JP2004158498A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2004158498A
JP2004158498A JP2002320096A JP2002320096A JP2004158498A JP 2004158498 A JP2004158498 A JP 2004158498A JP 2002320096 A JP2002320096 A JP 2002320096A JP 2002320096 A JP2002320096 A JP 2002320096A JP 2004158498 A JP2004158498 A JP 2004158498A
Authority
JP
Japan
Prior art keywords
film
insulating film
gate insulating
hysteresis
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320096A
Other languages
English (en)
Other versions
JP3696196B2 (ja
Inventor
Naoki Yasuda
直樹 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002320096A priority Critical patent/JP3696196B2/ja
Publication of JP2004158498A publication Critical patent/JP2004158498A/ja
Application granted granted Critical
Publication of JP3696196B2 publication Critical patent/JP3696196B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Formation Of Insulating Films (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

【課題】Hf,Al,Si,O,Nを主成分とするゲート絶縁膜を有するMISFETで、C−V特性のヒステリシスを抑制し、しきい値電圧の不安定性を抑えた素子を実現する。
【解決手段】Hf,Al,Si,O,Nからなるゲート絶縁膜(ハフニウム・アルミニウム・オキサイド層とシリコン酸窒化界面層から成る積層ゲート絶縁膜)において、Hf,Al,Oの組成とSi,O,Nの組成との関係を、前者による時計回りのヒステリシス量と後者による反時計回りのヒステリシス量が釣り合うように選ぶことによって、当該ゲート絶縁膜全体としてのヒステリシス量を抑制し、しきい値電圧の不安定性を抑えたMISFETを実現する。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、MIS(Metal Insulator Semiconductor)構造を有する電界効果トランジスタが形成された半導体装置に係わり、特に電界効果トランジスタのゲート絶縁膜構造の改良をはかった半導体装置に関する。
【0002】
【従来の技術】
シリコン半導体集積回路の微細化に伴って、MIS型電界効果トランジスタの寸法も微細化している。ITRS(International Technology Roadmap for Semiconductors)の2001年版によると、2010年には45nmのテクノロジー・ノードで、シリコン酸化膜換算膜厚(Equivalent Physical Oxide Thickness、以下ではEOTと呼ぶ)0.5〜0.8nmが必要とされている。このような極薄ゲート絶縁膜でリーク電流を抑制するためには、誘電率の高いゲート絶縁膜を用いることが必要である。
【0003】
しかし、従来の技術では、高誘電率のゲート絶縁膜がシリコン熱酸化膜並みの良好なバルク膜質及び界面特性を持つようにできていない。実際、金属酸化物の高誘電率絶縁膜でMISキャパシタを作製して容量−電圧特性(C−V特性)を計測すると、フラットバンド電圧が理想値からずれる現象、C−V特性の掃引方向によってC−V特性がゲート電圧方向にシフトするヒステリシス現象など、ゲート絶縁膜として用いるのに望ましくない特性が現れる。また、これらの望ましくない特性を改善するために高誘電率絶縁膜の堆積後にアニールを行えばEOTが増加し、ITRSで要求するトランジスタの駆動力が得られなくなる。以上のように、単にシリコン基板上に高誘電率絶縁膜を堆積し、アニールするだけでは、小さなEOTと良好なデバイス特性を両立させることができない。
【0004】
そこで最近、Si基板上に数モノレーヤ程度の界面層を形成し、その上に高誘電率絶縁膜を形成することが試みられている(例えば、特許文献1参照)。この文献には、界面層中に窒素が含まれるとEOTの増加を抑制するのに有効であると記されている。しかし、この場合、高誘電率絶縁膜のみならず界面層にも窒素に起因した電荷が含まれるため、界面層を導入しない場合と比べてフラットバンド電圧のシフト、及びヒステリシス現象が著しく発生する。
【0005】
界面層を導入したことで顕著に現れるこれらの望ましくない現象のうち、特にヒステリシス現象は、トランジスタのしきい値電圧の揺らぎ、及びドレイン電流の雑音を生じさせるため、その解決は極めて重要な課題となっている。一方、フラットバンド電圧の固定的なシフトは、シリコン基板中の不純物濃度の制御による基板フェルミ・レベルの調整、及びゲートの仕事関数の調整で、ある程度まで補正が可能であり、その解決の重要性はヒステリシス現象の次に来るべきものであると考えられる。
【0006】
【特許文献1】
特開2000−49349号公報
【0007】
【発明が解決しようとする課題】
このように従来、MIS型電界効果トランジスタのゲート絶縁膜として高誘電率絶縁膜を用いることが試みられているが、金属酸化物などの高誘電率絶縁膜ではアニールによってEOTの増加を招く。高誘電率絶縁膜とシリコン基板との間に界面層を導入することでEOTを小さくできたが、その一方で、ヒステリシス現象が激しく発生するという問題点が生じた。
【0008】
本発明は、上記事情を考慮して成されたもので、その目的とするところは、高誘電率絶縁膜と界面層(一般的には、二層ゲート絶縁膜の各層)の組成の関係を制御することによってMIS型電界効果トランジスタにおけるヒステリシス現象を抑制することができ、MIS型電界効果トランジスタのしきい値電圧の均一化をはかり得る半導体装置を提供することにある。
【0009】
【課題を解決するための手段】
(構成)
上記課題を解決するために本発明は、次のような構成を採用している。
【0010】
即ち本発明は、シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、前記MIS型電界効果トランジスタのゲート絶縁膜は、Hf,Al,Zrの少なくとも一つを含む金属酸化物膜と酸窒化物膜との積層構造であり、前記金属酸化物膜と前記酸窒化物膜とはヒステリシス特性が相互に逆方向であり、前記金属酸化物膜と前記酸窒化物膜とで打ち消し合った後に残るヒステリシス電荷量が1×1011cm−2以下となるように各膜の材料組成を設定してなることを特徴とする。
【0011】
また本発明は、シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、前記MIS型電界効果トランジスタのゲート絶縁膜は、金属・シリコン・酸素・窒素を主成分とする誘電体からなり、該誘電体中の金属の主成分がハフニウム,アルミニウム,若しくはそれらの混合物であって、前記誘電体の膜組成を(HfO(Al(SiO(Siと表示し、またα=2×1011cm−2,β=3×1011cm−2,γ=6×1011cm−2,δ=1×1011cm−2としたとき、0≦z≦1,0≦x≦1の範囲の値をとるz=p/(p+q),x=r/(r+s)が
【数4】
Figure 2004158498
という関係を満たすことを特徴とする。
【0012】
また本発明は、シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、前記MIS型電界効果トランジスタのゲート絶縁膜は、金属・シリコン・酸素・窒素を主成分とする誘電体からなり、該誘電体中の金属の主成分がハフニウム,アルミニウム,若しくはそれらの混合物であり、前記誘電体の膜厚方向の各位置における膜組成を(HfO (Al (SiO (Si と表すとき、(p’+q’)≧(r’+s’)となる位置が存在し、かつ前記位置よりもシリコン基板側に(p’+q’)<(r’+s’)となる位置が存在し、さらに前記誘電体の膜全体としての組成を(HfO(Al(SiO(Siと表示し、またα=2×1011cm−2,β=3×1011cm−2,γ=6×1011cm−2,δ=1×1011cm−2としたとき、0≦z≦1,0≦x≦1の範囲の値をとるz=p/(p+q),x=r/(r+s)が
【数5】
Figure 2004158498
という関係を満たすことを特徴とする。
【0013】
また本発明は、シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、前記MIS型電界効果トランジスタのゲート絶縁膜は、金属・シリコン・酸素・窒素を主成分とする誘電体からなり、該誘電体中の金属の主成分がハフニウム,アルミニウム,若しくはそれらの混合物であり、前記誘電体の膜厚方向の各位置における膜組成を(HfO (Al (SiO (Si と表すとき、(p’+q’)≧(r’+s’)となる位置が存在し、かつ前記位置よりもゲート電極側に(p’+q’)<(r’+s’)となる位置が存在し、さらに前記誘電体の膜全体としての組成を(HfO(Al(SiO(Siと表示し、またα=2×1011cm−2,β=3×1011cm−2,γ=6×1011cm−2,δ=1×1011cm−2としたとき、0≦z≦1,0≦x≦1の範囲の値をとるz=p/(p+q),x=r/(r+s)が
【数6】
Figure 2004158498
という関係を満たすことを特徴とする。
【0014】
(作用)
本発明において、ゲート絶縁膜のヒステリシス現象を抑制する作用は、以下のように説明される。
【0015】
本発明者の実験結果によれば、p型シリコン基板上にキャパシタ絶縁膜として高誘電率絶縁膜を直接形成し、その上にゲート電極を蒸着してキャパシタを作製し、空乏領域から蓄積領域にわたるC−V特性を計測したところ、図1(a)のように、C−V特性は時計回りのヒステリシスを示した。一方、p型シリコン基板上にキャパシタ絶縁膜としてシリコン酸窒化膜を用いたキャパシタを作製すると、図1(b)のように、空乏領域から蓄積領域にわたるC−V特性は反時計回りのヒステリシスを示した。
【0016】
上記のヒステリシス現象の時計回り・反時計回りの振る舞い方の違いは、高誘電率絶縁膜は電界印加に対して遅れを持つ分極成分が存在し(残留分極型ヒステリシス)、また窒素を含んだ界面層には電界印加に対して遅れを持ったキャリア捕獲の成分が存在する(キャリア注入型ヒステリシス)というモデルで矛盾なく説明することができる。
【0017】
高誘電率絶縁膜とシリコン酸窒化膜界面層からなる積層ゲート絶縁膜のヒステリシス現象は、この両者の足し合わせで決まると考えられる。即ち、高誘電率絶縁膜と界面層で向きの違うヒステリシスが現れるので、その両者が打ち消し合うように高誘電率絶縁膜と界面層の関係を制御すれば、ヒステリシス現象を抑制・消失させることができる。
