容量と第2の容量を備え、前記第1の容量と第2の容量を近接させて配置し、前記第1、第2の容量の両方の第2の電極が1枚の同一形成電極で共通構成されることで、前記第1、第2の容量のそれぞれの第2の電極が直接接続されると同時に、前記第2の電極は電気的浮遊電極として構成され、前記第1および第2の容量のそれぞれの第1の電極間を前記第1と第2の2つの容量を合成容量として使用する、2対のMIM(Metal−Insulator−Metal)容量。A first electrode (upper electrode) and a second electrode (lower electrode closer to the substrate) are provided on a semiconductor substrate, and a first insulating interlayer film is provided between the first electrode and the second electrode. , And a first capacitor and a second capacitor are provided, and the first capacitor and the second capacitor are arranged close to each other, and both the first and second capacitors have one second electrode. And the second electrode of each of the first and second capacitors is directly connected, and at the same time, the second electrode is configured as an electrically floating electrode. Two pairs of MIM (Metal-Insulator-Metal) capacitors using the first and second two capacitors as a combined capacitor between the first electrodes of the first and second capacitors. 本発明の請求項1において前記電気的浮遊電極である第3の電極上の位置に関し、その位置から、前記第2の電極と前記第3の電極間の寄生容量を通して見た第1および第2のそれぞれの第2の電極に対するインピーダンスがほぼ等しくなる様な、前記第3の電極上の位置を接続点として利用して、回路接地に接続する構成の請求項1に記載したMIM容量。The first and second positions as viewed through the parasitic capacitance between the second electrode and the third electrode from the position with respect to the position on the third electrode which is the electrically floating electrode according to claim 1 of the present invention. 2. The MIM capacitor according to claim 1, wherein the MIM capacitor is connected to circuit ground by using a position on the third electrode as a connection point such that the impedance of each of the second electrodes becomes substantially equal. 本発明の請求項2において前記電気的浮遊電極である第2の電極上の位置に関し、その位置から、前記第1と前記第2の容量を通して見た第1および第2のそれぞれの第1の電極に対するインピーダンスがほぼ等しくなる様な、前記第2の電極上の位置を接続点として利用して、回路接地に接続する構成の、請求項2に記載したMIM容量。In the second aspect of the present invention, with respect to a position on the second electrode which is the electrically floating electrode, the first and second first and second first viewed from the position through the first and second capacitors, respectively. 3. The MIM capacitor according to claim 2, wherein the MIM capacitor is configured to be connected to a circuit ground by using a position on the second electrode such that an impedance to the electrode is substantially equal, as a connection point.
JP2002322244A 2002-08-30 2002-11-06 MIM capacity Expired - Fee Related JP4013734B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2002322244A JP4013734B2 (en) 2002-11-06 2002-11-06 MIM capacity
TW092124060A TW200403872A (en) 2002-08-30 2003-08-29 MIM capacitor
PCT/JP2003/011132 WO2004021439A1 (en) 2002-08-30 2003-09-01 Mim capacitor
US10/501,865 US7030443B2 (en) 2002-08-30 2003-09-01 MIM capacitor
CNB038063603A CN1300849C (en) 2002-08-30 2003-09-01 Metal insulator metal capacitor
EP03791437A EP1533844A1 (en) 2002-08-30 2003-09-01 Mim capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322244A JP4013734B2 (en) 2002-11-06 2002-11-06 MIM capacity

Publications (2)

Publication Number Publication Date
JP2004158598A true JP2004158598A (en) 2004-06-03
JP4013734B2 JP4013734B2 (en) 2007-11-28

Family

ID=32802488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322244A Expired - Fee Related JP4013734B2 (en) 2002-08-30 2002-11-06 MIM capacity

Country Status (1)

Country Link
JP (1) JP4013734B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007029394A1 (en) * 2005-09-09 2007-03-15 Sharp Kabushiki Kaisha Thin-film element, display device and memory cell using the thin-film element, and their fabrication method
JP2008515237A (en) * 2004-09-29 2008-05-08 インテル コーポレイション Divided thin film capacitors for multiple voltages
JP2010093171A (en) * 2008-10-10 2010-04-22 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP5416840B2 (en) * 2010-06-30 2014-02-12 太陽誘電株式会社 Capacitor and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008515237A (en) * 2004-09-29 2008-05-08 インテル コーポレイション Divided thin film capacitors for multiple voltages
US7810234B2 (en) 2004-09-29 2010-10-12 Intel Corporation Method of forming a thin film capacitor
WO2007029394A1 (en) * 2005-09-09 2007-03-15 Sharp Kabushiki Kaisha Thin-film element, display device and memory cell using the thin-film element, and their fabrication method
US7781815B2 (en) 2005-09-09 2010-08-24 Sharp Kabushiki Kaisha Thin-film element, display device and memory cell using the thin-film element, and their fabrication methods
JP5079512B2 (en) * 2005-09-09 2012-11-21 シャープ株式会社 Display device using thin film element and method of manufacturing display device
JP2010093171A (en) * 2008-10-10 2010-04-22 Renesas Technology Corp Semiconductor device and method of manufacturing the same
JP5416840B2 (en) * 2010-06-30 2014-02-12 太陽誘電株式会社 Capacitor and manufacturing method thereof

Also Published As

Publication number Publication date
JP4013734B2 (en) 2007-11-28

Similar Documents

Publication Publication Date Title
KR100367859B1 (en) Wiring connection structure of laminated capacitor and decoupling capacitor, and wiring board
US7251115B2 (en) Multilayer capacitor
EP2779448B1 (en) Filter
US7164184B2 (en) Multilayer capacitor
US7446992B2 (en) Connector
US7821759B2 (en) Surge absorption circuit
WO2022121818A1 (en) Method, acoustic wave filter, multiplexer, and communication device for improving nonlinear performance
US10699995B2 (en) Isolator with symmetric multi-channel layout
JP2007128939A (en) High-frequency module
US8250747B2 (en) Method of mounting capacitor array
JP4013734B2 (en) MIM capacity
JP2006506801A (en) Frequency independent voltage divider
JPH11273949A (en) Inductor element
JPH05235266A (en) Semiconductor integrated circuit device
US4344049A (en) Surface wave component
JP6451018B2 (en) Common mode filter
JPH0388356A (en) Integrated circuit and connecting circuit therefor
US7030443B2 (en) MIM capacitor
US6396678B1 (en) Capacitor
US6462396B2 (en) Inductance structure on semiconductor substrate
JP3650433B2 (en) Antenna switch
CN111312897B (en) Isolation capacitor and isolation circuit
JP3937983B2 (en) MIM capacity
JP2004347397A (en) Voltage detector
JPH04154102A (en) Composite electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4013734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees