JP2004157019A - Fine differential pressure generating device - Google Patents

Fine differential pressure generating device Download PDF

Info

Publication number
JP2004157019A
JP2004157019A JP2002323116A JP2002323116A JP2004157019A JP 2004157019 A JP2004157019 A JP 2004157019A JP 2002323116 A JP2002323116 A JP 2002323116A JP 2002323116 A JP2002323116 A JP 2002323116A JP 2004157019 A JP2004157019 A JP 2004157019A
Authority
JP
Japan
Prior art keywords
container
pressure
pipe
differential pressure
reducing valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002323116A
Other languages
Japanese (ja)
Other versions
JP3956362B2 (en
Inventor
Toru Yamaguchi
徹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2002323116A priority Critical patent/JP3956362B2/en
Publication of JP2004157019A publication Critical patent/JP2004157019A/en
Application granted granted Critical
Publication of JP3956362B2 publication Critical patent/JP3956362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fine differential pressure generating device capable of generating inexpensive and stable fine differential pressure. <P>SOLUTION: This device has a fluid supply source 50 capable of supplying a fluid at a prescribed pressure, a conduit 60 having one end connected thereto, a leak type pressure reducing valve 70 provided in the middle of the conduit, a first vessel 10 wherein the pressure reducing valve and a partial conduit on the downstream side thereof are stored inside and the fluid is leaked to the inside from the leak type pressure reducing valve, a second vessel 20 connected to the other end of the conduit, two branched pipes 65, 66 stored in the first vessel, connected in the branched state to parts of the pipe on the downstream side of the leak type pressure reducing valve, and connected respectively to the HI pressure side and the LO pressure side of a fine differential pressure gage to be calibrated, and connection pipes 81, 82 connecting in the communicating state the two vessels and equipped with an atmospheric opening part 31 on a part thereof. A pressure loss generation part 63 is formed between the branched pipes. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明が属する技術分野】
本発明は、微差圧計の校正を行なう際に使用する微差圧発生装置に関する。
【0002】
【従来の技術】
近年、クリーンルーム等の空調設備において微差圧を測定するために微差圧型差圧発信器(以下、単に「微差圧計」とする)が使われる機会が多くなってきた。かかる微差圧計の校正に使用される微差圧は一般に1Pa(パスカル)から3000Paまでの範囲を言う。なお、従来から測定されていた通常の気体による圧力は5kPaから10MPaまでの範囲である。
【0003】
一般に、微差圧計の出力特性を校正するために基準となる微差圧を発生する微差圧発生装置が従来から用いられている。
【0004】
かかる微差圧発生装置の一例として、図2に示すような微差圧発生装置(以下、「第1の微差圧発生装置」とする)が知られている。この第1の微差圧発生装置100は一つの密閉容器110を二つの密閉空間111,112に隔壁で画成し、一方の密閉空間111にのみ連通路を介してポンプ130と接続した構成を有している。また、各密閉空間に連結された配管121,122をそれぞれ校正すべき微差圧計140のHI圧力側入口部141とLO圧力側入口部142に接続するようになっている。そして、ポンプ駆動前は、バルブ113を開放することで双方の密閉空間111,112を均圧とし、その後、バルブ113を閉じてポンプ130のシリンダ131を動かすことで(図中2点鎖線参照)、ポンプ130の接続された密閉空間111内の容積を若干減少させ、ボイル・シャルルの法則に基づき、他方の密閉空間112内の圧力と一方の密閉空間111内の圧力との間に微差圧を生ぜしめる。そして、上述した双方の密閉空間111,112から個別に延在した配管121,122を介して接続された微差圧計140に微差圧を加えるようになっている。
【0005】
一方、別の従来型微差圧発生装置(以下、「第2の微差圧発生装置」とする)は、回転可能な円盤の半径方向に流路を形成し、この流路に気体を充填させた状態で円盤を回転させることで、円盤中心部からの距離に応じて当該気体に遠心力を作用させるようになっている。そして、かかる円盤の回転によって気体を円盤半径方向外側に移動させ、円盤円周部の圧力よりも円盤中心部の圧力を低下させる。そして、円盤中心部の圧力と円盤円周部の圧力を別々に取り出すことでこの圧力差を利用して微差圧を発生させ、当該微差圧を用いて微差圧計の出力校正を行なうようになっている(例えば、特許文献1参照。)。
【0006】
さらに別の従来型微差圧発生装置(以下、「第3の微差圧発生装置」とする)として、光学的な構造を用いて液体の高さをよみとり、液体の密度と高さから原理上発生している微差圧を読み取るものである。これは差圧標準器と微差圧発生装置を同一のものとして利用しており、U字管及び光干渉計を用いて微差圧を正確に測定し発生させている(例えば、特許文献2参照。)。
【0007】
【非特許文献1】
米永暁彦著 「低圧力の計測標準に関する調査研究」 計量研究所報告 1999年第48巻第2号(第200号別冊第101項、図20)
【非特許文献2】
米永暁彦著 「低圧力の計測標準に関する調査研究」 計量研究所報告 1999年第48巻第2号(第200号別冊第95−96項、図8)
【発明が解決しようとする課題】
上述した第1の微差圧発生装置は、密閉空間が隔壁によって個別に仕切られた状態で形成されている。そして、ポンプで差圧を発生させるとき片側の密閉空間だけ圧縮しているが、このような圧縮過程をカルノーサイクルのような理想的な断熱圧縮とすることは困難であり、気体の圧縮過程で温度上昇を生じることによる影響をどうしても受けてしまう。
【0008】
すなわち、雰囲気温度が0.01°C変わることで一般に圧力が3Pa変化するが、通常の圧力測定下ではこの程度の圧力変化は圧力測定に影響を与える程度の誤差とはならない。しかしながら、上述したような微差圧測定下においてはかなり影響を与える誤差要因となる。
【0009】
そして、上述したように温度が0.01°C変化するだけで圧力が3Paも変化してしまうので、第1の微差圧発生装置では片側容器の容積の変動量に応じた計算通りの正確な微差圧を発生させることができない。
【0010】
また、第2の微差圧発生装置は、円盤の角速度を変えることで発生微差圧も調整することが可能であるが、円盤の摺動部分を長期間にわたって確実にシールすると共に回転部分のせり等で回転ムラが生じないようにする特別の構造を必要とし、構造上複雑となり、コスト的に高くなるという欠点を有する。
【0011】
また、第3の微差圧発生装置は、光干渉計を用いるので大掛かりな設備となり、上述した第1の微差圧発生装置、第2の微差圧発生装置に較べてコスト的にさらに高くなるので、研究設備等に使用が限定されてかかる微差圧発生装置を一般市場へ大量供給するには適さない。
【0012】
本発明の目的は、安定した微差圧を発生させることのできる廉価な微差圧発生装置を提供することにある。
【0013】
【課題を解決するための手段】
上述した課題を解決するために、本発明の請求項1に記載の微差圧発生装置は、所定の圧力で流体を供給可能な流体供給源と、流体供給源に一端が接続された管路と、管路の途中に設けられたリーク式減圧弁と、リーク式減圧弁及び当該減圧弁の下流側一部管路を内部に収容し、リーク式減圧弁から内部に流体がリークされるようになった第1容器と、管路の他端に接続された第2容器と、第1容器に収容されたリーク式減圧弁下流側の一部管路に分岐接続され、校正されるべき微差圧計のHI圧力側とLO圧力側にそれぞれ接続可能な二つの分岐配管と、第1容器及び第2容器を連通接続し、一部に大気開放部を備えた接続管路とを有し、管路の二つの分岐配管間には圧力損失発生部が形成されたことを特徴としている。
【0014】
配管の入口側にはリーク式減圧弁が第1容器に収容された状態で備わっており、配管の出口側は第2容器に接続されると共に、第2容器と第1容器との連通路を介して大気開放されている。すなわち、配管の出口側が直接大気開放されておらず、第2容器及び接続管路を介して大気開放されている。また、リーク式減圧弁において第1容器内にリークされた流体は、絞りとしての役割を果たす連通路を介して大気に排出されている。すなわち、リーク式減圧弁によってリークした流体が第1容器に充満すると共に、一部が連通路を介して第2容器に移動し、残りの一部が接続管路の大気開放部から大気に排出されるようになっている。つまり、リーク式減圧弁によって排出される流体と配管出口から排出される流体とがそれぞれ第1容器と第2容器に充満して、両容器がこれらの流体で完全に満たされた後に大気開放部から流体が排出される。これによって、第1容器と第2容器とが流体の充満過程でそれぞれ補てんし合い、それぞれ別に大気に排出される場合に比べて大気への安定した流体排出が可能となる。又、大気からの影響をリーク式減圧弁やパイプ出口から受ける場合において、それぞれ別々に大気から影響を受けることはなく、共通の大気開放部を介して受けるので、異なる影響を別々の経路を介して相乗的に受けることがなく、かつ第1容器、第2容器、及び接続管路が協働して大気からの異なる種類の影響を吸収する。
【0015】
そのため、大気圧との差圧によって気体をリークさせながら圧力をコントロールしているリーク式減圧弁が大気圧変動の影響を直接受けることがなくなり、配管入口側の圧力が安定すると共に、配管出口側の圧力も安定する。これによって、外部雰囲気の影響を受けずに配管に常に一定流量の流体を流すことができる。そして、気体の粘性によって圧力損失発生部で安定した圧力損失を生ぜしめ、圧力損失発生部の上流と下流においてより安定した一定の微差圧を発生させることが可能となる。
【0016】
また、本発明の請求項2に記載の微差圧発生装置は、請求項1に記載の微差圧発生装置において、圧力損失発生部が減圧手段と流量調整手段とからなることを特徴としている。
【0017】
減圧手段によって配管の圧力を十分減圧し、かつ流量調整手段によって流量を調整するので圧力損失発生部において微差圧を常に正確に発生させる。
【0018】
また、本発明の請求項3に記載の微差圧発生装置は、請求項1または請求項2に記載の微差圧発生装置において、第1容器と第2容器とを連通する接続管路の所定部分に第3容器が介在され、かつ請求項1に記載の大気開放部に代えた大気開放部が第3容器に設けられていることを特徴としている。
【0019】
第3容器を設けることによって、周囲雰囲気から受ける緩やかな圧力変動を第3容器によって主に吸収し、当該第3容器でも吸収しきれない影響を第1容器又は第2容器がバッファとなって吸収する。また、第3容器と第1容器、第2容器との間の接続管路もそれぞれ絞りとしての役割を果たすので、周囲雰囲気から受ける急激な圧力変動をこれらの絞りで吸収する。従って、第3容器を有さない場合に較べて圧力損失発生部が大気の影響を更に受けにくくなり、より安定した微差圧の発生が可能となる。
【0020】
また、本発明の請求項4に記載の微差圧発生装置は、請求項3に記載の微差圧発生装置において、第3容器の容積が第1容器及び第2容器の容積より小さいことを特徴としている。
【0021】
第3容器の容積が第1容器、第2容器の容積よりも小さいので、接続管路と第3容器を経由して第2容器と第1容器との間で形成される圧力フィードバック系の応答性に悪影響を与えることがない。
【0022】
また、第3容器に較べて第1容器及び第2容器の容積が大きいことで、周囲雰囲気から受ける緩やかな圧力変動やパルス的な圧力変動のうち、第3容器及びこれに接続する接続管路で吸収できない圧力変動分を緩和することができる。
【0023】
従って、圧力損失発生部における圧力降下が安定して行われ、外部雰囲気からの影響を直接受けずに圧力損失発生部において微差圧を安定して発生させることができる。
【0024】
【発明の実施の形態】
以下、本発明の一実施形態にかかる微差圧発生装置について図面に基づいて説明する。
【0025】
本発明の一実施形態にかかる微差圧発生装置1は、窒素の充填されたタンク50と、タンク50に一端が接続されたパイプ(配管)60と、パイプ60の一部に設けられたリーク式減圧弁70と、リーク式減圧弁70及び当該減圧弁70の下流側一部パイプを内部に収容した第1容器10と、パイプ60の他端部に接続された第2容器20と、第1連通路(接続管路)81及び第2連通路(接続管路)82を介して第1容器10及び第2容器20とそれぞれ連通接続された第3容器30とを有している。
【0026】
パイプ60には、タンク50とリーク式減圧弁70との間に2つの減圧弁51,52が直列に配置されると共に、リーク式減圧弁70の下流側には第1容器10に収容された状態で第1バルブ61、第2バルブ62、及び第3バルブ63がパイプ上流から下流に向かって直列に配置されている。また、パイプ60からは、第3バルブを挟んで当該パイプ上流側からHI圧力供給用パイプ65が分岐され、当該パイプ下流側からLO圧力供給用パイプ66が分岐され、それぞれ第1容器外部に突出している。そして、HI圧力供給用パイプ65及びLO圧力供給用パイプ66はそれぞれ校正すべき微差圧計90のHI圧力側入口部91及びLO圧力側入口部92と接続され、微差圧計に所望の微差圧を加えるようになっている。また、HI圧力供給用パイプ65及びLO圧力供給用パイプ66は基準となる圧力計95にも接続されるようになっており、微差圧校正時に基準圧力計95で測定される圧力を確認しながら微差圧計90の校正を行うようになっている。
【0027】
尚、図1においては、校正すべき微差圧計90及び基準圧力計95をHI圧力供給用パイプ65とLO圧力供給用パイプ66に実際に接続した状態で示している。
【0028】
一方、第3容器30からは一端が開口した大気開放用パイプ31が延在している。なお、パイプ60、第1連通路81、第2連通路82、HI圧力供給用パイプ65、及びLO圧力供給用パイプ66は例えば約5mm程度の内径を有し、大気開放用パイプ31は例えば約2.5mm程度の内径を有している。すなわち、パイプ60、第1連通路81、第2連通路82、HI圧力供給用パイプ65、及びLO圧力供給用パイプ66はそれぞれ同等の内径を有するパイプであり、大気開放用パイプ31はこれらのパイプより小さい内径を有したパイプである。また、パイプ60の長さは例えば0.5m、第1連通路81の長さは例えば2.0m、第2連通路82の長さは例えば2.5m、大気開放用パイプ31の長さは例えば0.3m程度となっている。
【0029】
一方、第1容器10は、例えば200リットル程度の容積を有し、第2容器20は例えば120リットル程度の容積を有し、第3容器30は例えば0.8リットル程度の容積を有している。すなわち、各容器の容積は、第1容器10及び第2容器20に較べて第3容器30の容積が小さくなっている。
【0030】
第1容器に収容されるリーク式減圧弁70は公知のものを使用しており、減圧弁内部にダイアフラムを備えこのダイアフラムをバネで付勢することによって気体(流体)の一部を第1容器10内に排出し、常に安定した減圧を行なうようになっている。すなわち、リーク式減圧弁70で排出された気体は第1容器10に充満した後、第1連通路81を介して第3容器に移動し、その後、第2容器20が気体で満たされていない場合は第2容器20に移動すると共に残りの一部が大気開放用パイプ31から排出されるようになっている。一方、リーク式減圧弁70からパイプ60を経て第2容器20に排出された気体は、第2連通路82を介して第3容器に移動し,その後、第1容器10が気体で満たされていない場合は一部が第1容器10に移動すると共に残りの一部が大気開放用パイプ31から排出するようになっている。つまり、大気に排出される気体は、第1容器10〜第3容器30が全て当該気体で充満した後に共通の大気開放用パイプ31から排出される。
【0031】
第1バルブ61は固定絞りのニードルバルブからなり、当該第1バルブ61においてパイプ内圧力を減圧するようになっている。また、第2バルブ62はパイプ内流体の流量を可変制御できる流量調整型ニードルバルブからなる。そして、第3バルブ63は上述した2つの分岐パイプ間で圧力降下を発生させる圧力損失発生部として絞りの役目を果している。この第3バルブ(圧力損失発生部)63は本実施形態の場合、オリフィスからなる。
【0032】
なお、圧力損失発生部をオリフィスなどの特別な絞りから構成せずに単なる管路だけで構成しても良い。この場合であっても、流体が水素やヘリウム等の分子量の小さい気体であれば管壁との間の粘性抵抗によってこの部分で圧力損失が生じ、微差圧を発生させる圧力損失発生部としての十分な機能を奏する。又、圧力損失発生部を通常のニードルバルブから構成してももちろん問題ない。
【0033】
続いて、かかる微差圧発生装置1を用いた微差圧計90の校正手順及び作用について説明する。
【0034】
最初に事前準備として、校正を行う微差圧計90及び基準圧力計95を微差圧発生装置1に取り付け、タンク50から窒素を供給し、微差圧発生装置1のパイプ入口に約0.1MPaの窒素を導入する。なお、本実施形態においてはタンク50内では14MPaの圧力があり、その下流の減圧弁51によって1MPaまで圧力が減圧される。さらに、その下流の減圧弁52によって0.1MPaまで圧力が減圧される。
【0035】
そして、タンク50に接続された配管の第2バルブ62を閉じる。
【0036】
続いて、第2バルブ62を徐々に開けて所定の圧力付近に到達させる。第2バルブ62は流量調節バルブであるので、これを調整することで圧力損失発生部における圧力を微差圧発生に必要なゲージ圧に近づけることができる。
【0037】
これによって、第1容器内のリーク式減圧弁70によって窒素の一部は第1容器内に排出され、リーク式減圧弁上流側のパイプにおける圧力0.1MPaがリーク式減圧弁下流側のパイプにおける圧力0.05MPaまで減圧される。
【0038】
続いて、第3バルブ63で発生すべき微差圧(1Pa〜3000Paの内、所望の圧力)の微調整を行う。すなわち、第1バルブ61によってパイプ入口において50kPaの圧力を有する気体は第1バルブ61、第2バルブ62、及び第3バルブ63を経由して十分減圧されると共に、第3バルブ63の上流側圧力と下流側圧力との差圧が1Pa〜3000Paの範囲で安定して発生する。なお、ここでいう今までの圧力はすべてゲージ圧である。そして、この微差圧に基づき微差圧計90の微差圧調整を行う。この微差圧調整に際しては基準圧力計95の圧力表示を確認しながら調整作業を行う。
【0039】
第3バルブ63からなる圧力損失発生部において微差圧を発生するに当たって、上述した構成からも明らかなように、パイプ60の出口側が直接大気開放されておらず、第2容器20、連通路82、及び第3容器30を介して大気開放されている。又、リーク式減圧弁70によってリークした窒素が第1容器10に充満すると共に、一部が第1連通路81、第3容器30、及び第2連通路82を介して第2容器20に移動し、残りの一部が第3容器30の大気開放用パイプ31から大気に排出されるようになっている。
【0040】
すなわち、一旦異なる排気経路を経た気体が第1容器10及び第2容器20に充満して最終的には共通の第3容器30に充満した後、ここで飽和した気体が初めて大気に排出される。そのため、大気圧との差圧によって気体をリークさせながら圧力をコントロールしているリーク式減圧弁70が大気圧変動の影響を直接受けることがなくなり、入口側の圧力が安定する。
【0041】
また、第3容器30は第1容器10及び第2容器20よりも容積が小さくなっている。これによって、連通路81,82と第3容器30を経由して第1容器10と第2容器20との間で形成される圧力フィードバック系の応答性に悪影響を与えることがない。
【0042】
また、第1容器10と第3容器30、第2容器20と第3容器30は絞りとしての連通路81,82を介してそれぞれ接続されているので微差圧発生装置1は、外部雰囲気の圧力変動による影響を受け難い。すなわち、外部雰囲気は微差圧発生装置1の設置された建物中の密閉性により、ドアの開閉によってパルス的な(急激な)圧力変動を生じる。又、これ以外にも天候の変化に伴う緩やかな圧力変動も生じる。そして、これらの性質が異なる圧力変動を容積の小さい第3容器30から連通路82を介して容積の大きい第1容器10内に伝わるまでに吸収すると共に、同じく容積の小さい第3容器30内から連通路81を介して容積の大きい第2容器20内に伝わるまでに相補的に吸収する。
【0043】
すなわち、これら異なる性質の圧力変動から受ける影響を第3容器30や第3容器30より容積の大きい第2容器20及び第1容器10、並びにこれら容器間の連通路81,82が協働して吸収する。また、建物のドア開閉に伴うパルス的な圧力変動については大気開放用パイプ31も絞りとして作用してこれを予めある程度吸収する。
【0044】
従って、大気のさまざまな圧力変動による影響が第3バルブ(圧力損失発生部)63にまで到達しにくくなり、第3バルブ63における圧力降下が安定して行われ、外部雰囲気からの影響を受けずに第3バルブ63において上流側と下流側の間で1Pa〜3000Paまでの微差圧を安定して発生させることができる。
【0045】
以上のようにして、微差圧計90の微差圧調整が完了したあと、第2バルブを閉じる。
【0046】
最後に事後処理として、以下の操作を行う。
【0047】
まず、N(窒素)導入バルブ(図示せず)を閉じる。
【0048】
次いで、減圧弁の2次側の圧力が0MPaであることを確認して微差圧計90のHI圧力側配管65とLO圧力側配管66を外す。
【0049】
なお、上述の実施形態において、第1バルブ61は固定絞りであり、第2バルブ62は可変流量絞りであり、主に第1バルブ61が減圧作用を行い第2バルブ62が流量制御の作用を行っていたが、第1バルブ61と第2バルブ62を一つのバルブにまとめて減圧と流量制御を同時に行うようにしても良い。また、第1バルブ61乃至第3バルブ63はニードルバルブに限定されるものではない。また、廉価な減圧弁であってなおかつ第1バルブ61の減圧作用及び第2バルブ62の流量制御作用を共に兼ね備えた機能を有する減圧弁があれば、当該減圧弁をもって第1バルブ61と第2バルブ62の役割を果たすようにしてもよい。
【0050】
また、第1容器10、第2容器20、及び第3容器30は全て気密性を有していれば良く、金属でできていても強化プラスチックでできていても良い。また、パイプ60及び第1連通路81、第2連通路82、HI圧力供給用パイプ65、LO圧力供給用パイプ65も同様に金属でできていても樹脂材でできていても良い。
【0051】
また、上述の実施形態における微差圧発生装置1のように、第3容器30は必ずしも必要とせずに第1連通路10と第2連通路20とを1つの連通路として、その連通路の途上に大気排出孔を有してしても良い。この構成によっても、第1容器10内の気体と第2容器20内の気体とがこれらの容器を連通する配管の一部に設けた共通の大気開放孔から排出されるので、大気からの影響を第1容器10と第2容器20が別々に受けることがなくなる。すなわち、例えば等価的な電気回路で言うと別々のアースをとらずに共通のアースをとるようなものになり、流量の減圧特性が安定する。しかしながら、第3容器30を設けることによって、周囲雰囲気から受ける影響を第3容器30によって主に吸収し、これでも吸収しきれない影響を第1容器10又は第2容器20がバッファとなって吸収するので、第3容器30を設けない場合に較べてより安定する。
【0052】
なお、上述の実施形態においてタンク50からリーク式減圧弁70に至るまでのパイプ60には2つの減圧弁51,52が直列に配置されているが、タンクで発生する圧力を上述の実施形態より十分小さくしておけばこれら2つの減圧弁は必ずしも必要としない。
【0053】
更に又、流体供給源として窒素タンクやヘリウムタンクを用いる代わりに粉塵等発生の問題を解決したコンプレッサを用いても良い。
【0054】
更に、大気開放用パイプは他のパイプや連通路より内径を必ずしも小さくする必要はなく、これら他のパイプ等と内径が同じであっても長さを十分長くすれば、その間の管路抵抗により上述の実施形態の場合と同様の絞り効果を奏することができる。また、大気開放用パイプを省略しても良いが、大気から受ける影響をなるべく小さくするためには大気開放用パイプを設けた方が好ましい。
【0055】
【発明の効果】
以上説明したように、本発明の請求項1に記載の微差圧発生装置は、配管の入口側にはリーク式減圧弁が第1容器に収容された状態で備わっており、配管の出口側は第2容器に接続されると共に、第2容器と第1容器との連通路を介して大気開放されている。すなわち、配管の出口側が直接大気開放されておらず、第2容器及び接続管路を介して大気開放されている。また、リーク式減圧弁において第1容器内にリークされた流体は、絞りとしての役目を果たす連通路を介して大気に排出されている。すなわち、リーク式減圧弁によってリークした流体が第2容器に充満すると共に、一部が連通路を介して第1容器に移動し、残りの一部が接続管路の大気開放部から大気に排出されるようになっている。つまり、リーク式減圧弁によって排出される流体とパイプ出口から排出される流体とがそれぞれ第1容器と第2容器に充満して、両容器がこれらの流体で完全に満たされた後に大気開放部から流体が排出される。これによって、第1容器と第2容器とが流体の充満過程でそれぞれ補てんし合い、それぞれ別に大気に排出される場合に比べて大気への安定した流体排出が可能となる。又、大気からの影響をリーク式減圧弁やパイプ出口から受ける場合において、それぞれ別々に大気から影響を受けることはなく、共通の大気開放部を介して受けるので、異なる影響を別々の経路を介して相乗的に受けることがなく、かつ第1容器、第2容器、及び接続管路が協働して大気からの異なる種類の影響をほとんど吸収する。
【0056】
そのため、大気圧との差圧によって気体をリークさせながら圧力をコントロールしているリーク式減圧弁が大気圧変動の影響を直接受けることがなくなり、配管入口側の圧力が安定すると共に、配管出口側の圧力も安定する。これによって、外部雰囲気の影響を受けずに配管に常に一定流量の流体を流すことができる。そして、気体の粘性によって圧力損失発生部で安定した圧力損失を生ぜしめ、圧力損失発生部の上流と下流においてより安定した一定の差圧を発生させることが可能となる。
【0057】
また、本発明の請求項2に記載の微差圧発生装置は、減圧手段によって配管の圧力を十分減圧し、かつ流量調整手段によって流量を調整するので圧力損失発生部において微差圧を常に正確に発生させる。
【0058】
また、本発明の請求項3に記載の微差圧発生装置は、第3容器を設けることによって、周囲雰囲気から受ける緩やかな圧力変動を第3容器によって主に吸収し、当該第3容器でも吸収しきれない影響を第1容器又は第2容器がバッファとなって吸収する。また、第3容器と第1容器、第2容器との間の接続管路もそれぞれ絞りとしての役割を果たすので、周囲雰囲気から受ける急激な圧力変動をこれらの絞りで吸収する。従って、圧力損失発生部が大気の影響を更に受けにくくなり、より安定した微差圧の発生が可能となる。
【0059】
また、本発明の請求項4に記載の微差圧発生装置は、第3容器の容積が第1容器、第2容器の容積よりも小さいので、接続管路と第3容器を経由して第2容器と第1容器との間で形成される圧力フィードバック系の応答性に悪影響を与えることがない。
【0060】
また、第3容器に較べて第1容器及び第2容器の容積が大きいことで、周囲雰囲気から受ける緩やかな圧力変動やパルス的な圧力変動のうち、第3容器及びこれに接続する接続管路で吸収できない圧力変動分を緩和することができる。
【0061】
従って、圧力損失発生部における圧力降下が安定して行われ、外部雰囲気からの影響を直接受けずに圧力損失発生部において微差圧を安定して発生させることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態にかかる微差圧発生装置の概略構成を、微差圧計及び基準圧力計を接続した状態で示す図である。
【図2】従来の微差圧発生装置の概略構成を示した図である。
【符号の説明】
1 微差圧発生装置
10 第1容器
20 第2容器
30 第3容器
31 大気開放用パイプ
50 タンク
51,52 減圧弁
60 パイプ
61 第1バルブ
62 第2バルブ
63 第3バルブ
65 HI圧力供給用パイプ
66 LO圧力供給用パイプ
70 リーク式減圧弁
81 第1連通路
82 第2連通路
90 微差圧計
91 HI圧力側入口部
92 LO圧力側入口部
95 基準圧力計
100 第1の微差圧発生装置
110 密閉容器
111,112 密閉空間
121,122 配管
130 ポンプ
131 シリンダ
140 微差圧計
141 HI圧力側入口部
142 LO圧力側入口部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fine differential pressure generating device used when calibrating a fine differential pressure gauge.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the use of a fine differential pressure transmitter (hereinafter, simply referred to as a “fine differential pressure gauge”) for measuring a small differential pressure in air conditioning equipment such as a clean room has increased. The fine differential pressure used for calibration of such a fine differential pressure gauge generally refers to a range from 1 Pa (Pascal) to 3000 Pa. The pressure of a normal gas measured conventionally is in the range of 5 kPa to 10 MPa.
[0003]
2. Description of the Related Art Generally, a device for generating a differential pressure that serves as a reference for calibrating the output characteristics of a differential pressure gauge has been conventionally used.
[0004]
As an example of such a small differential pressure generating device, a small differential pressure generating device as shown in FIG. 2 (hereinafter, referred to as a “first small differential pressure generating device”) is known. The first fine differential pressure generating device 100 has a configuration in which one closed container 110 is defined by two partitions in a closed space 111 and 112 and only one closed space 111 is connected to a pump 130 via a communication path. Have. The pipes 121 and 122 connected to each closed space are connected to the HI pressure side inlet 141 and the LO pressure side inlet 142 of the micro differential pressure gauge 140 to be calibrated, respectively. Before the pump is driven, the valve 113 is opened to equalize the pressure in both the sealed spaces 111 and 112, and then the valve 113 is closed and the cylinder 131 of the pump 130 is moved (see a two-dot chain line in the figure). , The volume in the enclosed space 111 to which the pump 130 is connected is slightly reduced, and based on Boyle-Charles' law, the pressure difference between the pressure in the other enclosed space 112 and the pressure in the one enclosed space 111 is slightly reduced. To produce Then, a small differential pressure is applied to the small differential pressure gauge 140 connected via the pipes 121 and 122 extending individually from the above-mentioned closed spaces 111 and 112.
[0005]
On the other hand, another conventional micro differential pressure generating device (hereinafter referred to as "second micro differential pressure generating device") forms a flow path in the radial direction of a rotatable disk and fills the flow path with gas. By rotating the disk in this state, centrifugal force is applied to the gas in accordance with the distance from the center of the disk. Then, the rotation of the disk causes the gas to move outward in the disk radial direction, so that the pressure at the center of the disk is lower than the pressure at the circumference of the disk. Then, by taking out the pressure at the center of the disk and the pressure at the circumference of the disk separately, a small differential pressure is generated using this pressure difference, and the output calibration of the small differential pressure gauge is performed using the small differential pressure. (For example, see Patent Document 1).
[0006]
Still another conventional differential pressure generating device (hereinafter referred to as "third differential pressure generating device") uses an optical structure to read the height of the liquid, and based on the density and height of the liquid, This is to read the slightly generated differential pressure. In this method, a differential pressure standard device and a micro differential pressure generating device are used as the same device, and a micro differential pressure is accurately measured and generated using a U-tube and an optical interferometer (for example, Patent Document 2). reference.).
[0007]
[Non-patent document 1]
Yonehiko Akinaga, "Investigation and Research on Measurement Standards for Low Pressures", Report of Metrology Institute, Vol. 48, No. 2, 1999
[Non-patent document 2]
Yonehiko Yonenaga, "Survey and Research on Measurement Standards for Low Pressure", Report of Metrology Institute, Vol. 48, No. 2, 1999 (No. 200, separate volume, paragraphs 95-96, Fig. 8)
[Problems to be solved by the invention]
The above-mentioned first slight differential pressure generating device is formed in a state where the closed spaces are individually partitioned by partition walls. When generating a differential pressure with a pump, only one closed space is compressed, but it is difficult to make such a compression process an ideal adiabatic compression such as a Carnot cycle. It is inevitably affected by the rise in temperature.
[0008]
That is, when the ambient temperature changes by 0.01 ° C., the pressure generally changes by 3 Pa. However, under normal pressure measurement, such a change in pressure does not cause an error that affects the pressure measurement. However, this becomes an error factor that has a considerable effect under the measurement of the slight differential pressure as described above.
[0009]
As described above, since the pressure changes by 3 Pa only by changing the temperature by 0.01 ° C., the first fine differential pressure generating device can accurately calculate the pressure according to the fluctuation amount of the volume of the one-sided container. A small differential pressure cannot be generated.
[0010]
Further, the second micro differential pressure generating device can adjust the micro differential pressure generated by changing the angular velocity of the disk. A special structure is required to prevent rotation unevenness from occurring due to abutment or the like, which has a disadvantage that the structure is complicated and the cost is high.
[0011]
In addition, the third differential pressure generating device is a large-scale facility because it uses an optical interferometer, and is more expensive than the first and second differential pressure generating devices described above. Therefore, its use is limited to research facilities and the like, and such a small differential pressure generator is not suitable for mass-supply to the general market.
[0012]
SUMMARY OF THE INVENTION An object of the present invention is to provide an inexpensive micro differential pressure generator capable of generating a stable micro differential pressure.
[0013]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a minute differential pressure generating device according to claim 1 of the present invention includes a fluid supply source capable of supplying a fluid at a predetermined pressure, and a pipeline having one end connected to the fluid supply source. The leak type pressure reducing valve provided in the middle of the pipe, the leak type pressure reducing valve, and a part of the downstream side pipe of the pressure reducing valve are housed therein, and the fluid is leaked from the leak type pressure reducing valve to the inside. , A second container connected to the other end of the conduit, and a branch connected to a part of the conduit downstream of the leak-type pressure reducing valve housed in the first container to be calibrated. Two branch pipes that can be connected to the HI pressure side and the LO pressure side of the differential pressure gauge, respectively, and a connection pipe line that connects and connects the first container and the second container and has a part that is open to the atmosphere, A pressure loss generating portion is formed between the two branch pipes of the pipeline.
[0014]
A leak-type pressure reducing valve is provided on the inlet side of the pipe in a state housed in the first container, and the outlet side of the pipe is connected to the second vessel and establishes a communication passage between the second vessel and the first vessel. Is open to the atmosphere. That is, the outlet side of the pipe is not directly opened to the atmosphere, but is opened to the atmosphere via the second container and the connection pipe. In addition, the fluid leaked into the first container in the leak type pressure reducing valve is discharged to the atmosphere via a communication path that functions as a throttle. That is, the fluid leaked by the leak type pressure reducing valve fills the first container, a part of the fluid moves to the second container via the communication passage, and the remaining part is discharged to the atmosphere from the atmosphere opening portion of the connection pipe. It is supposed to be. That is, the fluid discharged from the leak type pressure reducing valve and the fluid discharged from the pipe outlet are filled in the first container and the second container, respectively, and after both containers are completely filled with these fluids, the atmosphere opening portion is opened. The fluid is discharged from. Thereby, the first container and the second container complement each other in the process of filling with the fluid, and the fluid can be more stably discharged to the atmosphere as compared with the case where the fluid is separately discharged to the atmosphere. In addition, when the influence from the atmosphere is received from the leak type pressure reducing valve or the pipe outlet, the influence from the atmosphere is not separately received, and the influence is received through the common atmosphere opening part. And the first vessel, the second vessel, and the connecting line cooperate to absorb different types of influence from the atmosphere.
[0015]
Therefore, the leak-type pressure reducing valve that controls the pressure while leaking the gas by the differential pressure from the atmospheric pressure is not directly affected by the atmospheric pressure fluctuation, and the pressure at the pipe inlet side is stabilized, and the pipe outlet side Pressure also stabilizes. This allows a constant flow rate of fluid to flow through the pipe without being affected by the external atmosphere. Then, a stable pressure loss is generated in the pressure loss generating section due to the viscosity of the gas, so that a more stable constant fine differential pressure can be generated upstream and downstream of the pressure loss generating section.
[0016]
Further, a slight differential pressure generating device according to a second aspect of the present invention is characterized in that, in the slight differential pressure generating device according to the first aspect, the pressure loss generating unit includes a pressure reducing means and a flow rate adjusting means. .
[0017]
Since the pressure in the pipe is sufficiently reduced by the pressure reducing means and the flow rate is adjusted by the flow rate adjusting means, the pressure difference generating section always generates the fine differential pressure accurately.
[0018]
Further, according to a third aspect of the present invention, there is provided the micro differential pressure generating device according to the first or second aspect, wherein the connecting pipe for communicating the first container and the second container is provided. A third container is interposed in a predetermined portion, and an air opening portion is provided in the third container in place of the air opening portion according to claim 1.
[0019]
By providing the third container, the moderate pressure fluctuation received from the surrounding atmosphere is mainly absorbed by the third container, and the effect that cannot be completely absorbed by the third container is absorbed by the first container or the second container serving as a buffer. I do. In addition, since the connecting conduits between the third container, the first container, and the second container also serve as throttles, abrupt pressure fluctuations received from the surrounding atmosphere are absorbed by these throttles. Therefore, as compared with the case where the third container is not provided, the pressure loss generating section is further less affected by the atmosphere, and a more stable generation of a small differential pressure is possible.
[0020]
Also, in the fine differential pressure generating device according to claim 4 of the present invention, in the fine differential pressure generating device according to claim 3, the volume of the third container is smaller than the volumes of the first container and the second container. Features.
[0021]
Since the volume of the third container is smaller than the volumes of the first container and the second container, the response of the pressure feedback system formed between the second container and the first container via the connection pipe and the third container Does not adversely affect sex.
[0022]
In addition, since the volumes of the first container and the second container are larger than those of the third container, the third container and the connection conduit connected to the third container out of the gradual pressure fluctuation and the pulsating pressure fluctuation received from the surrounding atmosphere. The pressure fluctuation that cannot be absorbed by the pressure can be reduced.
[0023]
Therefore, the pressure drop in the pressure loss generating section is stably performed, and a slight differential pressure can be stably generated in the pressure loss generating section without being directly affected by the external atmosphere.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a slight differential pressure generating device according to an embodiment of the present invention will be described with reference to the drawings.
[0025]
The fine differential pressure generating device 1 according to one embodiment of the present invention includes a tank 50 filled with nitrogen, a pipe (pipe) 60 having one end connected to the tank 50, and a leak provided in a part of the pipe 60. A first container 10 that houses therein a leak-type pressure reducing valve 70, a leak-type pressure reducing valve 70, and a partial pipe downstream of the pressure reducing valve 70, a second container 20 connected to the other end of the pipe 60, The third container 30 is connected to the first container 10 and the second container 20 via the first communication path (connection pipe) 81 and the second communication path (connection pipe) 82, respectively.
[0026]
In the pipe 60, two pressure reducing valves 51 and 52 are arranged in series between the tank 50 and the leak type pressure reducing valve 70, and are housed in the first container 10 on the downstream side of the leak type pressure reducing valve 70. In this state, the first valve 61, the second valve 62, and the third valve 63 are arranged in series from the upstream to the downstream of the pipe. Further, from the pipe 60, an HI pressure supply pipe 65 is branched from an upstream side of the pipe with a third valve interposed therebetween, and an LO pressure supply pipe 66 is branched from a downstream side of the pipe, and each of them projects outside the first container. ing. The HI pressure supply pipe 65 and the LO pressure supply pipe 66 are connected to the HI pressure side inlet 91 and the LO pressure side inlet 92 of the differential pressure gauge 90 to be calibrated, respectively. It is designed to apply pressure. The HI pressure supply pipe 65 and the LO pressure supply pipe 66 are also connected to a reference pressure gauge 95, and the pressure measured by the reference pressure gauge 95 at the time of fine differential pressure calibration is confirmed. However, the calibration of the differential pressure gauge 90 is performed.
[0027]
Note that FIG. 1 shows a state in which the fine differential pressure gauge 90 and the reference pressure gauge 95 to be calibrated are actually connected to the HI pressure supply pipe 65 and the LO pressure supply pipe 66.
[0028]
On the other hand, from the third container 30, a pipe 31 for opening to the atmosphere having one end open is extended. The pipe 60, the first communication path 81, the second communication path 82, the HI pressure supply pipe 65, and the LO pressure supply pipe 66 have an inner diameter of, for example, about 5 mm, and the atmosphere opening pipe 31 has, for example, about 5 mm. It has an inner diameter of about 2.5 mm. That is, the pipe 60, the first communication path 81, the second communication path 82, the HI pressure supply pipe 65, and the LO pressure supply pipe 66 are pipes having the same inner diameter, and the atmosphere opening pipe 31 is A pipe having an inner diameter smaller than the pipe. Further, the length of the pipe 60 is, for example, 0.5 m, the length of the first communication passage 81 is, for example, 2.0 m, the length of the second communication passage 82 is, for example, 2.5 m, and the length of the atmosphere-opening pipe 31 is, for example. For example, it is about 0.3 m.
[0029]
On the other hand, the first container 10 has a volume of, for example, about 200 liters, the second container 20 has a volume of, for example, about 120 liters, and the third container 30 has a volume of, for example, about 0.8 liter. I have. That is, the volume of each container is smaller than that of the first container 10 and the second container 20.
[0030]
The leak type pressure reducing valve 70 housed in the first container is a known type. A diaphragm is provided inside the pressure reducing valve, and a part of the gas (fluid) is urged by a spring by the spring to reduce a part of the gas (fluid). The gas is discharged into the chamber 10 so that a stable pressure reduction is always performed. That is, the gas discharged from the leak-type pressure reducing valve 70 fills the first container 10 and then moves to the third container via the first communication passage 81, and thereafter, the second container 20 is not filled with the gas. In such a case, it moves to the second container 20 and the remaining part is discharged from the atmosphere opening pipe 31. On the other hand, the gas discharged from the leak type pressure reducing valve 70 to the second container 20 via the pipe 60 moves to the third container via the second communication path 82, and thereafter, the first container 10 is filled with the gas. If not, a part moves to the first container 10 and the remaining part is discharged from the atmosphere opening pipe 31. That is, the gas discharged to the atmosphere is discharged from the common atmosphere opening pipe 31 after all of the first to third containers 30 to 30 are filled with the gas.
[0031]
The first valve 61 is a fixed throttle needle valve, and the first valve 61 reduces the pressure in the pipe. The second valve 62 is a flow rate adjusting needle valve that can variably control the flow rate of the fluid in the pipe. The third valve 63 plays the role of a throttle as a pressure loss generating unit for generating a pressure drop between the two branch pipes. The third valve (pressure loss generating section) 63 is formed of an orifice in the case of the present embodiment.
[0032]
It should be noted that the pressure loss generating section may not be constituted by a special throttle such as an orifice, but may be constituted by a simple pipe. Even in this case, if the fluid is a gas having a small molecular weight, such as hydrogen or helium, a pressure loss occurs in this part due to viscous resistance between the pipe wall and the pressure loss generating part that generates a slight differential pressure. Performs sufficient functions. Further, there is no problem even if the pressure loss generating section is constituted by a normal needle valve.
[0033]
Subsequently, a calibration procedure and operation of the differential pressure gauge 90 using the differential pressure generating device 1 will be described.
[0034]
First, as a preliminary preparation, a differential pressure gauge 90 and a reference pressure gauge 95 for calibration are attached to the differential pressure generating device 1, nitrogen is supplied from the tank 50, and about 0.1 MPa is supplied to a pipe inlet of the differential pressure generating device 1. Of nitrogen. In the present embodiment, the pressure in the tank 50 is 14 MPa, and the pressure is reduced to 1 MPa by the pressure reducing valve 51 downstream thereof. Further, the pressure is reduced to 0.1 MPa by the pressure reducing valve 52 on the downstream side.
[0035]
Then, the second valve 62 of the pipe connected to the tank 50 is closed.
[0036]
Subsequently, the second valve 62 is gradually opened to reach a vicinity of a predetermined pressure. Since the second valve 62 is a flow control valve, by adjusting this, the pressure in the pressure loss generating section can be brought close to the gauge pressure necessary for generating a slight differential pressure.
[0037]
Thereby, a part of the nitrogen is discharged into the first container by the leak type pressure reducing valve 70 in the first container, and the pressure of 0.1 MPa in the pipe on the upstream side of the leak type pressure reducing valve is reduced in the pipe on the downstream side of the leak type pressure reducing valve. The pressure is reduced to 0.05 MPa.
[0038]
Subsequently, fine adjustment of a slight differential pressure (a desired pressure within 1 Pa to 3000 Pa) to be generated by the third valve 63 is performed. That is, the gas having a pressure of 50 kPa at the pipe inlet by the first valve 61 is sufficiently reduced in pressure through the first valve 61, the second valve 62, and the third valve 63, and the upstream pressure of the third valve 63 is reduced. The pressure difference between the pressure and the downstream pressure is stably generated in the range of 1 Pa to 3000 Pa. Note that all the pressures up to now are gauge pressures. Then, the fine differential pressure of the fine differential pressure gauge 90 is adjusted based on the fine differential pressure. At the time of the fine differential pressure adjustment, the adjustment operation is performed while checking the pressure display of the reference pressure gauge 95.
[0039]
In generating a slight differential pressure in the pressure loss generating section including the third valve 63, as is clear from the above-described configuration, the outlet side of the pipe 60 is not directly open to the atmosphere, and the second container 20 and the communication path 82 , And through the third container 30. Further, the nitrogen leaked by the leak-type pressure reducing valve 70 fills the first container 10, and a part of the nitrogen moves to the second container 20 via the first communication passage 81, the third container 30, and the second communication passage 82. The remaining part is discharged to the atmosphere from the atmosphere opening pipe 31 of the third container 30.
[0040]
That is, once the gas that has passed through different exhaust paths fills the first container 10 and the second container 20 and finally fills the common third container 30, the gas saturated here is first discharged to the atmosphere. . Therefore, the leak-type pressure reducing valve 70 that controls the pressure while leaking the gas by the differential pressure from the atmospheric pressure is not directly affected by the atmospheric pressure fluctuation, and the pressure on the inlet side is stabilized.
[0041]
The third container 30 has a smaller volume than the first container 10 and the second container 20. Thus, the responsiveness of the pressure feedback system formed between the first container 10 and the second container 20 via the communication paths 81 and 82 and the third container 30 is not adversely affected.
[0042]
Further, since the first container 10 and the third container 30 and the second container 20 and the third container 30 are respectively connected through communication passages 81 and 82 as throttles, the slight differential pressure generating device 1 is connected to the outside atmosphere. Hardly affected by pressure fluctuations. That is, the external atmosphere causes a pulse-like (rapid) pressure fluctuation due to the opening and closing of the door due to the hermeticity of the building in which the slight differential pressure generating device 1 is installed. In addition, a gradual pressure change due to a change in the weather also occurs. Then, these pressure fluctuations having different properties are absorbed before being transmitted from the small-capacity third container 30 to the large-capacity first container 10 through the communication path 82, and from the same small-volume third container 30. Absorbs complementarily until it reaches the second container 20 having a large volume through the communication passage 81.
[0043]
That is, the third container 30, the second container 20 and the first container 10 having a larger volume than the third container 30, and the communication passages 81 and 82 between the containers cooperate with each other to be affected by the pressure fluctuation of these different properties. Absorb. Further, with respect to the pulse-like pressure fluctuation accompanying the opening and closing of the door of the building, the atmosphere opening pipe 31 also acts as a throttle and absorbs this to some extent in advance.
[0044]
Therefore, the influence of various pressure fluctuations in the atmosphere hardly reaches the third valve (pressure loss generating section) 63, and the pressure drop in the third valve 63 is performed stably, without being affected by the external atmosphere. In addition, it is possible to stably generate a small differential pressure of 1 Pa to 3000 Pa between the upstream side and the downstream side in the third valve 63.
[0045]
After the fine differential pressure adjustment of the fine differential pressure gauge 90 is completed as described above, the second valve is closed.
[0046]
Finally, the following operation is performed as post-processing.
[0047]
First, N 2 Close the (nitrogen) introduction valve (not shown).
[0048]
Next, after confirming that the pressure on the secondary side of the pressure reducing valve is 0 MPa, the HI pressure side pipe 65 and the LO pressure side pipe 66 of the differential pressure gauge 90 are disconnected.
[0049]
In the above-described embodiment, the first valve 61 is a fixed throttle, the second valve 62 is a variable flow throttle, and the first valve 61 mainly performs a pressure reducing operation and the second valve 62 performs a flow control operation. However, the first valve 61 and the second valve 62 may be combined into one valve to simultaneously perform the pressure reduction and the flow rate control. Further, the first to third valves 61 to 63 are not limited to needle valves. Further, if there is an inexpensive pressure reducing valve having a function of simultaneously performing the pressure reducing action of the first valve 61 and the flow rate controlling action of the second valve 62, the first valve 61 and the second valve 62 are provided with the pressure reducing valve. The function of the valve 62 may be performed.
[0050]
Further, the first container 10, the second container 20, and the third container 30 only need to have airtightness, and may be made of metal or reinforced plastic. Similarly, the pipe 60, the first communication path 81, the second communication path 82, the HI pressure supply pipe 65, and the LO pressure supply pipe 65 may be made of metal or resin.
[0051]
Further, like the slight differential pressure generating device 1 in the above-described embodiment, the third container 30 is not necessarily required, and the first communication path 10 and the second communication path 20 are used as one communication path. An air discharge hole may be provided on the way. Also with this configuration, the gas in the first container 10 and the gas in the second container 20 are exhausted from the common open-to-atmosphere hole provided in a part of the pipe connecting these containers, so that the influence from the atmosphere is obtained. Is not separately received by the first container 10 and the second container 20. That is, for example, in the case of an equivalent electric circuit, a common ground is taken instead of taking separate grounds, and the pressure reduction characteristic of the flow rate is stabilized. However, by providing the third container 30, the influence from the surrounding atmosphere is mainly absorbed by the third container 30, and the effect that cannot be completely absorbed by the first container 10 or the second container 20 becomes a buffer. Therefore, the operation is more stable than when the third container 30 is not provided.
[0052]
In the above-described embodiment, two pressure reducing valves 51 and 52 are arranged in series on the pipe 60 from the tank 50 to the leak-type pressure reducing valve 70. However, the pressure generated in the tank is lower than that in the above embodiment. If they are sufficiently small, these two pressure reducing valves are not always necessary.
[0053]
Furthermore, instead of using a nitrogen tank or a helium tank as a fluid supply source, a compressor that solves the problem of generation of dust and the like may be used.
[0054]
Furthermore, the pipe for opening to the atmosphere does not necessarily have to have an inner diameter smaller than that of the other pipes and communication passages. The same aperture effect as in the above-described embodiment can be achieved. Although the pipe for opening to the atmosphere may be omitted, it is preferable to provide the pipe for opening to the atmosphere in order to minimize the influence of the atmosphere.
[0055]
【The invention's effect】
As described above, the slight differential pressure generating device according to claim 1 of the present invention includes a leak type pressure reducing valve housed in the first container on the inlet side of the pipe, and the outlet side of the pipe. Is connected to the second container and is open to the atmosphere via a communication passage between the second container and the first container. That is, the outlet side of the pipe is not directly opened to the atmosphere, but is opened to the atmosphere via the second container and the connection pipe. In addition, the fluid leaked into the first container in the leak type pressure reducing valve is discharged to the atmosphere via a communication path serving as a throttle. That is, the fluid leaked by the leak-type pressure reducing valve fills the second container, a part of the fluid moves to the first container via the communication path, and the remaining part is discharged to the atmosphere from the atmosphere opening portion of the connection pipe. It is supposed to be. That is, the first container and the second container are filled with the fluid discharged from the leak-type pressure reducing valve and the fluid discharged from the pipe outlet, respectively. The fluid is discharged from. Thereby, the first container and the second container complement each other in the process of filling with the fluid, and the fluid can be more stably discharged to the atmosphere as compared with the case where the fluid is separately discharged to the atmosphere. In addition, when the influence from the atmosphere is received from the leak type pressure reducing valve or the pipe outlet, the influence from the atmosphere is not separately received, and the influence is received through the common atmosphere opening part. And the first vessel, the second vessel, and the connecting line cooperate to substantially absorb different types of influence from the atmosphere.
[0056]
Therefore, the leak-type pressure reducing valve that controls the pressure while leaking the gas by the differential pressure from the atmospheric pressure is not directly affected by the atmospheric pressure fluctuation, and the pressure at the pipe inlet side is stabilized, and the pipe outlet side Pressure also stabilizes. This allows a constant flow rate of fluid to flow through the pipe without being affected by the external atmosphere. Then, a stable pressure loss is generated in the pressure loss generating section due to the viscosity of the gas, and a more stable constant differential pressure can be generated upstream and downstream of the pressure loss generating section.
[0057]
Further, in the fine differential pressure generating device according to the second aspect of the present invention, the pressure in the pipe is sufficiently reduced by the pressure reducing means, and the flow rate is adjusted by the flow rate adjusting means. To be generated.
[0058]
Further, in the slight differential pressure generating device according to the third aspect of the present invention, by providing the third container, the third container mainly absorbs the moderate pressure fluctuation received from the surrounding atmosphere, and the third container also absorbs the moderate pressure fluctuation. The first container or the second container serves as a buffer to absorb the influence that cannot be completely eliminated. In addition, since the connecting conduits between the third container, the first container, and the second container also serve as throttles, abrupt pressure fluctuations received from the surrounding atmosphere are absorbed by these throttles. Therefore, the pressure loss generating section is less likely to be affected by the atmosphere, and a more stable generation of a small differential pressure is possible.
[0059]
Also, in the slight differential pressure generating device according to claim 4 of the present invention, since the volume of the third container is smaller than the volumes of the first container and the second container, the third container is connected to the second container via the connecting pipe and the third container. The response of the pressure feedback system formed between the two containers and the first container is not adversely affected.
[0060]
In addition, since the volumes of the first container and the second container are larger than those of the third container, the third container and the connection conduit connected to the third container out of the gradual pressure fluctuation and the pulsating pressure fluctuation received from the surrounding atmosphere. The pressure fluctuation that cannot be absorbed by the pressure can be reduced.
[0061]
Therefore, the pressure drop in the pressure loss generating section is stably performed, and a slight differential pressure can be stably generated in the pressure loss generating section without being directly affected by the external atmosphere.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a micro differential pressure generating device according to an embodiment of the present invention in a state where a micro differential pressure gauge and a reference pressure gauge are connected.
FIG. 2 is a diagram showing a schematic configuration of a conventional fine differential pressure generating device.
[Explanation of symbols]
1 Slight differential pressure generator
10 First container
20 Second container
30 Third container
31 Air release pipe
50 tanks
51,52 Pressure reducing valve
60 pipes
61 1st valve
62 2nd valve
63 3rd valve
65 HI pressure supply pipe
66 LO pressure supply pipe
70 Leak type pressure reducing valve
81 1st passage
82 Second communication passage
90 differential pressure gauge
91 HI pressure side inlet
92 LO pressure side inlet
95 Reference pressure gauge
100 first slight differential pressure generator
110 sealed container
111, 112 Closed space
121, 122 piping
130 pump
131 cylinder
140 differential pressure gauge
141 HI pressure side inlet
142 LO pressure side inlet

Claims (4)

所定の圧力で流体を供給可能な流体供給源と、
前記流体供給源に一端が接続された管路と、
前記管路の途中に設けられたリーク式減圧弁と、
前記リーク式減圧弁及び当該減圧弁の下流側一部管路を内部に収容し、前記リーク式減圧弁から内部に流体がリークされるようになった第1容器と、
前記管路の他端に接続された第2容器と、
前記第1容器に収容されたリーク式減圧弁下流側一部管路に分岐接続され、校正されるべき微差圧計のHI圧力側とLO圧力側にそれぞれ接続可能な二つの分岐配管と、
前記第1容器及び第2容器を連通接続し、一部に大気開放部を備えた接続管路とを有し、
前記管路の二つの分岐配管間には圧力損失発生部が形成されたことを特徴とする微差圧発生装置。
A fluid supply source capable of supplying a fluid at a predetermined pressure,
A pipe having one end connected to the fluid supply source;
A leak-type pressure reducing valve provided in the middle of the pipe,
A first container in which the leak-type pressure reducing valve and the downstream partial pipe of the pressure-reducing valve are housed, and a fluid is leaked from the leak-type pressure reducing valve to the inside;
A second container connected to the other end of the conduit;
Two branch pipes branch connected to a part of the leak type pressure reducing valve downstream side pipe housed in the first container, and connectable to the HI pressure side and the LO pressure side of the micro differential pressure gauge to be calibrated,
A connection pipe that connects the first container and the second container in communication with each other and has a part that is open to the atmosphere,
A small pressure difference generating device, wherein a pressure loss generating portion is formed between two branch pipes of the pipe.
前記圧力損失発生部は減圧手段と流量調整手段とからなることを特徴とする、請求項1に記載の微差圧発生装置。2. The device according to claim 1, wherein the pressure loss generating unit includes a pressure reducing unit and a flow rate adjusting unit. 3. 前記第1容器と前記第2容器とを連通する接続管路の所定部分に第3容器が介在され、かつ請求項1に記載の大気開放部に代えた大気開放部が前記第3容器に設けられていることを特徴とする、請求項1または請求項2に記載の微差圧発生装置。A third container is interposed in a predetermined portion of a connection pipe connecting the first container and the second container, and an air opening portion is provided in the third container instead of the air opening portion according to claim 1. The device according to claim 1, wherein the device is a differential pressure generating device. 前記第1容器、前記第2容器、及び前記第3容器は、前記第3容器の容積が前記第1容器及び前記第2容器の容積より小さいことを特徴とする、請求項3に記載の微差圧発生装置。4. The micro container according to claim 3, wherein the first container, the second container, and the third container have a volume of the third container smaller than a volume of the first container and the second container. Differential pressure generator.
JP2002323116A 2002-11-06 2002-11-06 Micro differential pressure generator Expired - Fee Related JP3956362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323116A JP3956362B2 (en) 2002-11-06 2002-11-06 Micro differential pressure generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323116A JP3956362B2 (en) 2002-11-06 2002-11-06 Micro differential pressure generator

Publications (2)

Publication Number Publication Date
JP2004157019A true JP2004157019A (en) 2004-06-03
JP3956362B2 JP3956362B2 (en) 2007-08-08

Family

ID=32803097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323116A Expired - Fee Related JP3956362B2 (en) 2002-11-06 2002-11-06 Micro differential pressure generator

Country Status (1)

Country Link
JP (1) JP3956362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128018A (en) * 2009-12-17 2011-06-30 Osaka Gas Co Ltd Differential pressure gauge inspection device and method of using the same
KR101211635B1 (en) 2010-09-29 2012-12-18 한국표준과학연구원 The Apparatus For Calibration Of The Differential Pressure Gauge And Apparatus for Calibration Of The Pressure Gauge

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128018A (en) * 2009-12-17 2011-06-30 Osaka Gas Co Ltd Differential pressure gauge inspection device and method of using the same
KR101211635B1 (en) 2010-09-29 2012-12-18 한국표준과학연구원 The Apparatus For Calibration Of The Differential Pressure Gauge And Apparatus for Calibration Of The Pressure Gauge

Also Published As

Publication number Publication date
JP3956362B2 (en) 2007-08-08

Similar Documents

Publication Publication Date Title
CN109029619B (en) Volume measuring device based on dynamic differential pressure attenuation
CN107036769A (en) A kind of system and method for being used to calibrate different probe gas vacuum leak leak rates
US7569178B2 (en) Apparatus and method for in-situ calibration of vacuum gauge by absolute method and comparison method
CN103528909B (en) A kind of using method of the determinator of gas solubility
KR101387880B1 (en) Method for Measuring the Actual Porosity of the Sealing Barrier in a Tank for the Containment of a Fluid
CN209910924U (en) Check valve gas testing system
CN105675221B (en) It is a kind of to measure system and method for the sealing material low temperature seal than pressing performance parameter
JP5525374B2 (en) Flow rate standard and flow rate calibration method using the same
JPWO2007138941A1 (en) Thermal mass flow meter and thermal mass flow controller
JP2018096847A (en) Rate calculation system and method for calculating flow rate
CN107035675B (en) The small-sized cryogenic liquid Pump Characteristic Test System of vacuum insulation protection
Büker et al. Investigations on pressure dependence of Coriolis mass flow meters used at hydrogen refueling stations
CN106679897A (en) Leakage hole&#39;s leakage rate measuring apparatus
JP4512827B2 (en) Leakage inspection method and apparatus
JP3956362B2 (en) Micro differential pressure generator
CN106134436B (en) Spacecraft propulsion agent gas flow surveying instrument
CN210638744U (en) Differential pressure flowmeter
CN111766091B (en) Calibration system and method of low-frequency pulsation suppression device for ground test
JP3201667B2 (en) Check valve test apparatus and check valve test method
JP2003035624A (en) Leak inspection method and apparatus therefor
CN102951589B (en) Apparatus for filling conducting medium into single-hole closed small container
RU2431817C1 (en) Pneumatic source of low pressure
CN107907321B (en) Heat leakage testing device and using method thereof
CN211740526U (en) Air tightness detection device
CN107144311B (en) Small-flow gas flowmeter and calibration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Ref document number: 3956362

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100518

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110518

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120518

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130518

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140518

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees