JP2004158205A - Manufacturing method of non-aqueous electrolyte secondary battery - Google Patents

Manufacturing method of non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004158205A
JP2004158205A JP2002319998A JP2002319998A JP2004158205A JP 2004158205 A JP2004158205 A JP 2004158205A JP 2002319998 A JP2002319998 A JP 2002319998A JP 2002319998 A JP2002319998 A JP 2002319998A JP 2004158205 A JP2004158205 A JP 2004158205A
Authority
JP
Japan
Prior art keywords
graphite
negative electrode
bulk density
active material
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002319998A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002319998A priority Critical patent/JP2004158205A/en
Publication of JP2004158205A publication Critical patent/JP2004158205A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a non-aqueous electrolyte secondary battery in which energy density can be increased and also battery performance can be improved by using as a negative electrode active material a mixture in which a graphite having high bulk density and a graphite having low bulk density are mixed. <P>SOLUTION: A mixture of graphite having a bulk density of 0.4 g/cc or more in which a graphite having a bulk density of 0.5 g/cc or more and of which graphite particle C<SB>1</SB>becomes spherical or the like and a graphite having a bulk density of 0.25 g/cc or less and of which graphite particle C<SB>2</SB>becomes needle shape or flake shape are mixed is made as a negative electrode active material, and a negative electrode active material mixture 12b in which at least a binder is added to this negative electrode active material is carried by the negative electrode 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、負極電極の負極活物質に黒鉛を用いた非水電解質二次電池の製造方法に関する。
【0002】
【従来の技術】
非水電解質二次電池では、負極活物質に金属イオンの吸蔵体として各種炭素材料を用いることがある。そして、この炭素材料の中でも特に黒鉛(グラファイト)は、比較的安価で取り扱いが容易であり、充放電電位がリチウム金属の溶出電位に近く、充放電の可逆性に優れていることから、リチウムイオン二次電池等に広く用いられている。
【0003】
上記黒鉛を負極活物質として、高エネルギー密度の非水電解質二次電池を製造するには、負極への充填性が高い黒鉛を用いる必要がある。この黒鉛の充填性を表す指標の一つとしてかさ密度があり、黒鉛自体の真密度は約2.2g/ccであるが、この黒鉛の粒子形状等を調整することにより、適宜のかさ密度の黒鉛を製造することができる。例えば、図3に示すように、黒鉛粒子Cを球状に近い大きな塊とした場合には、1.0g/cc程度のかさ密度の高い黒鉛となり、図4に示すように、黒鉛粒子Cの形状を針状やフレーク状とした場合には、0.18g/cc程度のかさ密度の低い黒鉛となる。
【0004】
上記黒鉛を負極活物質として用いるには、この黒鉛にバインダ等を添加してペースト状の合材とする。そして、この合材を負極の集電基材となる銅箔等の表面に塗布し乾燥させて圧密化することによりこの負極に担持させる。
【0005】
【発明が解決しようとする課題】
ところが、かさ密度の高い黒鉛は、バインダを添加して合材としたときに、このバインダを黒鉛粒子間に取り込み難く、合材のペースト中で沈降し易くなる。このため、電池のエネルギー密度を高めるために、かさ密度の高い黒鉛を使用すると、合材中に黒鉛とバインダが不均一に分布するようになるので、良好な充放電特性が得られなくなるという問題があった。また、このような分布の不均一があると、充放電により負極活物質が膨張収縮を繰り返した場合に、合材の電気抵抗が増加し易くなり、寿命性能が低下するという問題もあった。
【0006】
なお、逆にかさ密度の低い黒鉛を使用しても、圧密化によって圧迫することにより多孔度を低下させて充填性を高めることはできるが、針状やフレーク状の黒鉛粒子Cがこの圧密化によって集電基材の表面に平行に配向されるようになるために、電解液が浸透し難くなってエネルギー密度を十分に高めることができない。
【0007】
本発明は、かかる事情に対処するためになされたものであり、かさ密度の高い黒鉛と低い黒鉛を混合して負極活物質として用いることにより、エネルギー密度を高めると共に電池性能も向上させることができる非水電解質二次電池の製造方法を提供することを目的としている。
【0008】
【課題を解決するための手段】
請求項1の非水電解質二次電池の製造方法は、かさ密度が0.5g/cc以上の1種以上の黒鉛とかさ密度が0.25g/cc以下の1種以上の黒鉛とを混合し、かさ密度を0.4g/cc以上とした黒鉛混合物を負極活物質の主成分とした合材を負極に担持させたことを特徴とする。
【0009】
請求項1の発明によれば、かさ密度が高い黒鉛にかさ密度の低い黒鉛を混合することにより、かさ密度の高い球状等の黒鉛粒子の間に、かさ密度の低い針状やフレーク状等の黒鉛粒子が混入するので、これらの黒鉛混合物の粒子間にバインダが入り込み易くなり、合材中で黒鉛とバインダが不均一に分布するようなことがなくなる。即ち、バインダは、大きな球状等からなる黒鉛粒子だけの間の広い間隙には入り込み難いが、この間隙に針状やフレーク状等からなる黒鉛粒子が混入することにより、これらの粒子間に容易に入り込むことができるようになる。これに対して、例えば小さい球状や太いフレーク状の粒子形状を有し、かさ密度が0.4g/cc程度となる黒鉛だけを用いた場合には、大きい球状の粒子からなる黒鉛だけを用いた場合よりは多少改善されるが、球状等と針状、フレーク状等の黒鉛粒子を混合した場合ほど粒子間にバインダが入り込み易くなるようなことはない。従って、このような黒鉛混合物を用いることにより、合材中に黒鉛とバインダとが不均一に分布するようなことがなくなるので良好な電池特性を得ることができる。しかも、このような黒鉛混合物は、全体では0.4g/cc以上の比較的高いかさ密度となるので、負極への充填性を十分に高めることができ、非水電解質二次電池の高エネルギー密度化を損なうようなことがなくなる。
【0010】
なお、上記非水電解質二次電池の製造方法では、合材が負極の集電基材となる金属箔の表面に塗布されて圧密化されることにより担持されるようにすることが好ましい。このようにすれば、金属箔の表面に塗布された合材が圧密化されるので、これにより多孔度を例えば30〜45%の範囲内の最適な値に調整することができ、電池特性を損なわない範囲内でエネルギー密度を高めることができる。また、粒子形状が針状やフレーク状等の黒鉛は、圧密化により伸展し易い特徴を有するため、粒子形状が球状等の黒鉛と混合して圧密化することにより、合材の導電性を高めることもできるようになる。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について図面を参照して説明する。
【0012】
図1〜図2は本発明の一実施形態を示すものであって、図1は黒鉛混合物に混合されたかさ密度の高い黒鉛粒子Cとかさ密度の低い黒鉛粒子Cを示す拡大図、図2は大型の非水電解質二次電池に用いられる長円筒形巻回型の発電要素の構成を示す組み立て斜視図である。
【0013】
大型の非水電解質二次電池に用いられる長円筒形巻回型の発電要素1の構成例を図2に示す。この発電要素1は、正極11と負極12をセパレータ13を介して長円筒形に巻回している。正極11は、集電基材となる帯状のアルミニウム箔11aの表面に正極活物質合材11bを担持させたものである。負極12は、集電基材となる帯状の銅箔12aの表面に負極活物質合材12bを担持させたものである。なお、これらの正極11と負極12は、上下の側端部に合材11b,12bを塗布しない未塗工部を設けておき、この未塗工部でアルミニウム箔11aと銅箔12aが露出するようにして、発電要素1の両端部から端子への接続を行うようにしている。
【0014】
正極活物質合材11bは、リチウムコバルト複合酸化物等のリチウム含有複合酸化物を正極活物質とし、これにバインダや導電補助剤を添加すると共に溶剤を加えてペースト状にしたものであり、アルミニウム箔11aの表面に塗布し乾燥させることにより正極11に担持させている。
【0015】
負極活物質合材12bは、負極活物質として、かさ密度が0.5g/cc以上の黒鉛とかさ密度が0.25g/cc以下の黒鉛とを混合した、かさ密度が0.4g/cc以上の黒鉛混合物を用いる。図3に示したように、かさ密度が0.5g/cc以上の黒鉛の黒鉛粒子Cは、一般には球状に近い大きな塊となる。また、図4に示したように、かさ密度が0.25g/cc以下の黒鉛の黒鉛粒子Cは、一般には針状やフレーク状のものとなる。これらの黒鉛粒子C,Cが混合されると、図1に示すように、かさ密度の高い黒鉛粒子Cの間の広い間隙に、かさ密度の低い黒鉛粒子Cが混入するので、添加するバインダがこのかさ密度の低い黒鉛粒子C間やこれとかさ密度の高い黒鉛粒子Cとの間に入り込み易くなり、全体としてこれらの黒鉛粒子C,Cの間にバインダが均一に広がるようになる。
【0016】
負極活物質合材12bは、上記負極活物質にバインダを添加すると共に溶剤を加えてペースト状にしたものである。バインダとしては、ポリフッ化ビニリデン等のように非水電解液に溶解し難いものが用いられる。このバインダの添加率は、負極活物質合材12bに対して2〜10wt%の範囲内が適当である。バインダの添加率が2wt%未満になると、負極活物質合材12b中の黒鉛粒子C,C間や負極12の銅箔12aの表面との結合が不十分になり、この負極12から負極活物質合材12bが脱落するおそれがある。また、バインダの添加率が10wt%を超えると、負極活物質合材12bの導電性が低下すると共に、黒鉛の含有量が減少するためにエネルギー密度も低下することになる。
【0017】
上記負極活物質合材12bは、銅箔12aの表面に塗布し乾燥させて圧密化することにより負極12に担持させている。圧密化は、ローラ等を用いることにより銅箔12aの表面に塗布された負極活物質合材12bを圧迫するものであり、これにより負極活物質合材12bの多孔度が30〜45%の範囲内となるようにしている。多孔度が大きくなりすぎるとエネルギー密度が低下し、小さくなりすぎると充放電特性が低下する。
【0018】
上記負極活物質合材12bを担持させた負極12は、ポリエチレン樹脂の微多孔膜からなるセパレータ13を介し正極11と重ね合わせて巻回することにより発電要素1が作製される。そして、この発電要素1の両端面にはみ出したアルミニウム箔11aと銅箔12aをそれぞれ正負極の端子に接続すると共に、この発電要素1を電池容器に収納し非水電解液を注入して密閉することにより非水電解質二次電池が製造される。
【0019】
上記構成により本実施形態の非水電解質二次電池の製造方法は、負極12の負極活物質合材12bに用いる負極活物質の黒鉛が、かさ密度の高い黒鉛粒子Cとかさ密度の低い黒鉛粒子Cとを混合した黒鉛混合物からなるので、これらの黒鉛粒子C,Cの間にバインダが入り込み易くなり、負極活物質合材12b中に黒鉛とバインダが均一に分布するようになって、良好な電池特性を得ることができる。しかも、これらかさ密度の異なる黒鉛粒子C,Cが混合した黒鉛混合物は、全体でも0.4g/cc以上の比較的高いかさ密度となるような割合で配合されるので、負極12への充填性を十分に高めることができる。さらに、この負極活物質合材12bは、かさ密度の高い黒鉛粒子Cの間にかさ密度の低い黒鉛粒子Cが混入しているので、圧密化を行っても、このかさ密度の低い黒鉛粒子Cが銅箔12aの表面に平行に配向されてしまうようなことがなくなり、電解液の浸透が妨げられるおそれも生じない。
【0020】
なお、上記実施形態では、かさ密度が高い黒鉛粒子Cとして球状に近い大きな塊の粒子形状を示したが、黒鉛のかさ密度が0.5g/cc以上であれば、どのような粒子形状であっても間隙にバインダが入り込み難くなるので、同様の効果を得ることができる。また、かさ密度が低い黒鉛粒子Cとして針状やフレーク状の粒子形状を示したが、黒鉛のかさ密度が0.25g/cc以下であれば、どのような粒子形状であっても、かさ密度の高い黒鉛粒子Cの間に入り込むことができるので、同様の効果を得ることができる。
【0021】
また、上記実施形態では、黒鉛混合物として、かさ密度の高いものを1種と低いものを1種ずつ混合する場合を示したが、いずれのかさ密度の黒鉛であっても、2種以上用いることができる。さらに、上記実施形態では、黒鉛混合物をそのまま負極活物質として用いたが、このような黒鉛混合物を主成分とするものであれば、他の添加物を含んだ負極活物質を用いることもできる。さらに、上記実施形態では、負極活物質にバインダを添加し溶剤を加えてペースト状の負極活物質合材12bを作製したが、この負極活物質に少なくともバインダを添加した負極活物質合材12bであればよく、その他の添加物の有無は問わない。
【0022】
また、上記実施形態では、負極12をセパレータ13を介して正極11と共に長円筒形に巻回した発電要素1について示したが、巻回の形状は任意であり、積層型の発電要素にも同様に実施可能である。さらに、上記実施形態では、正極活物質にリチウム含有複合酸化物を用いた非水電解質二次電池について示したが、他の正極活物質を用いる非水電解質二次電池の製造方法にも同様に実施可能である。
【0023】
【発明の効果】
以上の説明から明らかなように、本発明の非水電解質二次電池の製造方法によれば、負極活物質としてかさ密度の高い黒鉛にかさ密度の低い黒鉛を混合した黒鉛混合物を用いることにより、非水電解質二次電池の高エネルギー密度化を図ると共に、電池特性も向上させることができるようになる。
【図面の簡単な説明】
【図1】本発明の一実施形態を示すものであって、黒鉛混合物に混合されたかさ密度の高い黒鉛粒子Cとかさ密度の低い黒鉛粒子Cを示す拡大図である。
【図2】本発明の一実施形態を示すものであって、大型の非水電解質二次電池に用いられる長円筒形巻回型の発電要素の構成を示す組み立て斜視図である。
【図3】従来例を示すものであって、かさ密度の高い黒鉛の黒鉛粒子Cを示す拡大図である。
【図4】従来例を示すものであって、かさ密度の低い黒鉛の黒鉛粒子Cを示す拡大図である。
【符号の説明】
かさ密度の高い黒鉛の黒鉛粒子
かさ密度の低い黒鉛の黒鉛粒子
12 負極
12a 銅箔
12b 負極活物質合材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a non-aqueous electrolyte secondary battery using graphite as a negative electrode active material of a negative electrode.
[0002]
[Prior art]
In a non-aqueous electrolyte secondary battery, various carbon materials may be used as a negative electrode active material as a metal ion occlusion material. Among these carbon materials, graphite (graphite) is relatively inexpensive and easy to handle. The charge / discharge potential is close to the elution potential of lithium metal, and the charge / discharge reversibility is excellent. Widely used for secondary batteries and the like.
[0003]
In order to manufacture a non-aqueous electrolyte secondary battery having a high energy density using the above graphite as a negative electrode active material, it is necessary to use graphite having a high filling property to the negative electrode. Bulk density is one of the indices indicating the fillability of the graphite, and the true density of the graphite itself is about 2.2 g / cc. By adjusting the particle shape and the like of the graphite, an appropriate bulk density can be obtained. Graphite can be manufactured. For example, as shown in FIG. 3, when the graphite particles C 1 was large clumps close to spherical, it becomes high bulk density of about 1.0 g / cc graphite, as shown in FIG. 4, the graphite particles C 2 When the shape is a needle shape or a flake shape, graphite having a low bulk density of about 0.18 g / cc is obtained.
[0004]
In order to use the graphite as a negative electrode active material, a binder or the like is added to the graphite to form a paste-like mixture. Then, this mixture is applied to the surface of a copper foil or the like serving as a current collecting base material of the negative electrode, dried and consolidated to be supported on the negative electrode.
[0005]
[Problems to be solved by the invention]
However, graphite having a high bulk density, when a binder is added to form a mixture, makes it difficult for this binder to be taken in between graphite particles, and tends to settle in the paste of the mixture. For this reason, when graphite having a high bulk density is used to increase the energy density of the battery, the graphite and the binder are non-uniformly distributed in the mixture, so that good charge / discharge characteristics cannot be obtained. was there. In addition, when the distribution is non-uniform, when the negative electrode active material repeatedly expands and contracts due to charge and discharge, the electric resistance of the mixture tends to increase, and there is a problem that the life performance is reduced.
[0006]
Even using graphite low bulk density Conversely, although it is possible to enhance the filling property by lowering the porosity by compression by compaction, acicular or flaky graphite particles C 2 is the compaction As a result, the electrolyte becomes difficult to penetrate, and the energy density cannot be sufficiently increased.
[0007]
The present invention has been made in order to cope with such circumstances, and by using a mixture of graphite having a high bulk density and low graphite as a negative electrode active material, it is possible to increase energy density and improve battery performance. An object of the present invention is to provide a method for manufacturing a non-aqueous electrolyte secondary battery.
[0008]
[Means for Solving the Problems]
In the method for producing a nonaqueous electrolyte secondary battery according to claim 1, one or more types of graphite having a bulk density of 0.5 g / cc or more and one or more types of graphite having a bulk density of 0.25 g / cc or less are mixed. The negative electrode is characterized in that a mixture containing a graphite mixture having a bulk density of 0.4 g / cc or more as a main component of the negative electrode active material is supported on the negative electrode.
[0009]
According to the invention of claim 1, by mixing graphite having a low bulk density with graphite having a high bulk density, needle-like or flake-like particles having a low bulk density are interposed between graphite particles having a high bulk density. Since the graphite particles are mixed, the binder easily enters between the particles of the graphite mixture, thereby preventing the graphite and the binder from being unevenly distributed in the mixture. That is, the binder does not easily enter a wide gap between only the graphite particles having a large spherical shape or the like, but the graphite particles having a needle shape or a flake shape are easily mixed into these gaps. You will be able to get in. On the other hand, for example, when only graphite having a small spherical or thick flake-like particle shape and a bulk density of about 0.4 g / cc is used, only graphite consisting of large spherical particles is used. Although it is slightly improved as compared with the case, the binder does not easily enter between the particles as in the case where graphite particles such as spherical particles and needle-like or flake-like particles are mixed. Therefore, by using such a graphite mixture, non-uniform distribution of the graphite and the binder in the composite material is eliminated, so that good battery characteristics can be obtained. In addition, such a graphite mixture has a relatively high bulk density of 0.4 g / cc or more as a whole, so that the filling property of the negative electrode can be sufficiently increased, and the high energy density of the nonaqueous electrolyte secondary battery can be improved. It does not impair conversion.
[0010]
In the method for producing a nonaqueous electrolyte secondary battery, it is preferable that the mixture is applied to the surface of a metal foil serving as a current collecting base material of the negative electrode, and is consolidated to be supported. In this way, the mixture applied to the surface of the metal foil is compacted, so that the porosity can be adjusted to an optimal value within a range of, for example, 30 to 45%, and the battery characteristics can be improved. The energy density can be increased within a range that does not impair. In addition, graphite having a needle shape or a flake shape, which has a characteristic of being easily extensible by compaction, has a particle shape mixed with graphite such as a spherical shape to be compacted, thereby enhancing the conductivity of the mixture. You can also do things.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
Figures 1-2, there is shown an embodiment of the present invention, FIG. 1 is an enlarged view showing a lower graphite particles C 2 high graphite particles C 1 and bulk density bulk density mixed graphite mixture, FIG. 2 is an assembled perspective view showing a configuration of a long cylindrical wound type power generating element used for a large non-aqueous electrolyte secondary battery.
[0013]
FIG. 2 shows a configuration example of a long cylindrical wound type power generating element 1 used for a large non-aqueous electrolyte secondary battery. In the power generation element 1, a positive electrode 11 and a negative electrode 12 are wound in a long cylindrical shape with a separator 13 interposed therebetween. The positive electrode 11 is obtained by supporting a positive electrode active material mixture 11b on the surface of a strip-shaped aluminum foil 11a serving as a current collecting base material. The negative electrode 12 is obtained by supporting a negative electrode active material mixture 12b on the surface of a strip-shaped copper foil 12a serving as a current collecting base material. The positive electrode 11 and the negative electrode 12 are provided with uncoated portions where the mixture materials 11b and 12b are not applied at upper and lower side edges, and the aluminum foil 11a and the copper foil 12a are exposed at the uncoated portions. In this way, connection is made from both ends of the power generating element 1 to the terminals.
[0014]
The positive electrode active material mixture 11b is obtained by using a lithium-containing composite oxide such as a lithium-cobalt composite oxide as a positive electrode active material, adding a binder and a conductive auxiliary agent, and adding a solvent to the paste to form a paste. It is applied to the surface of the foil 11a and dried to be supported on the positive electrode 11.
[0015]
The negative electrode active material mixture 12b is a mixture of graphite having a bulk density of 0.5 g / cc or more and graphite having a bulk density of 0.25 g / cc or less as a negative electrode active material, and having a bulk density of 0.4 g / cc or more. Using a graphite mixture. As shown in FIG. 3, the graphite particles C 1 of the above graphite bulk density of 0.5 g / cc is a great mass close to spherical in general. Further, as shown in FIG. 4, the graphite particles C 2 of less graphite bulk density of 0.25 g / cc is generally it becomes acicular or flaky. When these graphite particles C 1 and C 2 are mixed, as shown in FIG. 1, graphite particles C 2 having a low bulk density are mixed in a wide gap between the graphite particles C 1 having a high bulk density. binder added becomes easily enter between the high graphite particle C 1 lower graphite particles C 2 and between this and bulk density of this bulk density, binder uniformly between these graphite particles C 1, C 2 as a whole It will spread to.
[0016]
The negative electrode active material mixture 12b is obtained by adding a binder and a solvent to the negative electrode active material to form a paste. As the binder, one hardly soluble in a non-aqueous electrolyte such as polyvinylidene fluoride is used. The addition rate of the binder is suitably in the range of 2 to 10 wt% with respect to the negative electrode active material mixture 12b. When the addition ratio of the binder is less than 2 wt%, the bonding between the graphite particles C 1 and C 2 in the negative electrode active material mixture 12 b and the surface of the copper foil 12 a of the negative electrode 12 becomes insufficient, and the negative electrode 12 The active material mixture 12b may fall off. On the other hand, when the addition ratio of the binder exceeds 10% by weight, the conductivity of the negative electrode active material mixture 12b decreases, and the energy density also decreases because the graphite content decreases.
[0017]
The negative electrode active material mixture 12b is applied to the surface of the copper foil 12a, dried and consolidated to be supported on the negative electrode 12. The consolidation is to press the negative electrode active material mixture 12b applied to the surface of the copper foil 12a by using a roller or the like, whereby the porosity of the negative electrode active material mixture 12b is in the range of 30 to 45%. I'm trying to be inside. If the porosity is too large, the energy density is reduced, and if it is too small, the charge / discharge characteristics are reduced.
[0018]
The negative electrode 12 supporting the negative electrode active material mixture 12b is superposed and wound on the positive electrode 11 via a separator 13 formed of a microporous polyethylene resin film, whereby the power generating element 1 is manufactured. Then, the aluminum foil 11a and the copper foil 12a protruding from both end surfaces of the power generating element 1 are respectively connected to positive and negative terminals, and the power generating element 1 is housed in a battery container, and a non-aqueous electrolyte is injected and sealed. Thereby, a non-aqueous electrolyte secondary battery is manufactured.
[0019]
Method of manufacturing a nonaqueous electrolyte secondary battery of the present embodiment by the above configuration, the graphite of the negative electrode active material used for the negative electrode active material cause material 12b of the negative electrode 12 is less high graphite particles C 1 and bulk density bulk density graphite since the graphite-made mixture obtained by mixing the particles C 2, easily enter the binder between these graphite particles C 1, C 2, so as graphite and a binder is uniformly distributed in the anode active material cause material 12b As a result, good battery characteristics can be obtained. In addition, the graphite mixture in which the graphite particles C 1 and C 2 having different bulk densities are mixed is blended at a ratio so as to have a relatively high bulk density of 0.4 g / cc or more as a whole. The filling property can be sufficiently improved. Further, the anode active material cause material 12b, since the graphite particles C 2 low bulk density between graphite particles high bulk density C 1 is mixed, even if the compaction, a low the bulk density graphite prevents particles C 2 is that would be oriented parallel to the surface of the copper foil 12a, penetration of the electrolyte contact it does not occur that interfere.
[0020]
In the above embodiment, although the particle shape of the large masses close to spherical as the bulk density is high graphite particles C 1, if the bulk density of graphite 0.5 g / cc or more, in any particle shape Even if there is, it is difficult for the binder to enter the gap, so that the same effect can be obtained. Further, although the needle and flaky particle shape bulk density as low graphite particles C 2, if the bulk density of the graphite is less than 0.25 g / cc, whatever the particle shape, bulk it is possible to enter between the dense graphite particles C 1, it is possible to obtain the same effect.
[0021]
Further, in the above-described embodiment, the case where one kind of high bulk density and one kind of low bulk density are mixed is described as the graphite mixture, but two or more kinds of graphite of any bulk density are used. Can be. Further, in the above embodiment, the graphite mixture is used as it is as the negative electrode active material, but a negative electrode active material containing other additives can also be used as long as such a graphite mixture is the main component. Further, in the above embodiment, a paste was added to the negative electrode active material and a solvent was added to prepare a paste-like negative electrode active material mixture 12b. However, the negative electrode active material mixture 12b obtained by adding at least a binder to this negative electrode active material was used. It does not matter whether or not other additives are present.
[0022]
Further, in the above embodiment, the power generating element 1 in which the negative electrode 12 is wound together with the positive electrode 11 through the separator 13 into an elongated cylindrical shape is shown, but the winding shape is arbitrary, and the same applies to the stacked power generating element. Can be implemented. Furthermore, in the above embodiment, the non-aqueous electrolyte secondary battery using the lithium-containing composite oxide as the positive electrode active material has been described. However, the same applies to a method for manufacturing a non-aqueous electrolyte secondary battery using another positive electrode active material. It is feasible.
[0023]
【The invention's effect】
As is apparent from the above description, according to the method for producing a nonaqueous electrolyte secondary battery of the present invention, by using a graphite mixture obtained by mixing a low bulk density graphite with a high bulk density graphite as the negative electrode active material, The energy density of the non-aqueous electrolyte secondary battery can be increased, and the battery characteristics can be improved.
[Brief description of the drawings]
[1] there is shown an embodiment of the present invention, is an enlarged view showing mixed bulk density high graphite particles C 1 and bulk low density of graphite particles C 2 graphite mixture.
FIG. 2, showing an embodiment of the present invention, is an assembled perspective view showing a configuration of a long cylindrical wound-type power generating element used for a large-sized non-aqueous electrolyte secondary battery.
[3] there is shown a conventional example is an enlarged view showing the graphite particles C 1 of a high bulk density graphite.
[4] there is shown a conventional example is an enlarged view showing a graphite particle C 2 low bulk density graphite.
[Explanation of symbols]
C 1 Graphite particles of graphite with high bulk density C 2 Graphite particles of graphite with low bulk density 12 Negative electrode 12a Copper foil 12b Negative electrode active material mixture

Claims (1)

かさ密度が0.5g/cc以上の1種以上の黒鉛とかさ密度が0.25g/cc以下の1種以上の黒鉛とを混合し、かさ密度を0.4g/cc以上とした黒鉛混合物を負極活物質の主成分とした合材を負極に担持させたことを特徴とする非水電解質二次電池の製造方法。A graphite mixture having a bulk density of 0.4 g / cc or more is obtained by mixing one or more graphites having a bulk density of 0.5 g / cc or more with one or more graphites having a bulk density of 0.25 g / cc or less. A method for producing a non-aqueous electrolyte secondary battery, wherein a mixture containing a main component of a negative electrode active material is supported on a negative electrode.
JP2002319998A 2002-11-01 2002-11-01 Manufacturing method of non-aqueous electrolyte secondary battery Pending JP2004158205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319998A JP2004158205A (en) 2002-11-01 2002-11-01 Manufacturing method of non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002319998A JP2004158205A (en) 2002-11-01 2002-11-01 Manufacturing method of non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004158205A true JP2004158205A (en) 2004-06-03

Family

ID=32801055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319998A Pending JP2004158205A (en) 2002-11-01 2002-11-01 Manufacturing method of non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004158205A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100124707A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
US7767346B2 (en) 2005-10-17 2010-08-03 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US8048339B2 (en) 2006-12-19 2011-11-01 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
WO2012164834A1 (en) * 2011-05-30 2012-12-06 株式会社豊田自動織機 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
KR20170053123A (en) 2015-11-05 2017-05-15 주식회사 엘지화학 Negative electrode active material and negative electrode for secondary battery comprising the same
WO2024066086A1 (en) * 2022-09-26 2024-04-04 欣旺达动力科技股份有限公司 Secondary battery and battery pack

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012082B2 (en) 2004-03-08 2015-04-21 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US8709653B2 (en) 2004-03-08 2014-04-29 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US7767346B2 (en) 2005-10-17 2010-08-03 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US8906557B2 (en) 2006-04-17 2014-12-09 Samsung Sdi Co., Ltd. Anode active material and method of preparing the same
US8048339B2 (en) 2006-12-19 2011-11-01 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US8562869B2 (en) 2006-12-19 2013-10-22 Samsung Sdi Co., Ltd. Porous anode active material, method of preparing the same, and anode and lithium battery employing the same
US9806333B2 (en) 2008-11-14 2017-10-31 Sony Corporation Secondary battery and anode
US9620810B2 (en) * 2008-11-14 2017-04-11 Sony Corporation Secondary battery and anode
US20100124707A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
JPWO2012164834A1 (en) * 2011-05-30 2015-02-23 株式会社豊田自動織機 Lithium ion secondary battery
CN103650217B (en) * 2011-05-30 2017-02-15 国立大学法人群马大学 Lithium ion secondary cell
CN103650217A (en) * 2011-05-30 2014-03-19 国立大学法人群马大学 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
US9735422B2 (en) 2011-05-30 2017-08-15 National University Corporation Gunma University Lithium ion secondary cell
WO2012164834A1 (en) * 2011-05-30 2012-12-06 株式会社豊田自動織機 Negative-electrode active material for lithium ion secondary cell, and negative electrode and secondary cell using negative-electrode active material for lithium ion secondary cell
KR20170053123A (en) 2015-11-05 2017-05-15 주식회사 엘지화학 Negative electrode active material and negative electrode for secondary battery comprising the same
US10056613B2 (en) 2015-11-05 2018-08-21 Lg Chem, Ltd. Negative electrode active material and negative electrode for secondary battery comprising the same
WO2024066086A1 (en) * 2022-09-26 2024-04-04 欣旺达动力科技股份有限公司 Secondary battery and battery pack

Similar Documents

Publication Publication Date Title
KR101982682B1 (en) Lithium secondary battery
JP6841971B2 (en) Positive electrode material for lithium ion secondary battery, positive electrode active material layer, and lithium ion secondary battery
US4197366A (en) Non-aqueous electrolyte cells
JP2000208147A (en) Lithium ion secondary battery
JP2004296108A (en) Nonaqueous electrolyte battery
EP3767709A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP3605256B2 (en) Carbon material for negative electrode of lithium ion secondary battery and lithium ion secondary battery using the carbon material for negative electrode
JPH11345607A (en) Positive electrode for lithium secondary battery
JP2004158205A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2008027879A (en) Lithium secondary battery and electrode therefor
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JP2009004357A (en) Nonaqueous electrolyte lithium-ion secondary battery
JP4430778B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP4120439B2 (en) Lithium ion secondary battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP3216451B2 (en) Non-aqueous electrolyte battery
CN105513814A (en) Energy type capacitor battery
JP2002117832A (en) Lithium secondary battery
JP6709991B2 (en) Lithium ion secondary battery
KR102630117B1 (en) Positive electrode composition for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
CN113054159A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
US20170149055A1 (en) Lithium-ion secondary battery
JPH113706A (en) Lithium secondary battery
KR100571457B1 (en) Anode Material in Li-ion Battery for Improving Capacity And Fabrication Method for The Same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080528

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081001