【0018】
本発明者らは、不純物の極めて少ない高誘電率絶縁膜及び界面層を用いて、ヒステリシス現象として現れる電荷の大きさを実験的に評価した。その結果は、次のようにまとめられる。HfOにおける時計回りのヒステリシスに関わる発生電荷密度は、
ΔNhys(HfO)=α=2×1011cm−2
である。また、Alにおける時計回りのヒステリシスに関わる発生電荷密度は、
ΔNhys(Al)=β=3×1011cm−2
である。従って、ハフニウム・アルミニウム・オキサイド(HfO(Al1−z における時計回りのヒステリシスに伴う発生電荷密度は、その組成z(0≦z≦1)の関数として
ΔNhys(z)=αz+β(1−z)
と表される。
【0019】
一方、界面層のシリコン酸窒化膜(SiO(Si1−x の反時計回りのヒステリシスに関わる発生電荷密度は、平均配位数の増分の2乗(Nav(x)−Neq)に比例した欠陥が発生するというLucovksyらのモデルをもとにして、
ΔNhys(x)=γ(Nav(x)−Neq)[cm−2
と表される。ここで、実験評価から、γ=6×1011cm−2であることが判っている。また、Neq=8/3=2.67はSiOの平均配位数である。また、
【数7】
Figure 2004158498
である。
【0020】
なお、このようにして求められたヒステリシス電荷の大きさは、誘電体及び界面層の膜厚に依存しない。その理由は次の通りである。図1に示したように、残留分極型のヒステリシスは誘電体層の両端のヒステリシス電荷として現れ、バルク中は膜厚に拘わらず分極が打ち消し合うため、膜厚に依存せずに一定量のヒステリシス電荷が現れる。また、キャリア注入型のヒステリシスの場合は、ヒステリシスを生じさせるキャリア注入・放出が界面から一定のトンネル距離のところで起こり、その状況は界面層の膜厚が厚くなっても変化しないため、ヒステリシスの大きさが界面層の膜厚に依存しない。
【0021】
以上述べたように、(HfO(Al1−z /(SiO(Si1−x 積層膜でヒステリシス現象を抑制して消失させるためには、時計回りと反時計回りのヒステリシス電荷を等しくするようにすればよい。その条件は、両層の組成の間にΔNhys(z)=ΔNhys(x) という関係が成り立つことである。上記の実験の評価結果をもとにすると、Hf,Al,Oからなる高誘電率絶縁膜の組成zと、界面層のシリコン酸窒化膜の組成xとの間の関係として、0≦z≦1,0≦x≦1の範囲の値をとるzとxの関係として、
【数8】
Figure 2004158498
【0022】
が満たされればよい。即ち、この式が成り立つようにHf,Al,Oからなる誘電体の組成zと、Si,O,Nからなる界面層の組成xの関係を調整すれば、図2に示すように、ヒステリシスは完全に消失する。
【0023】
また、ヒステリシスが完全に消滅しなくとも、高誘電体層と界面層のヒステリシスの打ち消し合いによるフラットバンド電圧(若しくはしきい値電圧)の変動が許容範囲以内に収まればトランジスタ動作に大きな支障を来たさない。ここで、許容されるフラットバンド電圧の変動量は、ITRSでEOTのばらつき(3σ)が4%以内とすべきとしていることを参考にして、以下のように決められる。
【0024】
実効電界(シリコン酸化膜に換算した電界)5MV/cmでトランジスタを動作させるならば、ゲート絶縁膜厚のばらつきによるEOTの4%の変動は、EOT=1nmで20mVのゲート・オーバードライブ電圧(Vg−Vth)の変動に相当する。ヒステリシスの発生によるフラットバンド電圧の変動は、ゲート絶縁膜厚のばらつきに起因するゲート・オーバードライブ電圧の変動に対して更に付け加わるので、EOT=1nmにおいて20mVよりも小さくなくてはいけない。
【0025】
現状の集積回路の研究開発におけるゲート絶縁膜厚の制御性を念頭に置くと、膜厚ばらつきとヒステリシスの発生によるゲート・オーバードライブ電圧の変動の合計を4%以内に抑えるためには、ヒステリシスによるフラットバンド電圧の変動を1σ相当以内(EOT=1nmでフラットバンド電圧シフト量6mV以内)に抑えることを目標とすればよい。この条件は、高誘電率層と界面層とで打ち消し合った後に残るヒステリシス電荷量が、
|ΔNhys(z)−ΔNhys(x)|≦δ
δ=1×1011cm−2
を満たすことに相当する。この残留電荷の条件は、(HfO(Al1−z/(SiO(Si1−x 積層膜の各層の膜組成zとxの関係として
【数9】
Figure 2004158498
と表される。
【0026】
次に、MIS型電界効果トランジスタのゲート・オーバードライブ電圧の変動以外に考慮すべきこととして、トランジスタの移動度の変動がある。即ち、ヒステリシス電荷が発生することでトランジスタのチャネル領域の反転層電荷量が変化する以外に、ゲート絶縁膜中のヒステリシス電荷量の変動による、リモート電荷散乱移動度の変動が生じる。この移動度の変動は、ヒステリシス電荷がシリコン基板界面近くにあるほど大きいので、界面層と高誘電体層による残留ヒステリシス電荷が許容範囲内にある限り、シリコン基板界面から遠くのヒステリシス電荷が相対的に大きく、シリコン基板界面から近くのヒステリシス電荷が相対的に小さいほど、トランジスタの移動度(キャリア速度)の変動を抑えるという点で有利になる。
【0027】
ゲート電極/(HfO(Al1−z /(SiO(Si1−x /Si基板のスタック構造では、この条件は0≦ΔNhys(z)−ΔNhys(x)≦δと表される。即ち、Hf,Al,Oの高誘電率絶縁層による時計回りのヒステリシスが、Si,O,N界面層の反時計回りのヒステリシスよりも、許容範囲内で大きいという条件であり、
