JP2004157096A - Two-dimensional separating mechanism for chemical substance, and its device - Google Patents

Two-dimensional separating mechanism for chemical substance, and its device Download PDF

Info

Publication number
JP2004157096A
JP2004157096A JP2002355960A JP2002355960A JP2004157096A JP 2004157096 A JP2004157096 A JP 2004157096A JP 2002355960 A JP2002355960 A JP 2002355960A JP 2002355960 A JP2002355960 A JP 2002355960A JP 2004157096 A JP2004157096 A JP 2004157096A
Authority
JP
Japan
Prior art keywords
separation
dimensional
flow
separation mechanism
chromatography
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355960A
Other languages
Japanese (ja)
Inventor
Minoru Seki
実 関
Masumi Yamada
真澄 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002355960A priority Critical patent/JP2004157096A/en
Publication of JP2004157096A publication Critical patent/JP2004157096A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6095Micromachined or nanomachined, e.g. micro- or nanosize
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • G01N30/463Flow patterns using more than one column with serial coupling of separation columns for multidimensional chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/80Fraction collectors
    • G01N30/82Automatic means therefor

Abstract

<P>PROBLEM TO BE SOLVED: To quickly and easily perform two-dimensional separation of a chemical substance such as protein with high reproducibility, and to easily perform the automatization of separation, and the change of a separating condition. <P>SOLUTION: The chemical substance separated by liquid chromatography is separated in the direction vertical to the flow by electric field applied in the direction vertical to the flow in a channel connected to a column 17 of the chromatography in series to perform the two-dimensional separation on the basis of an outflow time and a position. In particular, high-speed separation can be performed by keeping a pH gradient effective for separation of protein and reducing electrode interval by applying the electric field in a small channel. Further a space for a connecting part can be reduced by configurating the entire system as a microchip, and the general-purpose separating/analyzing device capable of utilizing various methods such as liquid chromatography and electric separation can be constructed. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は,化学物質の二次元分離機構及びその装置に関する。
【従来の技術】
【0002】
数千種類以上の性質の似通った化学物質の混合物を個別の物質に分離する場合,一回の電気泳動やクロマトグラフィーなどでは分離性能に限界があるため,しばしば,分離条件や分離原理の異なる二つの分離方法を組み合わせた二次元分離法が用いられる。
【0003】
二次元分離法の中で良く知られているのは,タンパク質混合物の分離を目的とした方法で,ゲルプレートを用い,等電点電気泳動とSDSポリアクリルアミド電気泳動を組み合わせた二次元電気泳動法である。この他にも,多段の液体クロマトグラフィーや,マイクロチップを利用したミセル導電クロマトグラフィーと電気泳動の組み合わせによる疑似二次元分離法なども知られている。
【0004】
しかし,上記の方法は,装置が大掛かりになる,あるいは,煩雑な操作が必要で再現性が低い,あるいは,目的に応じた分離方法の変更が容易ではないなどの問題点がある。また,疑似的な二次元分離法は,性質の似通ったタンパク質の分離などには分離の解像度を十分に高くすることが難しいという問題点もある。
【0005】
【発明が解決しようとする課題】
本発明は,従来の技術の有する上記のような種々の問題点に鑑みてなされたものであり,その目的とするところは,新規な原理を用いた化学物質の二次元分離機構及びその装置を提供することで,さらに,目的に応じた分離条件・分離原理の変更が比較的容易である,再現性が高く,迅速で,自動化も容易に行うことのできる,二次元分離機構及びその装置を提供することである。
【0006】
【課題を解決するための手段】
上記目的を達成するために,本発明では,液体クロマトグラフィーによる分離と,電場を利用した分離を直列に接続した二次元分離機構及びその装置を提案する。
【0007】
図1には,本発明の原理を説明するための概念説明図が示されている。本発明のうち請求項1に記載の発明は,液体クロマトグラフィーにより分離され,液体クロマトグラフィーのカラムから溶出した物質を,クロマトグラフィーのカラムに直列に接続され,流れと垂直な方向に電場を印加した流路Aに導入し,流れと垂直な方向に分離する,というものである。
【0008】
したがって,本発明のうち請求項1に記載の発明によれば,導入された化学物質の混合物は,一次元目のクロマトグラフィーによって分離されることにより個々に異なる時間で溶出し,二次元目で電気によって分離されることにより流れと垂直な方向に異なる位置で流出する。このことにより,時間と位置による二次元な分離を行うことができる。
【0009】
なお,分離された物質の検出あるいは回収の場所は,図1に示すように,流路Aの出口もしくはその近傍にあり,流れと垂直な線上に選ぶことできる。分析の方法としては,光学的検出,電気化学的検出,マススペクトロメトリー等を用いることができる。
【0010】
また,この方法においては,クロマトグラフィー及び電気による分離に関して,いくつかの異なる原理を自由に選択することができる。クロマトグラフィーの例としては,ゲル濾過クロマトグラフィー,イオン交換クロマトグラフィー,疎水クロマトグラフィー,アフィニティークロマトグラフィー,逆相クロマトグラフィー等を用いることができ,電気泳動の例としては,ゲル電気泳動,等電点電気泳動,ミセル導電クロマトグラフィー等を用いることができる。
【0011】
また,本発明のうち請求項2に記載の発明は,流路Aにおいて緩衝液等により流れと垂直な方向にpHの勾配を持たせたものである。
【0012】
したがって,本発明のうち請求項2に記載の発明によれば,印加する電圧によって物質はその等電点に等しいpHの地点に移動するため,流路Aにおいて等電点電気泳動を行うことが可能になる。この方法は,タンパク質の分離・分析おいて,特に有用である。
【0013】
また,本発明のうち請求項3に記載の発明は,二次元目の電気による分離法をマイクロメートルからミリメートルのスケールで行うものである。
【0014】
したがって,本発明のうち請求項3に記載の発明によれば,微少なスケールの効果により流路Aにおける流れを安定的に層流に保つことができるため,二次元目に作成されたpH勾配が安定に保持され,分離性能を向上させることができる。また,移動距離を短縮することができるため,僅かな電圧によっても迅速な分離が可能となる。
【0015】
また,本発明のうち請求項4に記載の発明は,図1における流路Aとして,マイクロチップ上に加工することによって作成したマイクロチャネルを用いる方法である。
【0016】
したがって,本発明のうち請求項4に記載の発明によれば,流路Aの幅,深さ,長さ,また印加電圧,滞留時間を正確にコントロールすることが可能となり,また,本発明のうち請求項3に記載の発明を容易に実現することが可能となる。
【0017】
また,本発明のうち請求項5に記載の発明は,流路Aと,クロマトグラフィーのカラムを同一のマイクロチップ上に加工する,というものである。
【0018】
したがって,本発明のうち請求項5に記載の発明によれば,二次元分離機構のための装置を,正確に,かつ容易に作成することが可能となり,また,クロマトグラフィーと電気による分離法の間のデッドスペースを小さくすることが可能となるため,より性能の高い二次元分離を行うことが可能となる。
【0019】
また,本発明のうち請求項6に記載の発明は,本発明のうち請求項5に記載の,クロマトグラフィーのカラムと流路Aのみならず,試料導入構造あるいは溶出液の組成を調整するための液体を混合するための構造を同一のマイクロチップに加工する,というものである。
【0020】
したがって,本発明のうち請求項6に記載の発明によれば,二次元分離に必要な装置を全て同一のマイクロチップに加工することで,操作の統合が可能となり,再現性の良い分離方法が可能となる。
【0021】
【発明の実施の形態】
以下,添付の図面に基づいて,本発明による化学物質の二次元分離機構の実施の形態を詳細に説明するものとする。
【0022】
図2(a)(b)には,本発明による二次元分離機構の実施の形態を備えたマイクロチップが示されており,図2(a)は図2(b)におけるA矢視図であり,図2(b)は図2(a)におけるB−B線による断面図である。
【0023】
このマイクロチップ10は,イオン交換クロマトグラフィーと等電点電気泳動による二次元分離を行うためのマイクロチップであり,例えば,PDMS(ポリジメチルシロキサン)などの高分子(ポリマー)材料によって形成された,2枚の平板状の基板11と12により形成されている。
【0024】
そして,基板11の下面11aと基板12の上面12aには,それぞれ深さの異なるマイクロチャネルが形成されており,その深さは例えば,それぞれ10μm,150μm程度である。
【0025】
ポート13,14は,それぞれ異なるイオン濃度をもつ緩衝液の入口であり,それぞれの流量を変化させ,マイクロミキサー15を通過させることにより,クロマトグラフィーにおける溶離液のイオン濃度に勾配を持たせることが可能になる。
【0026】
ポート16はクロマトグラフィー担体とサンプルの入口であり,ここから導入された担体は,フリット構造18において,その深さが担体の直径よりも小さいために堰き止められ,クロマトグラフィーのカラム17に長さ数mm程度充填される。なお,クロマトグラフィー担体としては,例えばファルマシア社製SOURCETM30Qアニオン交換ビーズなどを用いることができる。
【0027】
ポート19,20,21,22はそれぞれ異なるpHをもつ緩衝液の入口であり,二次元目の等電点電気泳動のための流路23内に,流れと垂直な方向にpH勾配を持たせることができる。
【0028】
なお,流路23のサイズは,例えば幅1000μm,深さ150μm,長さ15mmであり,この中での滞留時間を約45秒程度にした場合,流れは乱れることなく安定に層流を保つため,pH勾配は乱れることなく維持される。
【0029】
24,25は電極であり,例えば,幅0.5mm,長さ1.5mmのPd板などを用いることができる。
【0030】
26,27のポートは,外部電源と電極を結ぶためのポートであり,導電性カーボンペーストなどを充填することができる。
【0031】
28は観察する位置を線状に示したものであり,この線上において,光学的検出などを行うことができる。
【0032】
ポート29は,マイクロチップに導入された緩衝液やサンプル溶液などの出口である。
【0033】
以上の構成において,上記したマイクロチップ10を用いた二次元分離機構について,タンパク質の分離を例に取って説明する。
【0034】
まず,あらかじめタンパク質の吸着を防ぐために,酸素プラズマによる処理を施し,引き続いて,クロマトグラフィーのカラム17に,クロマトグラフィーの担体を導入しておく。
【0035】
次に,ポート13,14から,イオン濃度が異なり,pHが同じ緩衝液をそれぞれ一定の流量になるように導入し,同時に,ポート19,20,21,22からpHが異なる液体をそれぞれ一定の流量になるように導入する。この時,電極24を正極,電極25を負極とする場合には,導入する緩衝液のpHは,低い順に,20<19<13=14<21<22である。
【0036】
次に,サンプル溶液をポート16から導入し,タンパク質をクロマトグラフィーのカラム17中の担体に吸着させる。なお,ポート16は,サンプル導入時以外には,緩衝液が漏れ出ることを防ぐために閉鎖する。
【0037】
ポート13,14から導入する緩衝液の流量の比率を,段階的に変化させることで,クロマトグラフィーのカラム17における緩衝液のイオン濃度を変化させると共に,電極24,25の間に電圧を印加する。
【0038】
検出ポイント28付近を経時的に顕微鏡とCCDカメラなどを用いて観察することで,一次元目をクロマトグラフィーでの溶出時間,二次元目を検出ポイント28に沿った位置としたタンパク質の二次元分離を検出する。
【0039】
実際に,上記の二次元分離機構において,蛍光標識されたタンパク質BSAとIgGを,数分程度で,二次元的に分離することに成功している。
【0040】
【発明の効果】
本発明は,以上説明したような機構に基づいているため,目的に応じた分離方法の選択が可能であるという優れた効果を奏する。
【0041】
また,本発明は,以上説明したような機構に基づいているため,再現性の向上,分析時間の短縮,操作の簡便化などの優れた効果を奏する。
【図面の簡単な説明】
【図1】本発明の原理を説明するための概念説明図である。
【図2】本発明による二次元分離機構の実施の形態を備えたマイクロチップを示し,図2(a)は図2(b)におけるA矢視図であり,図2(b)は図2(a)におけるB−B線による断面図である。
【符号の説明】
10 マイクロチップ
11 基板
11a 基板11下面
12 基板
12a 基板12上面
13 ポート
14 ポート
15 ミキサー
16 ポート
17 カラム
18 フリット構造
19 ポート
20 ポート
21 ポート
22 ポート
23 流路
24 電極
25 電極
26 ポート
27 ポート
28 検出ポイント
29 ポート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a two-dimensional separation mechanism for chemical substances and an apparatus therefor.
[Prior art]
[0002]
When a mixture of thousands or more of similar chemical substances is separated into individual substances, separation performance is often limited by single electrophoresis or chromatography. A two-dimensional separation method combining two separation methods is used.
[0003]
A well-known two-dimensional separation method is a method for separating protein mixtures, which uses gel plates and combines isoelectric focusing and SDS polyacrylamide electrophoresis. It is. In addition, a multi-stage liquid chromatography, a quasi two-dimensional separation method using a combination of micelle conduction chromatography using a microchip and electrophoresis, and the like are also known.
[0004]
However, the above-mentioned method has problems that the apparatus becomes large-scale, complicated operations are required, the reproducibility is low, and it is not easy to change the separation method according to the purpose. In addition, the pseudo two-dimensional separation method has a problem that it is difficult to sufficiently increase the resolution of separation for separation of proteins having similar properties.
[0005]
[Problems to be solved by the invention]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned various problems of the prior art, and an object of the present invention is to provide a two-dimensional chemical substance separation mechanism and a device using a novel principle. In addition, the provision of a two-dimensional separation mechanism and its equipment, which makes it easy to change the separation conditions and separation principle according to the purpose, has high reproducibility, is quick, and can be easily automated. To provide.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes a two-dimensional separation mechanism in which separation by liquid chromatography and separation using an electric field are connected in series, and an apparatus therefor.
[0007]
FIG. 1 is a conceptual explanatory diagram for explaining the principle of the present invention. According to the first aspect of the present invention, a substance separated by liquid chromatography and eluted from a liquid chromatography column is connected in series to the chromatography column, and an electric field is applied in a direction perpendicular to the flow. Is introduced into the flow path A and separated in a direction perpendicular to the flow.
[0008]
Therefore, according to the first aspect of the present invention, the mixture of the introduced chemical substances is eluted at different times by being separated by the first-dimensional chromatography, and is eluted at different times. By being separated by electricity, it flows out at a different position in the direction perpendicular to the flow. This allows two-dimensional separation by time and position.
[0009]
As shown in FIG. 1, the location for detecting or collecting the separated substance is at or near the outlet of the flow channel A, and can be selected on a line perpendicular to the flow. As a method of analysis, optical detection, electrochemical detection, mass spectrometry and the like can be used.
[0010]
Also, in this method, several different principles can be freely selected with regard to chromatography and electrical separation. Examples of chromatography include gel filtration chromatography, ion exchange chromatography, hydrophobic chromatography, affinity chromatography, reverse phase chromatography, and the like. Examples of electrophoresis include gel electrophoresis, isoelectric point Electrophoresis, micellar conductivity chromatography and the like can be used.
[0011]
According to the second aspect of the present invention, a pH gradient is provided in the channel A in a direction perpendicular to the flow by a buffer solution or the like.
[0012]
Therefore, according to the second aspect of the present invention, the substance moves to the point of pH equal to its isoelectric point by the applied voltage, so that the isoelectric focusing in the channel A can be performed. Will be possible. This method is particularly useful for separating and analyzing proteins.
[0013]
According to a third aspect of the present invention, the second-dimensional electric separation method is performed on a scale from micrometers to millimeters.
[0014]
Therefore, according to the third aspect of the present invention, since the flow in the flow path A can be stably maintained in a laminar flow due to the effect of the minute scale, the pH gradient formed in the second dimension can be maintained. Is stably maintained, and the separation performance can be improved. Further, since the moving distance can be shortened, quick separation is possible even with a small voltage.
[0015]
The invention according to claim 4 of the present invention is a method using a microchannel created by processing on a microchip as the flow channel A in FIG.
[0016]
Therefore, according to the fourth aspect of the present invention, the width, depth, and length of the flow path A, the applied voltage, and the residence time can be accurately controlled. Of these, the invention described in claim 3 can be easily realized.
[0017]
The invention according to claim 5 of the present invention is that the channel A and the chromatography column are processed on the same microchip.
[0018]
Therefore, according to the fifth aspect of the present invention, a device for a two-dimensional separation mechanism can be accurately and easily prepared, and the separation method using chromatography and electricity can be used. Since the dead space between them can be reduced, two-dimensional separation with higher performance can be performed.
[0019]
The invention according to claim 6 of the present invention is for adjusting not only the chromatography column and the flow path A but also the sample introduction structure or the composition of the eluate according to claim 5 of the present invention. The structure for mixing the liquids is processed into the same microchip.
[0020]
Therefore, according to the sixth aspect of the present invention, by integrating all the devices required for two-dimensional separation into the same microchip, the operation can be integrated, and a separation method with good reproducibility can be realized. It becomes possible.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of a two-dimensional chemical substance separation mechanism according to the present invention will be described in detail with reference to the accompanying drawings.
[0022]
2 (a) and 2 (b) show a microchip provided with an embodiment of a two-dimensional separation mechanism according to the present invention, and FIG. 2 (a) is a view taken in the direction of arrow A in FIG. 2 (b). FIG. 2B is a sectional view taken along line BB in FIG. 2A.
[0023]
The microchip 10 is a microchip for performing two-dimensional separation by ion exchange chromatography and isoelectric focusing, and is formed of, for example, a polymer material such as PDMS (polydimethylsiloxane). It is formed by two flat substrates 11 and 12.
[0024]
Microchannels having different depths are formed on the lower surface 11a of the substrate 11 and the upper surface 12a of the substrate 12, and the depths thereof are, for example, about 10 μm and 150 μm, respectively.
[0025]
The ports 13 and 14 are inlets for buffer solutions having different ion concentrations, respectively. By changing the flow rates of the buffers and passing them through the micromixer 15, it is possible to give a gradient to the ion concentration of the eluent in the chromatography. Will be possible.
[0026]
The port 16 is an inlet for the chromatography carrier and the sample, and the carrier introduced therefrom is blocked in the frit structure 18 because its depth is smaller than the diameter of the carrier, and the length is added to the chromatography column 17. It is filled by several mm. In addition, as the chromatography carrier, for example, SOURCE 30Q anion exchange beads manufactured by Pharmacia can be used.
[0027]
Ports 19, 20, 21, and 22 are inlets for buffer solutions having different pHs, and have a pH gradient in a direction perpendicular to the flow in a flow path 23 for the second-dimensional isoelectric focusing. be able to.
[0028]
The size of the flow path 23 is, for example, 1000 μm in width, 150 μm in depth, and 15 mm in length. When the residence time in the flow path is about 45 seconds, the flow is stably maintained without being disturbed. , The pH gradient is maintained without disturbance.
[0029]
Reference numerals 24 and 25 denote electrodes, for example, a Pd plate having a width of 0.5 mm and a length of 1.5 mm can be used.
[0030]
Ports 26 and 27 are ports for connecting electrodes to an external power supply, and can be filled with a conductive carbon paste or the like.
[0031]
Numeral 28 indicates a position to be observed in a linear shape, and optical detection or the like can be performed on this line.
[0032]
The port 29 is an outlet for a buffer solution or a sample solution introduced into the microchip.
[0033]
In the above configuration, a two-dimensional separation mechanism using the above-described microchip 10 will be described by taking protein separation as an example.
[0034]
First, a treatment with oxygen plasma is performed in advance to prevent protein adsorption, and subsequently, a chromatography carrier is introduced into the chromatography column 17.
[0035]
Next, buffer solutions having different ion concentrations and the same pH are introduced from ports 13 and 14 so as to have a constant flow rate, and at the same time, liquids having different pH values are introduced from ports 19, 20, 21 and 22 respectively. Introduce the flow rate. At this time, when the electrode 24 is a positive electrode and the electrode 25 is a negative electrode, the pH of the buffer solution to be introduced is 20 <19 <13 = 14 <21 <22 in ascending order.
[0036]
Next, the sample solution is introduced from the port 16 and the protein is adsorbed to the carrier in the chromatography column 17. The port 16 is closed to prevent the buffer solution from leaking except when the sample is introduced.
[0037]
By changing the flow rate ratio of the buffer solution introduced from the ports 13 and 14 stepwise, the ion concentration of the buffer solution in the chromatography column 17 is changed, and a voltage is applied between the electrodes 24 and 25. .
[0038]
By observing the vicinity of the detection point 28 over time using a microscope and a CCD camera, etc., two-dimensional separation of proteins with the elution time in chromatography as the first dimension and the position along the detection point 28 as the second dimension Is detected.
[0039]
In fact, the two-dimensional separation mechanism described above successfully succeeds in two-dimensionally separating the fluorescently labeled proteins BSA and IgG in a matter of minutes.
[0040]
【The invention's effect】
Since the present invention is based on the mechanism as described above, it has an excellent effect that a separation method can be selected according to the purpose.
[0041]
In addition, the present invention is based on the mechanism as described above, and thus has excellent effects such as improvement of reproducibility, reduction of analysis time, and simplification of operation.
[Brief description of the drawings]
FIG. 1 is a conceptual explanatory diagram for explaining the principle of the present invention.
2A and 2B show a microchip provided with an embodiment of a two-dimensional separation mechanism according to the present invention, wherein FIG. 2A is a view taken in the direction of arrow A in FIG. 2B, and FIG. It is sectional drawing by the BB line in (a).
[Explanation of symbols]
Reference Signs List 10 microchip 11 substrate 11a substrate 11 lower surface 12 substrate 12a substrate 12 upper surface 13 port 14 port 15 mixer 16 port 17 column 18 frit structure 19 port 20 port 21 port 22 port 23 flow path 24 electrode 25 electrode 26 port 27 port 28 detection point 29 ports

Claims (6)

液体クロマトグラフィーによって分離され,クロマトグラフィーのカラムから溶出した化学物質を,クロマトグラフィーのカラムに直列に接続された流路において,流れと垂直な方向に印加された電場により,流れと垂直な方向に分離することにより,該流路からの流出時刻および位置の相違に基づいて該化学物質を分離・分析することを特徴とする物質の二次元分離機構及びその装置。The chemicals separated by liquid chromatography and eluted from the chromatography column are directed in a direction perpendicular to the flow by an electric field applied in a direction perpendicular to the flow in a channel connected in series with the chromatography column. A two-dimensional substance separation mechanism and apparatus for separating and analyzing the chemical substance based on a difference in time and position of outflow from the flow path by separation. 請求項1において,電場を印加する流路中に,流れと垂直な方向にpH勾配を形成させることにより,タンパク質等をその等電点の違いによって分離することを特徴とする二次元分離機構及びその装置。2. The two-dimensional separation mechanism according to claim 1, wherein a pH gradient is formed in a direction perpendicular to the flow in the flow path to which the electric field is applied, so that proteins and the like are separated by their isoelectric points. That device. 請求項1または請求項2のいずれか1項に記載の二次元分離機構及びその装置において,電場を印加する流路の幅と深さがマイクロメートルからミリメートルの大きさであり,流路内の流れが層流を保つことを特徴とする二次元分離機構及びその装置。3. The two-dimensional separation mechanism and the device according to claim 1, wherein a width and a depth of the flow path to which the electric field is applied are from micrometers to millimeters. A two-dimensional separation mechanism and a device for maintaining a laminar flow. 請求項1,請求項2または請求項3のいずれか1項に記載の二次元分離機構及びその装置において,電場を印加する流路がマイクロチップに加工された流路である二次元分離機構及びその装置。4. The two-dimensional separation mechanism according to claim 1, wherein the flow path for applying an electric field is a flow path processed into a microchip. That device. 請求項1,請求項2,請求項3または請求項4のいずれか1項に記載の二次元分離機構及びその装置において,クロマトグラフィーのカラムと電場を印加する流路が同一のマイクロチップ上に加工されている二次元分離機構及びその装置。In the two-dimensional separation mechanism and the apparatus according to any one of claims 1, 2, 3, and 4, the chromatography column and the channel for applying an electric field are provided on the same microchip. A two-dimensional separation mechanism being processed and its device. 請求項1,請求項2,請求項3,請求項4または請求項5のいずれか1項に記載の二次元分離機構及びその装置において,試料導入構造あるいは溶出液の組成を調整するための液体を混合するための構造が同一のマイクロチップ上に加工されている二次元分離機構及びその装置。A liquid for adjusting a sample introduction structure or a composition of an eluate in the two-dimensional separation mechanism and the apparatus according to any one of claims 1, 2, 3, 4, and 5. And a two-dimensional separation mechanism in which a structure for mixing is processed on the same microchip.
JP2002355960A 2002-11-02 2002-11-02 Two-dimensional separating mechanism for chemical substance, and its device Pending JP2004157096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355960A JP2004157096A (en) 2002-11-02 2002-11-02 Two-dimensional separating mechanism for chemical substance, and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355960A JP2004157096A (en) 2002-11-02 2002-11-02 Two-dimensional separating mechanism for chemical substance, and its device

Publications (1)

Publication Number Publication Date
JP2004157096A true JP2004157096A (en) 2004-06-03

Family

ID=32809582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355960A Pending JP2004157096A (en) 2002-11-02 2002-11-02 Two-dimensional separating mechanism for chemical substance, and its device

Country Status (1)

Country Link
JP (1) JP2004157096A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017731A (en) * 2004-07-03 2006-01-19 F Hoffmann La Roche Ag Preparative condensing interface for connecting liquid chromatography to capillary electrophoresis
JP2006038535A (en) * 2004-07-23 2006-02-09 Sharp Corp Method of detecting substance, and separator for separating substance
CN100334445C (en) * 2005-08-19 2007-08-29 华东师范大学 Method for realizing protein separation detection by using PVP/CdS quanta dot modified electrode
JP2010540940A (en) * 2007-09-26 2010-12-24 マサチューセッツ インスティテュート オブ テクノロジー Electrokinetic concentrator and method of use
JP2012093092A (en) * 2009-11-05 2012-05-17 Nagoya Institute Of Technology Planer column, and separation system and separation method using the same
CN103638691A (en) * 2013-11-01 2014-03-19 朱江 Alternating weak electric field array electric chromatogram separation method for separating and purifying mixture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017731A (en) * 2004-07-03 2006-01-19 F Hoffmann La Roche Ag Preparative condensing interface for connecting liquid chromatography to capillary electrophoresis
JP4527619B2 (en) * 2004-07-03 2010-08-18 エフ.ホフマン−ラ ロシュ アーゲー Preconcentration interface for connecting liquid chromatography to capillary electrophoresis
JP2006038535A (en) * 2004-07-23 2006-02-09 Sharp Corp Method of detecting substance, and separator for separating substance
CN100334445C (en) * 2005-08-19 2007-08-29 华东师范大学 Method for realizing protein separation detection by using PVP/CdS quanta dot modified electrode
JP2010540940A (en) * 2007-09-26 2010-12-24 マサチューセッツ インスティテュート オブ テクノロジー Electrokinetic concentrator and method of use
JP2012093092A (en) * 2009-11-05 2012-05-17 Nagoya Institute Of Technology Planer column, and separation system and separation method using the same
CN103638691A (en) * 2013-11-01 2014-03-19 朱江 Alternating weak electric field array electric chromatogram separation method for separating and purifying mixture
CN103638691B (en) * 2013-11-01 2015-07-22 朱江 Alternating weak electric field array electric chromatogram separation method for separating and purifying mixture

Similar Documents

Publication Publication Date Title
US11573200B2 (en) Devices and methods for sample characterization
Zhu et al. Integrated droplet analysis system with electrospray ionization-mass spectrometry using a hydrophilic tongue-based droplet extraction interface
EP3365668B1 (en) Solid phase extraction with capillary electrophoresis
US20120138469A1 (en) Microfluidic devices for transverse electrophoresis and isoelectric focusing
JP2006317357A (en) Microchip electrophoretic method and microchip electrophoretic apparatus
Matsui et al. Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip
JP2018520342A (en) Pressure-driven fluid injection for chemical separation by electrophoresis
JP2006017731A5 (en)
WO2017039080A1 (en) Sample concentration apparatus and method for extracting concentrated sample by using same
JPWO2002023180A1 (en) Extraction equipment and chemical analysis equipment
JP2004157096A (en) Two-dimensional separating mechanism for chemical substance, and its device
Pi et al. 3D printed micro/nanofluidic preconcentrator for charged sample based on ion concentration polarization
Kinde et al. Electrophoretic extraction of low molecular weight cationic analytes from sodium dodecyl sulfate containing sample matrices for their direct electrospray ionization mass spectrometry
Courtney et al. Counterflow gradient electrophoresis for focusing and elution
JP3833110B2 (en) Free flow electrophoresis
Yoon et al. Microfluidic in-reservoir pre-concentration using a buffer drain technique
Akagi et al. Development of a polymer-based easy-to-fabricate micro-free-flow electrophoresis device
Brod et al. Charge-based separation of proteins and peptides by electrically induced dynamic pH profiles
Kitagawa et al. Sample Preconcentration Protocols in Microfluidic Electrophoresis
JP2005233920A (en) Controller used for collection/enrichment/ separation of substance in solution by dielectrophoresis, and control method using the same
Klymenko et al. Theory and computational study of electrophoretic ion separation and focusing in microfluidic channels
US8021530B2 (en) Method for separation of chemical substances and/or particles, device and its use
CN105492883A (en) Two-phase electroextraction from moving phases
Geiger High Speed Separations of Complex Mixtures using nano-Liquid Chromatography Coupled with micro Free Flow Electrophoresis
Johnson Comprehensive Multidimensional Separations of Biological Samples using Capillary Electrophoresis coupled with Micro Free Flow Electrophoresis