JP2012093092A - Planer column, and separation system and separation method using the same - Google Patents

Planer column, and separation system and separation method using the same Download PDF

Info

Publication number
JP2012093092A
JP2012093092A JP2009253775A JP2009253775A JP2012093092A JP 2012093092 A JP2012093092 A JP 2012093092A JP 2009253775 A JP2009253775 A JP 2009253775A JP 2009253775 A JP2009253775 A JP 2009253775A JP 2012093092 A JP2012093092 A JP 2012093092A
Authority
JP
Japan
Prior art keywords
column
sample
separation
mobile phase
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009253775A
Other languages
Japanese (ja)
Inventor
Shinya Kitagawa
慎也 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Original Assignee
Nagoya Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC filed Critical Nagoya Institute of Technology NUC
Priority to JP2009253775A priority Critical patent/JP2012093092A/en
Priority to JP2010240429A priority patent/JP2011117950A/en
Publication of JP2012093092A publication Critical patent/JP2012093092A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To perform chromatographic separation and electrophoretic separation.SOLUTION: A flow channel in which samples flow is formed between a pair of glass substrates. In the flow channel, a planer column with a structure having an organic monolith in the sample flow direction and having a pair of electrodes to apply voltage in the direction perpendicular to the sample flow is used to perform chromatographic separation in the flow direction and, by simultaneously applying voltage in the direction perpendicular to the flow, to perform electrophoretic separation. Consequently, sample components are two-dimensionally separated in the planer column.

Description

本発明は、電気泳動分離とクロマトグラフィー分離を行う平板型カラム、それを用いた分離システムおよび分離方法に関するものである。   The present invention relates to a flat column column for performing electrophoretic separation and chromatographic separation, a separation system using the same, and a separation method.

生体分析では多種多様な成分を網羅的に分離・分析することが求められている。多種多様な成分を分離するためには、二次元電気泳動や二次元クロマトグラフィーのように、複数の方法(分離モード)を用いる方法が汎用される(特許文献1、非特許文献1、2参照)。   Bioanalysis requires comprehensive separation and analysis of a wide variety of components. In order to separate a wide variety of components, a method using a plurality of methods (separation modes) such as two-dimensional electrophoresis and two-dimensional chromatography is widely used (see Patent Document 1, Non-Patent Documents 1 and 2). ).

特開2005−312402号公報JP 2005-312402 A

“Fast, comprehensive two-dimensional liquid chromatography.”, Stoll Dwight R; Li Xiaoping; Wang Xiaoli; Carr Peter W; Porter Sarah E G; Rutan Sarah C, J. Chromatogr. A (2007),1168, 3-43.“Fast, comprehensive two-dimensional liquid chromatography.”, Stoll Dwight R; Li Xiaoping; Wang Xiaoli; Carr Peter W; Porter Sarah E G; Rutan Sarah C, J. Chromatogr. A (2007), 1168, 3-43. 奥村宣明、永井克也 「プロテオミクスにおける二次元電気泳動」 Molecular Medicine 別冊、癌ゲノム学、39:158-165 (2002)Nobuaki Okumura, Katsuya Nagai “Two-dimensional electrophoresis in proteomics” Molecular Medicine, separate volume, Cancer Genomics, 39: 158-165 (2002)

従来法では、一つの分離モードでの分離が終了した後、分離された試料の全体、もしくはその一部をさらに別のモードで分離をおこなう。そのため、(1)分離の長時間化や(2)煩雑な操作手順、(3)複雑な流路切り替えシステムが必用などの問題点がある。   In the conventional method, after the separation in one separation mode is completed, the entire separated sample or a part thereof is further separated in another mode. Therefore, there are problems such as (1) longer separation time, (2) complicated operation procedures, and (3) the necessity of a complicated flow path switching system.

本発明は上記点に鑑みて、クロマトグラフィー分離と電気泳動分離を同時に行う平板型カラム、それを用いた分離システムおよび分離方法を提供することを目的とする。   In view of the above points, an object of the present invention is to provide a flat column column that simultaneously performs chromatographic separation and electrophoretic separation, a separation system using the same, and a separation method.

上記目的を達成するため、本発明は、一対の基板の間に試料が流れる流路が形成され、前記流路における前記試料の流れ方向にクロマトグラフィー用固定相を有し、前記流路における前記試料の流れを横断する方向に電圧を印加するための一対の電極を有する平板型カラムを第1の特徴とする。   In order to achieve the above object, the present invention provides a flow path through which a sample flows between a pair of substrates, has a stationary phase for chromatography in the flow direction of the sample in the flow path, and A flat plate column having a pair of electrodes for applying a voltage in a direction crossing the sample flow is a first feature.

本発明は、上記した平板型カラムと、前記平板型カラムの流路に移動相を連続的に導入する第1の導入手段と、前記平板型カラムの流路に試料溶液を導入する第2の導入手段と、前記一対の電極間に電圧を印加する電源手段と、を有する分離システムを第2の特徴とする。   The present invention includes the above-described flat plate column, first introducing means for continuously introducing a mobile phase into the flow path of the flat plate column, and second liquid that introduces a sample solution into the flow path of the flat plate column. A separation system having introduction means and power supply means for applying a voltage between the pair of electrodes is a second feature.

本発明は、上記した分離システムにおいて、クロマトグラフィー分離用送液を行うために前記平板型カラムに取り付けられたインターフェイスを有し、このインターフェイスには、移動相供給口と、この移動相供給口よりも下流側に位置する試料溶液導入口とが設けられており、前記第1の導入手段は、前記移動相供給口から前記移動相を供給し、前記第2の導入手段は、前記試料溶液導入口から前記試料溶液を供給することを第3の特徴とする。   In the separation system described above, the present invention has an interface attached to the plate-type column for carrying out liquid separation for chromatographic separation. The interface includes a mobile phase supply port and a mobile phase supply port. A sample solution introduction port located on the downstream side, the first introduction unit supplies the mobile phase from the mobile phase supply port, and the second introduction unit includes the sample solution introduction unit. A third feature is that the sample solution is supplied from the mouth.

本発明は、上記第3の特徴において、前記インターフェイスは、頂点に前記移動相供給口が存在する三角形のものであり、前記移動相供給口から供給された移動相が前記平板型カラムに向かって広がるようになっていることを第4の特徴とする。   In the third aspect of the present invention, the interface has a triangular shape in which the mobile phase supply port is present at the apex, and the mobile phase supplied from the mobile phase supply port faces the flat column. The fourth feature is that it is widened.

本発明は、上記した平板型カラムを用い、前記平板型カラムに導入された試料を前記クロマトグラフィー用固定相によりクロマトグラフィー的に分離すると同時に、前記一対の電極間に電圧を印加して導入された試料を電気泳動分離する分離方法を第5の特徴とする。   The present invention uses the above-described flat column, and the sample introduced into the flat column is chromatographically separated by the chromatographic stationary phase, and at the same time, a voltage is applied between the pair of electrodes. A separation method for electrophoretic separation of the sample is a fifth feature.

本発明の第1実施形態における平板型カラムの全体構成を示す図である。It is a figure which shows the whole structure of the flat column in 1st Embodiment of this invention. 本発明の第1実施形態における平板型カラムを用いた分離装置の全体構成を示す図である。It is a figure which shows the whole structure of the separation apparatus using the flat column in 1st Embodiment of this invention.

(第1実施形態)
表面を3-メタクリルオキシプロピルトリメトキシシランで修飾したガラス板(40×50 mm)の両端に2つの電極(金メッキした銅箔、10×50 mm、厚さ0.05 mm)を、接着し、その電極の上にさらに3-メタクリルオキシプロピルトリメトキシシランで修飾したガラス板を接着し、両端に電極を持つ長方形断面(30 mm × 0.05 mm)の流路を有する平板型ガラス空カラムを作成した。この平板型ガラス空カラムに、メタクリル酸ブチル(モノマー,24%),二メタクリル酸エチレン(架橋剤,16%),1-デカノール(細孔形成剤,34%),シクロヘキサノール(細孔形成剤,26%),2,2-ジメトキシフェニル-2-アセトフェノン(光開始剤,モノマーと架橋剤の合計に対して1%)からなる重合反応溶液を注入した。反応溶液を満たした平板型ガラス空カラムに、0℃に保った恒温装置内で紫外線(強度約4 mW/cm2,波長 254 nm)を照射し,in situ光重合により有機モノリスを調製した。光重合後,メタノールを吸引送液し未反応物を除去し、図1に示す両端に電極を有する平板型ガラスカラムを調製した。
(First embodiment)
Two electrodes (gold-plated copper foil, 10 x 50 mm, thickness 0.05 mm) are bonded to both ends of a glass plate (40 x 50 mm) whose surface is modified with 3-methacryloxypropyltrimethoxysilane. Further, a glass plate modified with 3-methacryloxypropyltrimethoxysilane was adhered onto the plate, and a flat glass empty column having a rectangular cross section (30 mm × 0.05 mm) having electrodes at both ends was prepared. In this flat glass empty column, butyl methacrylate (monomer, 24%), ethylene dimethacrylate (crosslinking agent, 16%), 1-decanol (pore forming agent, 34%), cyclohexanol (pore forming agent) , 26%), a polymerization reaction solution consisting of 2,2-dimethoxyphenyl-2-acetophenone (photoinitiator, 1% with respect to the total of monomer and crosslinking agent) was injected. An organic monolith was prepared by in situ photopolymerization by irradiating a flat glass empty column filled with the reaction solution with ultraviolet light (intensity of about 4 mW / cm2, wavelength of 254 nm) in a thermostat kept at 0 ° C. After photopolymerization, methanol was sucked and fed to remove unreacted substances, and a flat glass column having electrodes at both ends shown in FIG. 1 was prepared.

図1に示す平板型ガラスカラムを用いて、図2に示す分離システムを構成した。調製した平板型ガラスカラムにクロマトグラフィー分離のための送液を行うため三角形のインターフェイスを取り付けた。第1の導入手段をなす移動相送液ポンプを用いて、三角形のインターフェイスの頂点に存在する移動相供給口から供給された移動相は、三角形のインターフェイス内の流路を流れ、図に示すように広がって、平板型カラムへ連続的に導入される。インターフェイス内には別途、試料溶液導入口が設置されており、第2の導入手段をなす試料溶液導入ポンプを用いることで、インターフェイス内(カラム内)に試料溶液を導入することができる。導入された試料は、平板型カラム内の有機モノリスにより、クロマトグラフィー的に分離することが可能である。また、平板型カラムの両端に設置された電極に対して、電源手段をなす電源装置を用いて電圧を印加することで、導入された試料を電気泳動させることが可能である。   The separation system shown in FIG. 2 was configured using the flat glass column shown in FIG. A triangular interface was attached to the prepared flat glass column in order to send liquid for chromatographic separation. The mobile phase supplied from the mobile phase supply port existing at the apex of the triangular interface using the mobile phase liquid feeding pump constituting the first introducing means flows through the flow path in the triangular interface, as shown in the figure. And continuously introduced into the plate column. A sample solution introduction port is separately provided in the interface, and the sample solution can be introduced into the interface (in the column) by using a sample solution introduction pump serving as a second introduction means. The introduced sample can be chromatographically separated by an organic monolith in a flat column. Moreover, the introduced sample can be electrophoresed by applying a voltage to the electrodes installed at both ends of the flat column using a power supply device that constitutes a power supply means.

図2に示す装置を用いて、0.1% トリフルオロ酢酸を添加したメタノールを移動相として平板型カラムに連続的に供給した。平板型カラムに365 nmの紫外光を照射し、CCDカメラをもちいて蛍光観察を行った。   Using the apparatus shown in FIG. 2, methanol to which 0.1% trifluoroacetic acid was added was continuously supplied as a mobile phase to a flat column. The flat column column was irradiated with 365 nm ultraviolet light, and fluorescence was observed using a CCD camera.

電圧印加を行わない状態で、ピレンとキニーネを試料として用いた際には、疎水性の高いピレンの移動相流れ方向の移動速度が遅く、また疎水性が小さく固定相との相互作用が小さなキニーネの移動速度が大きいことから、クロマトグラフィー分離が可能であることが確認された。また、電圧印加(150 V)をおこなうと、キニーネが流れを横断する方向に電気泳動することが確認された。この横断流れ(電気泳動)は中性物質であるピレンでは観測されなかった。すなわち、電気泳動分離が可能であることが確認された。   When pyrene and quinine are used as a sample without voltage application, the movement speed of the highly hydrophobic pyrene in the mobile phase flow direction is slow, and the interaction between the hydrophobic phase and the stationary phase is small. It was confirmed that chromatographic separation was possible because of the high movement speed of. It was also confirmed that when voltage was applied (150 V), quinine was electrophoresed in the direction across the flow. This cross flow (electrophoresis) was not observed in the neutral substance pyrene. That is, it was confirmed that electrophoretic separation was possible.

上述した実施形態によれば、一対の四角形状のガラス基板の間に試料が流れる流路が形成され、その流路において、試料の流れ方向に有機モノリスを有し、試料の流れを横断する方向に電圧を印加するための一対の電極を有する構成の平板型カラムを用いることにより、クロマトグラフィー分離と電気泳動分離を同時に進行させることができる。つまり、クロマトグラフィー分離と電気泳動分離を直交させることができる両端に電極を有する平板型カラムを用いることにより、流れ方向ではクロマトグラフィー分離が進行し、同時に流れを横断する方向に電圧印加をおこなうことで、電気泳動分離を行う。このことにより、試料成分は平板型カラム内で二次元的に分離される。   According to the above-described embodiment, the flow path through which the sample flows is formed between the pair of rectangular glass substrates, and in the flow path, the organic monolith is provided in the flow direction of the sample, and the flow direction crosses the flow of the sample. By using a plate type column having a pair of electrodes for applying a voltage to the column, chromatographic separation and electrophoretic separation can be simultaneously performed. In other words, by using a flat column with electrodes on both ends that can orthogonally separate chromatographic separation and electrophoretic separation, chromatographic separation proceeds in the flow direction, and at the same time, voltage is applied across the flow. Perform electrophoretic separation. As a result, the sample components are two-dimensionally separated in the flat column.

(他の実施形態)
上述した実施形態においては、有機モノリスを調製する際の重合反応溶液として、「メタクリル酸ブチル(モノマー,24%),二メタクリル酸エチレン(架橋剤,16%),1-デカノール(細孔形成剤,34%),シクロヘキサノール(細孔形成剤,26%),2,2-ジメトキシフェニル-2-アセトフェノン(光開始剤,モノマーと架橋剤の合計に対して1%)」を用いているが、これ以外の溶液(例えば、モノマーをメタクリル酸グリシジルに、細孔径製剤を水になど)で代用することもできる。
(Other embodiments)
In the above-described embodiment, as a polymerization reaction solution for preparing an organic monolith, “butyl methacrylate (monomer, 24%), ethylene dimethacrylate (crosslinking agent, 16%), 1-decanol (pore-forming agent” , 34%), cyclohexanol (pore-forming agent, 26%), 2,2-dimethoxyphenyl-2-acetophenone (photoinitiator, 1% based on the sum of monomer and cross-linking agent) Other solutions (for example, a monomer for glycidyl methacrylate and a pore size preparation for water) can be substituted.

上述した実施形態においては、有機モノリスを調製する際に光重合反応を用いているが、これ以外の反応(例えば熱重合反応など)を用いることもできる。   In the above-described embodiment, a photopolymerization reaction is used when preparing an organic monolith, but other reactions (for example, a thermal polymerization reaction) can also be used.

上述した実施形態においては、有機モノリス用いて平板型カラムを調製しているがが、これ以外(例えば、無機モノリス、充填剤など)で代用することもできる。   In the embodiment described above, a flat column is prepared using an organic monolith, but other than this (for example, an inorganic monolith, a filler, etc.) can be substituted.

上述した実施形態においては、有機モノリスをクロマトグラフィー用固定相として用いる場合について説明したが、これ以外(例えば、無機モノリス、充填剤など)を固定相として代用することもできる。   In the above-described embodiment, the case where an organic monolith is used as a stationary phase for chromatography has been described, but other than this (for example, an inorganic monolith, a filler, etc.) can be substituted as a stationary phase.

また、上述した実施形態においては平板型カラムの構成要素として、ガラスを用いているが、これ以外(例えば石英、テフロン(登録商標)、PEEK、表面に絶縁処理を施した金属など)で代用することもできる。   In the above-described embodiment, glass is used as a component of the flat column, but other than that (for example, quartz, Teflon (registered trademark), PEEK, metal whose surface is subjected to insulation treatment, etc.) is substituted. You can also.

また、上述した実施形態においては平板型カラムに付随する電極として、金メッキした銅箔を用いているが、これ以外(例えば金、白金、グラファイトなど)で代用することもでき、0.05 mm以外の任意の厚さを用いることができる。   In the above-described embodiment, a gold-plated copper foil is used as the electrode attached to the flat column, but other (for example, gold, platinum, graphite, etc.) can be substituted, and any other than 0.05 mm can be used. Can be used.

また、上述した実施形態においては40×50 mmのガラス版、10×50 mmの電極を用いているが、これ以外の任意の大きさのもので代用することができる。   In the above-described embodiment, a 40 × 50 mm glass plate and a 10 × 50 mm electrode are used, but any other size can be used instead.

Claims (5)

一対の基板の間に試料が流れる流路が形成され、前記流路における前記試料の流れ方向にクロマトグラフィー用固定相を有し、前記流路における前記試料の流れを横断する方向に電圧を印加するための一対の電極を有することを特徴とする平板型カラム。   A channel through which the sample flows is formed between a pair of substrates, has a chromatographic stationary phase in the flow direction of the sample in the flow channel, and applies a voltage in a direction crossing the sample flow in the flow channel A flat column having a pair of electrodes. 請求項1に記載の平板型カラムと、
前記平板型カラムの流路に移動相を連続的に導入する第1の導入手段と、
前記平板型カラムの流路に試料溶液を導入する第2の導入手段と、
前記一対の電極間に電圧を印加する電源手段と、を有することを特徴とする分離システム。
A flat column according to claim 1;
First introduction means for continuously introducing a mobile phase into the flow path of the flat plate column;
A second introduction means for introducing a sample solution into the flow path of the flat column;
And a power supply means for applying a voltage between the pair of electrodes.
クロマトグラフィー分離用送液を行うために前記平板型カラムに取り付けられたインターフェイスを有し、
このインターフェイスには、移動相供給口と、この移動相供給口よりも下流側に位置する試料溶液導入口とが設けられており、
前記第1の導入手段は、前記移動相供給口から前記移動相を供給し、
前記第2の導入手段は、前記試料溶液導入口から前記試料溶液を供給することを特徴とする請求項2に記載の分離システム。
Having an interface attached to the plate column for carrying out liquid separation for chromatography separation;
This interface is provided with a mobile phase supply port and a sample solution introduction port located downstream of the mobile phase supply port.
The first introduction means supplies the mobile phase from the mobile phase supply port,
The separation system according to claim 2, wherein the second introduction unit supplies the sample solution from the sample solution introduction port.
前記インターフェイスは、頂点に前記移動相供給口が存在する三角形のものであり、前記移動相供給口から供給された移動相が前記平板型カラムに向かって広がるようになっていることを特徴とする請求項3に記載の分離システム。   The interface has a triangular shape in which the mobile phase supply port is present at the apex, and the mobile phase supplied from the mobile phase supply port spreads toward the flat plate column. The separation system according to claim 3. 請求項1に記載の平板型カラムを用い、前記平板型カラムに導入された試料を前記クロマトグラフィー用固定相によりクロマトグラフィー的に分離すると同時に、前記一対の電極間に電圧を印加して導入された試料を電気泳動分離することを特徴とする分離方法。   The flat plate column according to claim 1, wherein the sample introduced into the flat plate column is chromatographically separated by the stationary phase for chromatography and simultaneously introduced by applying a voltage between the pair of electrodes. A separation method comprising electrophoretic separation of the sample.
JP2009253775A 2009-11-05 2009-11-05 Planer column, and separation system and separation method using the same Pending JP2012093092A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009253775A JP2012093092A (en) 2009-11-05 2009-11-05 Planer column, and separation system and separation method using the same
JP2010240429A JP2011117950A (en) 2009-11-05 2010-10-27 Column for liquid chromatography, and preparation method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009253775A JP2012093092A (en) 2009-11-05 2009-11-05 Planer column, and separation system and separation method using the same

Publications (1)

Publication Number Publication Date
JP2012093092A true JP2012093092A (en) 2012-05-17

Family

ID=44283429

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2009253775A Pending JP2012093092A (en) 2009-11-05 2009-11-05 Planer column, and separation system and separation method using the same
JP2010240429A Pending JP2011117950A (en) 2009-11-05 2010-10-27 Column for liquid chromatography, and preparation method for the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2010240429A Pending JP2011117950A (en) 2009-11-05 2010-10-27 Column for liquid chromatography, and preparation method for the same

Country Status (1)

Country Link
JP (2) JP2012093092A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291859A (en) * 1985-08-29 1987-04-27 ラボル ミユセリパリ ミユベク Method and device for conducting separation analysis inspection in plane system
JPS63191051A (en) * 1987-02-04 1988-08-08 Hitachi Ltd Electrophoretic apparatus
JPH02105051A (en) * 1988-10-14 1990-04-17 Hitachi Ltd Electrophorectic device
JPH0989840A (en) * 1995-09-27 1997-04-04 Olympus Optical Co Ltd Small electrophoretic unit
JP2004157096A (en) * 2002-11-02 2004-06-03 Minoru Seki Two-dimensional separating mechanism for chemical substance, and its device
JP2006159148A (en) * 2004-12-10 2006-06-22 Nagoya Institute Of Technology Column for chromatography and column for electrochromatography
JP2007529755A (en) * 2004-03-19 2007-10-25 パーキンエルマー エルエーエス,インク. Separation platform based on electroosmosis driven planar chromatography

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083072A1 (en) * 2000-05-01 2001-11-08 Transgenomic, Inc. Polynucleotide separations on polymeric separation media
JP4034163B2 (en) * 2001-12-21 2008-01-16 オルガノ株式会社 Organic porous body, production method thereof, and organic porous ion exchanger
JP2006192374A (en) * 2005-01-13 2006-07-27 Ymc Co Ltd Chiral compound separating agent and separation column

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291859A (en) * 1985-08-29 1987-04-27 ラボル ミユセリパリ ミユベク Method and device for conducting separation analysis inspection in plane system
JPS63191051A (en) * 1987-02-04 1988-08-08 Hitachi Ltd Electrophoretic apparatus
JPH02105051A (en) * 1988-10-14 1990-04-17 Hitachi Ltd Electrophorectic device
JPH0989840A (en) * 1995-09-27 1997-04-04 Olympus Optical Co Ltd Small electrophoretic unit
JP2004157096A (en) * 2002-11-02 2004-06-03 Minoru Seki Two-dimensional separating mechanism for chemical substance, and its device
JP2007529755A (en) * 2004-03-19 2007-10-25 パーキンエルマー エルエーエス,インク. Separation platform based on electroosmosis driven planar chromatography
JP2006159148A (en) * 2004-12-10 2006-06-22 Nagoya Institute Of Technology Column for chromatography and column for electrochromatography

Also Published As

Publication number Publication date
JP2011117950A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
Breadmore et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2016–2018)
Dhopeshwarkar et al. Transient effects on microchannel electrokinetic filtering with an ion-permselective membrane
Britz-McKibbin et al. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction
Hatch et al. Integrated preconcentration SDS− PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels
Majumder et al. Voltage gated carbon nanotube membranes
Breadmore et al. Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2012–2014)
Kawai et al. Microchip electrophoresis of oligosaccharides using large-volume sample stacking with an electroosmotic flow pump in a single channel
Quirino et al. On-line concentration of neutral analytes for micellar electrokinetic chromatography. 5. Field-enhanced sample injection with reverse migrating micelles
Zhang et al. Narrow sample channel injectors for capillary electrophoresis on microchips
Huang et al. Separation of long double-stranded DNA by nanoparticle-filled capillary electrophoresis
Wang et al. High resolution capillary isoelectric focusing mass spectrometry analysis of peptides, proteins, and monoclonal antibodies with a flow-through microvial interface
Kelly et al. Phase-changing sacrificial materials for interfacing microfluidics with ion-permeable membranes to create on-chip preconcentrators and electric field gradient focusing microchips
Zhang et al. Detachable strong cation exchange monolith, integrated with capillary zone electrophoresis and coupled with pH gradient elution, produces improved sensitivity and numbers of peptide identifications during bottom-up analysis of complex proteomes
Sueyoshi et al. On-line sample preconcentration and separation technique based on transient trapping in microchip micellar electrokinetic chromatography
Shiddiky et al. Direct analysis of trace phenolics with a microchip: in-channel sample preconcentration, separation, and electrochemical detection
Tran et al. Recent innovations in protein separation on microchips by electrophoretic methods: an update
Kitagawa et al. On-line sample preconcentration by large-volume sample stacking with an electroosmotic flow pump (LVSEP) in microscale electrophoresis
Cao et al. Quantitative predictions to conditions of zwitterionic stacking by transient moving chemical reaction boundary created with weak electrolyte buffers in capillary electrophoresis
Sheridan et al. Label-free electrochemical monitoring of concentration enrichment during bipolar electrode focusing
Sommer et al. On-chip isoelectric focusing using photopolymerized immobilized pH gradients
Liu et al. Fabrication of conductive membrane in a polymeric electric field gradient focusing microdevice
Faure et al. Development of an acrylate monolith in a cyclo‐olefin copolymer microfluidic device for chip electrochromatography separation
Lin et al. Surface modification of polydimethylsiloxane microfluidic chips by polyamidoamine dendrimers for amino acid separation
Kim et al. Optofluidic in situ maskless lithography of charge selective nanoporous hydrogel for DNA preconcentration
Kim et al. Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140304