【数10】
Figure 2004158498
と表される。
【0028】
また、同様のことを、ゲート電極/(SiO(Si1−x /(HfO)z(Al1−z /Si基板というスタック構造でゲート電極側に酸窒化層を持ってくる場合に適用すると、高誘電体層側のヒステリシス電荷を界面酸窒化膜層のヒステリシス電荷よりも小さくすることが必要である。残留ヒステリシス電荷が許容範囲内にある条件を考慮すれば、xとzの関係は
【数11】
Figure 2004158498
となる。
【0029】
以上のxとzの関係式を、図2に示した。その範囲内に各層の組成xとzを取ることで、ヒステリシス現象を抑制した電界効果トランジスタを実現することができる。なお、簡単のためにここでは、高誘電体層と界面層の完全な2層構造を仮定して図2の関係を導いたが、多層膜からなるゲート絶縁膜でも同様の考え方が適用できる。さらに、ヒステリシス電荷は各元素の量に比例して発生する性質を持つので、ゲート絶縁膜を構成する各層の間で元素の相互拡散があったとしても、各元素がゲート絶縁膜から外部に消失しない限り、上記の議論は同様に有効である。
【0030】
【発明の実施の形態】
以下、本発明の詳細を図示の実施形態によって説明する。
【0031】
なお、以下の実施形態では、ハフニウム・アルミニウム・オキサイドの場合の例について説明するが、化学的な性質が近いジルコニウム・アルミニウム・オキサイド、若しくはゲート絶縁膜の金属元素がハフニウムとジルコニウムの混合物である、ハフニウム・ジルコニウム・アルミニウム・オキサイドでも、請求項に記載した係数α,β,γ,δの値が異なるだけで、同様の議論が成り立つ。
【0032】
(第1の実施形態)
図3及び図4は、本発明の第1の実施形態に係わるMISFETの製造工程を示す断面図である。ここではnチャネルMISFETの例を示すが、pチャネルMISFETでも導電型がp型とn型で入れ替わるだけであり、同様の作製過程を実施することができる。
【0033】
まず、図3(a)に示すように、単結晶のp型シリコン基板21の表面に、素子分離の役割を果たす深い溝を形成し、この溝をCVD法によりシリコン酸化膜23で埋め込み、素子分離領域22を形成する。
【0034】
次いで、図3(b)に示すように、ゲート絶縁膜24を形成する。なお、このゲート絶縁膜24の詳しい形成方法は、後でまとめて述べる。
【0035】
次いで、図3(c)に示すように、ゲート絶縁膜24の上部に窒化チタン膜25をスパッタ法によって形成する。窒化チタンは、シリコンのバンドギャップの中央近くの仕事関数を持つ。MISFETのしきい値電圧の低電圧化の要請から、nチャネルMISFETではシリコンの伝導帯近くの仕事関数を有する金属若しくは金属窒化物、pチャネルMISFETではシリコンの価電子帯近くの仕事関数を有する金属若しくは金属窒化物を使う場合があり、窒化チタンの代わりに、そのような金属若しくは金属窒化物を使ってもよい。また、スパッタ法の代わりにCVD(Chemical Vapor Deposition)法など、他の方法で窒化チタン膜25を形成してもよい。
【0036】
次いで、窒化チタン膜25の上に、スパッタ法でSiO膜26を堆積する。このSiO膜26はTEOSのプラズマCVDなど、他の方法で堆積してもよい。
【0037】
次いで、図4(d)に示すように、SiO膜26の上にフォトレジストを塗布した後、光や電子ビームリソグラフィによりフォトレジストパターン27を形成する。
【0038】
次いで、図4(e)に示すように、フォトレジストパターン27をマスクとして用い、順にSiO膜26と窒化チタン膜25の反応性イオンエッチングを行い、第1のゲート電極を形成する。その後、フォトレジストパターン27を除去する。
【0039】
次いで、砒素のイオン注入を、例えば加速電圧40keV、ドーズ量3×1015cm−2の条件で行って、n型ソース領域28、n型ドレイン領域29を形成する。その後、希釈フッ酸系の溶液処理若しくは反応性エッチングを行い、第1のゲート電極直下以外の領域のゲート絶縁膜24を除去する。このとき、同時に、第1のゲート電極の上層のSiO膜26の全部若しくは一部も除去される。
【0040】
次いで、図4(f)に示すように、全面にシリコン酸化膜をCVD法(若しくはスパッタ法)により堆積し、層間絶縁膜30を形成する。この後、層間絶縁膜30上にコンタクトホール形成用のフォトレジストパターン(不図示)を形成し、これをマスクとして反応性イオンエッチング法により層間絶縁膜30をエッチングして、コンタクトホールを開口する。最後に、全面にAl膜をスパッタ法により形成した後、これをパターニングして、ソース電極210、ドレイン電極211、及び第2のゲート電極212を形成してnチャネルMISFETが完成する。
【0041】
次に、図5を用いて、ゲート絶縁膜24の形成工程の詳細を説明する。本実施形態では、窒化膜から成る界面層を形成した後にHfOを堆積した。
【0042】
素子領域が定義された試料に対して、ゲート絶縁膜形成の前処理として希釈フッ酸処理を行った。この前処理工程は、標準的なRCA洗浄でもよいし、その他の洗浄工程でもよい。
【0043】
次いで、前処理が終了したウェハに対して界面窒化層の形成を行った。本実施形態では、RTA(Rapid Thermal Annealing)のチャンバに1Torrのアンモニアを導入し、850℃,3分間の加熱を行った。界面窒化膜形成の工程は、アンモニア窒化以外に、ラジカル窒化やプラズマ窒化を行ってもよい。ラジカル窒化のプロセスの一例は、10−4Torrの窒素ガスを流しているチャンバにRF(13.56MHz),200Wを印加し、500℃で2分間保持することである。このような方法に限らず、他にも様々な窒化法・プロセス条件を用いることができる。
【0044】
なお、ここでは“界面窒化層”を形成したと説明したが、アンモニア中の残留ガス、特にHOの影響で実際には“界面酸窒化膜”になっていることが多い。また、界面窒化膜を形成した試料を大気中に取り出すことでも酸化が進行し、窒化膜が酸窒化膜に変化する。
【0045】
界面窒化層を形成した後に、レーザー・アブレーション(pulsed laser ablation)法で膜厚2nmのHfOを堆積した。本実施形態では、KrFエキシマ・レーザーを用いて、200℃,0.1Torrの窒素雰囲気下でHfOの堆積を行った。HfOの堆積法はレーザー・アブレーション法に限ることはなく、スパッタ法・CVD法など、様々な方法を用いることができる。
【0046】
引き続いて、RTA装置を用いて、窒素雰囲気下で850℃,30秒のポスト・デポジション・アニールを行った。このRTAの条件は、ゲート絶縁膜・基板界面の欠陥を減少すること、及び窒素雰囲気中の残留酸素によってゲート絶縁膜の電気膜厚が増加しないこと、の両方を満たすように決めるべきである。従って、装置の仕様,窒素ガスの性質(残留不純物濃度)によって、ここに示した条件とは異なる温度・時間でアニールをすることがあり得る。
【0047】
次に、スパッタ装置を用いて、100nmの窒化チタン(TiN)を堆積した。本実施形態ではゲート電極として窒化チタンを用いたが、活性化アニールの耐熱性が確保できれば他の金属でもよい。MISFETのしきい値電圧の制御を考慮してゲート電極材料を選ぶべきである。また、従来の電界効果トランジスタのように多結晶シリコンを使うことも可能である。その場合は、導電性ゲート電極上にSiO膜を形成する工程を省略すればよい。
【0048】
以上で本実施形態によるゲート絶縁膜形成の方法の説明を終えるが、本実施形態の有効性を示すために更に、界面層の形成をアンモニア窒化,プラズマ酸窒化などの様々な方法で行って界面層の窒素濃度を幅広く変化させた試料でHfOの堆積とRTAを行い、MISキャパシタを形成した。これらのキャパシタのヒステリシス量と、界面層の組成(界面層の形成直後、及びRTA後)の関係を調べた結果を、図6にまとめた。
【0049】
図6の縦軸のヒステリシス量は、ゲート電圧を正の側から負の側へ掃引する場合のフラットバンド電圧Vfb(hl)と、ゲート電圧を負の側から正の側へ掃引する場合のフラットバンド電圧Vfb(lh)との差:ΔVfb=Vfb(lh)−ΔVfb(hl)で定義した。図6の菱形の記号の横軸は界面酸窒化層形成直後の組成をAES(Auger Electron Spectroscopy)で評価した結果を、また正方形の記号はRTA後の界面酸窒化層の組成を、それぞれ表している。
【0050】
本実施形態の方法では、界面酸窒化膜の組成値x:(SiO(Si1−x がRTA後の最終状態(キャパシタ形成後の状態)で0.65から0.75の範囲に入っており、ヒステリシスの大きさ6mV以内(EOT=2nm)を達成することができた。
【0051】
(第2の実施形態)
本発明の第2の実施形態に係わるMISFETの素子構造は、第1の実施形態と同様なので詳細な説明は省略する。本実施形態は、ゲート絶縁膜の製造工程のみが第1の実施形態と異なる。そこで、ゲート絶縁膜の製造工程について、図7を用いて詳細に説明する。
【0052】
素子領域を定義する工程までを行った試料に対して、ゲート絶縁膜形成の前処理を施した。ここでは希釈フッ酸処理を行ったが、その代わりに標準的なRCA洗浄など、他の洗浄工程に代替することもできる。
【0053】
次に、前処理が終了したウェハに対して界面窒化層の形成を行った。本実施形態では、RTAのチャンバに1Torrのアンモニアを流し、850℃,3分間の加熱を行った。第1の実施形態の場合と同じく、界面窒化層の形成は、ラジカル窒化、プラズマ窒化など、アンモニア窒化以外の方法で代替することもできる。なお、ここでは“界面窒化層”の形成と説明したが、実際にはアンモニア中の微量の残留ガスの影響で”界面酸窒化層”になっていることが多い。
【0054】
次に、レーザー・アブレーション法で膜厚2nmのゲート絶縁膜を堆積した。本実施形態では、組成を制御したハフニウム・アルミニウム酸化物のターゲットを用い、KrFエキシマ・レーザーを使って、200℃,0.1Torrの窒素雰囲気下でハフニウム・アルミニウム酸化層(HfAlO)の堆積を行った。なお、HfAlOの堆積法としては、レーザー・アブレーション法以外に、スパッタ法・CVD法など多様な方法を用いることができる。
【0055】
次に、RTA装置を用いて、窒素雰囲気下で900℃,30秒のポスト・デポジション・アニールを行った。このRTAによって、ゲート絶縁膜及び基板界面の欠陥を減少させることができる。しかし、一方では窒素ガス中の微量の残留酸素によってゲート絶縁膜の電気膜厚が増加する可能性があるので、欠陥の減少と電気膜厚増加の抑制を両立することを念頭に置いてアニール条件を決めるべきである。
【0056】
ここで、Al中の酸素拡散は、HfO中よりも遅いことが知られている。従って、HfAlO中の酸素拡散はHfOと比べて遅くなる。このことは、第1の実施形態の場合(HfO)と比べて、高いアニール温度を使えることを意味しており、本実施形態では900℃のアニールを実施した。
【0057】
HfAlOの堆積に引き続き、スパッタ装置を用いて100nmの窒化チタン(TiN)を堆積した。この実施形態ではゲート電極に窒化チタンを用いたが、活性化アニール時の耐熱性が確保できる他の金属及び金属窒化物も使用できる。もちろん、従来の電界効果トランジスタのように多結晶シリコンを使うことも可能であり、様々なゲート電極材料を用いることができる。
【0058】
RTA後のゲート絶縁膜のMEIS(Medium energy ion scattering)の分析結果によると、界面酸窒化膜層の組成x=0.7、またHfAlO層の組成z=0.8であった。前記図2から判るように、この場合、ヒステリシス量は許容範囲内に抑えられているが、シリコン基板近くに存在する界面酸窒化膜層の反時計回りのヒステリシス量が、ゲート側のHfAlO膜層の時計回りのヒステリシス量よりも少なくなっているため、チャネルキャリアの移動度の揺らぎの抑制に有利な条件になっている。
【0059】
(第3の実施形態)
本発明の第3の実施形態に係わるMISFETの素子構造も、第1の実施形態と同様なので説明は省略する。本実施形態は、ゲート絶縁膜及びゲート電極の製造工程が第1、第2の実施形態と異なるので、その部分に関して図8を用いて詳細に説明する。
【0060】
素子形成の領域を作製した試料に対して、ゲート絶縁膜形成の前処理を施した。ここでは希釈フッ酸処理を行ったが、他の洗浄工程に代替してもよい。本実施形態では界面層の形成は行わなかったが、その代わりに1,2モノレーヤ程度のごく薄い界面窒化膜層若しくは酸窒化膜層を、アンモニア窒化、ラジカル窒化、ダイレクト・プラズマ窒化、リモート・プラズマ窒化などの方法で形成してもよい。
【0061】
次に、HfAlOのターゲットを用いたRFスパッタ法で、ゲート絶縁膜として膜厚5nmのHfAlO膜を形成した。なお、HfAlO膜の堆積法としては、MOCVD法、layer−by−layerのCVD法など、その他の方法とプロセス条件を用いても構わない。引き続き、スパッタ法を用いて、ゲート絶縁膜の表面に酸窒化膜層を形成した。なお、このように表面酸窒化層を形成することは、ヒステリシスの抑制のみならず、ゲート電極からの元素の拡散を抑制するのにも有効である。
【0062】
その次に、RTA装置を用いて、窒素雰囲気下で900℃,30秒のポスト・デポジション・アニールを行った。このRTAによって、ゲート絶縁膜及び基板界面の欠陥を減少させた。Al中の酸素拡散は、HfO中よりも何桁も遅いので、HfAlOの場合もRTAの温度がかなり高くても窒素雰囲気中の残留酸素の影響によるゲート絶縁膜の膜厚増加は問題とならない。
【0063】
ゲート絶縁膜の堆積に引き続き、スパッタ装置を用いて100nmの窒化チタン(TiN)を堆積した。この実施形態ではゲート電極に窒化チタンを用いたが、活性化アニール時の耐熱性が確保できる他の金属及び金属窒化物も使用できる。もちろん、従来の電界効果トランジスタのように多結晶シリコンを使うことも可能であり、様々なゲート電極材料を用いることができる。
【0064】
RTA後のゲート絶縁膜のMEISの分析結果によると、ゲート側の界面酸窒化膜層の組成x=0.4、また、シリコン基板側のHfAlO層の組成z=0.8であった。前記図2から判るように、この場合、ヒステリシス量は許容範囲内に抑えられているが、シリコン基板近くに存在するHfAlO層の時計回りのヒステリシス量が、ゲート側界面側の酸窒化膜層の反時計回りのヒステリシスよりも少なくなっているため、チャネルキャリアの移動度の揺らぎの抑制に有利な条件になっている。
【0065】
(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。実施形態では、ゲート絶縁膜を成す金属酸化物膜における金属の主成分をHf,Al,或いはこれらの混合物としたが、これら以外にZrを用いることも可能である。つまり、金属酸化物膜における金属の主成分としては、Hf,Al,Zrの少なくとも一つを用いることが可能である。つまり、ゲート絶縁膜は、Hf,Al,Zrの少なくとも一つを含む金属酸化物膜と酸窒化物膜との積層構造であればよい。
【0066】
また、実施形態でMISFETについて説明したが、MIS型のキャパシタに適用できるのは勿論のことである。その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。
【0067】
【発明の効果】
以上詳述したように本発明によれば、Hf,Al,Si,O,Nなどからなるゲート絶縁膜、特にハフニウム・アルミニウム・オキサイド層とシリコン酸窒化界面層の積層ゲート絶縁膜において、Hf,Al,Oの組成とSi,O,Nの組成の関係を適切に選ぶことによって、当該ゲート絶縁膜のC−V特性のヒステリシスを抑制することができる。従って、MISFETのしきい値電圧の不安定性を抑制した信頼性の高い集積回路を構成することが可能となる。
【図面の簡単な説明】
【図1】本発明の原理を説明するためのもので、高誘電率絶縁膜と界面層との積層によりヒステリシスが抑制される様子を示す模式図。
【図2】本発明に関わるHfAlO/SiON積層膜の組成とヒステリシスとの関係を示す図。
【図3】第1の実施形態に係わるnチャネルMISFETの製造工程を示す断面図。
【図4】第1の実施形態に係わるnチャネルMISFETの製造工程を示す断面図。
【図5】第1の実施形態におけるゲート絶縁膜の製造工程を示す流れ図。
【図6】第1の実施形態及び他の条件で形成した試料のヒステリシス量の界面層組成に対する依存性を示す特性図。
【図7】第2の実施形態におけるゲート絶縁膜の製造工程を示す流れ図。
【図8】第3の実施形態におけるゲート絶縁膜の製造工程を示す流れ図。
【符号の説明】
21…p型シリコン基板
22…素子分離用の溝
23…シリコン酸化膜(素子分離領域)
24…ゲート絶縁膜
25…窒化チタン膜
26…シリコン酸化膜
27…フォトレジストパターン
28…n型ソース領域
29…n型ドレイン領域
30…シリコン酸化膜(層間絶縁膜)
210…ソース電極(金属電極)
211…ドレイン電極(金属電極)
212…ゲート電極(金属電極)

Claims (4)

  1. シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、
    前記MIS型電界効果トランジスタのゲート絶縁膜は、Hf,Al,Zrの少なくとも一つを含む金属酸化物膜と酸窒化物膜との積層構造であり、前記金属酸化物膜と前記酸窒化物膜とはヒステリシス特性が相互に逆方向であり、前記金属酸化物膜と前記酸窒化物膜とで打ち消し合った後に残るヒステリシス電荷量が1×1011cm−2以下となるように各膜の材料組成を設定してなることを特徴とする半導体装置。
  2. シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、
    前記MIS型電界効果トランジスタのゲート絶縁膜は、金属・シリコン・酸素・窒素を主成分とする誘電体からなり、該誘電体中の金属の主成分がハフニウム,アルミニウム,若しくはそれらの混合物であって、前記誘電体の膜組成を(HfO(Al(SiO(Siと表示し、またα=2×1011cm−2,β=3×1011cm−2,γ=6×1011cm−2,δ=1×1011cm−2としたとき、0≦z≦1,0≦x≦1の範囲の値をとるz=p/(p+q),x=r/(r+s)が
    Figure 2004158498
    という関係を満たすことを特徴とする半導体装置。
  3. シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、
    前記MIS型電界効果トランジスタのゲート絶縁膜は、金属・シリコン・酸素・窒素を主成分とする誘電体からなり、該誘電体中の金属の主成分がハフニウム,アルミニウム,若しくはそれらの混合物であり、前記誘電体の膜厚方向の各位置における膜組成を(HfO (Al (SiO (Si と表すとき、(p’+q’)≧(r’+s’)となる位置が存在し、かつ該位置よりもシリコン基板側に(p’+q’)<(r’+s’)となる位置が存在し、さらに前記誘電体の膜全体としての組成を(HfO(Al(SiO(Siと表示し、またα=2×1011cm−2,β=3×1011cm−2,γ=6×1011cm−2,δ=1×1011cm−2としたとき、0≦z≦1,0≦x≦1の範囲の値をとるz=p/(p+q),x=r/(r+s)が
    Figure 2004158498
    という関係を満たすことを特徴とする半導体装置。
  4. シリコン基板上にMIS型電界効果トランジスタが形成された半導体装置であって、
    前記MIS型電界効果トランジスタのゲート絶縁膜は、金属・シリコン・酸素・窒素を主成分とする誘電体からなり、該誘電体中の金属の主成分がハフニウム,アルミニウム,若しくはそれらの混合物であり、前記誘電体の膜厚方向の各位置における膜組成を(HfO (Al (SiO (Si と表すとき、(p’+q’)≧(r’+s’)となる位置が存在し、かつ該位置よりもゲート電極側に(p’+q’)<(r’+s’)となる位置が存在し、さらに前記誘電体の膜全体としての組成を(HfO(Al(SiO(Siと表示し、またα=2×1011cm−2,β=3×1011cm−2,γ=6×1011cm−2,δ=1×1011cm−2としたとき、0≦z≦1,0≦x≦1の範囲の値をとるz=p/(p+q),x=r/(r+s)が
    Figure 2004158498
    という関係を満たすことを特徴とする半導体装置。
JP2002320096A 2002-11-01 2002-11-01 半導体装置 Expired - Fee Related JP3696196B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320096A JP3696196B2 (ja) 2002-11-01 2002-11-01 半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320096A JP3696196B2 (ja) 2002-11-01 2002-11-01 半導体装置

Publications (2)

Publication Number Publication Date
JP2004158498A true JP2004158498A (ja) 2004-06-03
JP3696196B2 JP3696196B2 (ja) 2005-09-14

Family

ID=32801122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320096A Expired - Fee Related JP3696196B2 (ja) 2002-11-01 2002-11-01 半導体装置

Country Status (1)

Country Link
JP (1) JP3696196B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138693A1 (ja) * 2006-05-31 2007-12-06 Fujitsu Limited 半導体デバイスおよびその作製方法
JP2014187238A (ja) * 2013-03-25 2014-10-02 Toyoda Gosei Co Ltd Mis型半導体装置の製造方法
US20180158921A1 (en) * 2016-12-07 2018-06-07 Tsinghua University Thin film transistor and method for making the same
CN108172626A (zh) * 2016-12-07 2018-06-15 清华大学 一种薄膜晶体管及其制备方法
JP2018098500A (ja) * 2016-12-07 2018-06-21 ツィンファ ユニバーシティ デジタル回路
JP2018098502A (ja) * 2016-12-07 2018-06-21 ツィンファ ユニバーシティ 薄膜トランジスタ及びその製造方法
JP2018098499A (ja) * 2016-12-07 2018-06-21 ツィンファ ユニバーシティ デジタル回路

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007138693A1 (ja) * 2006-05-31 2007-12-06 Fujitsu Limited 半導体デバイスおよびその作製方法
JPWO2007138693A1 (ja) * 2006-05-31 2009-10-01 富士通株式会社 半導体デバイスおよびその作製方法
JP2014187238A (ja) * 2013-03-25 2014-10-02 Toyoda Gosei Co Ltd Mis型半導体装置の製造方法
US20180158921A1 (en) * 2016-12-07 2018-06-07 Tsinghua University Thin film transistor and method for making the same
CN108172626A (zh) * 2016-12-07 2018-06-15 清华大学 一种薄膜晶体管及其制备方法
JP2018098500A (ja) * 2016-12-07 2018-06-21 ツィンファ ユニバーシティ デジタル回路
JP2018098502A (ja) * 2016-12-07 2018-06-21 ツィンファ ユニバーシティ 薄膜トランジスタ及びその製造方法
JP2018098501A (ja) * 2016-12-07 2018-06-21 ツィンファ ユニバーシティ 薄膜トランジスタ及びその製造方法
JP2018098499A (ja) * 2016-12-07 2018-06-21 ツィンファ ユニバーシティ デジタル回路
US10431662B2 (en) 2016-12-07 2019-10-01 Tsinghua University Thin film transistor and method for making the same
US10475936B2 (en) 2016-12-07 2019-11-12 Tsinghua University Thin film transistor and method for making the same

Also Published As

Publication number Publication date
JP3696196B2 (ja) 2005-09-14

Similar Documents

Publication Publication Date Title
US7586159B2 (en) Semiconductor devices having different gate dielectrics and methods for manufacturing the same
US6444592B1 (en) Interfacial oxidation process for high-k gate dielectric process integration
US7396777B2 (en) Method of fabricating high-k dielectric layer having reduced impurity
US8153514B2 (en) Method of forming metal/high-κ gate stacks with high mobility
US7138680B2 (en) Memory device with floating gate stack
KR100889362B1 (ko) 다층 유전체막으로 이루어진 트랜지스터 및 그 제조 방법
US20050098839A1 (en) Semiconductor devices having different gate dielectrics and methods for manufacturing the same
US8796780B2 (en) Semiconductor device and manufacturing method thereof
US20060125026A1 (en) Semiconductor device with high-k dielectric layer
US20060115993A1 (en) Post thermal treatment methods of forming high dielectric layers over interfacial layers in integrated circuit devices
US20060115937A1 (en) Devices for an insulated dielectric interface between high-k material and silicon
US7465618B2 (en) Semiconductor device and method for fabricating the same
US20120299113A1 (en) Semiconductor device and method for fabricating the same
KR100729354B1 (ko) 유전막의 전기적 특성 향상을 위한 반도체 소자의 제조방법
KR101423752B1 (ko) 게이트 스택 형성 동안 고-유전상수 게이트 유전층에서의 포인트 결함을 패시베이팅하는 방법
JP5050351B2 (ja) 半導体装置の製造方法
JP3696196B2 (ja) 半導体装置
KR20220070518A (ko) 게이트 올 어라운드 i/o 엔지니어링
US8633119B2 (en) Methods for manufacturing high dielectric constant films
US20050142715A1 (en) Semiconductor device with high dielectric constant insulator and its manufacture
JP2006114747A (ja) 半導体装置の製造方法
US20120289052A1 (en) Methods for Manufacturing High Dielectric Constant Films
Garcia et al. Formation and characterization of tin layers for metal gate electrodes of CMOS capacitors
Kim et al. Characteristics of ALD HfSiO/sub x/using new Si precursors for gate dielectric applications
US20070232004A1 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R151 Written notification of patent or utility model registration

Ref document number: 3696196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees