JP2004157004A - Conductivity sensor - Google Patents

Conductivity sensor Download PDF

Info

Publication number
JP2004157004A
JP2004157004A JP2002322712A JP2002322712A JP2004157004A JP 2004157004 A JP2004157004 A JP 2004157004A JP 2002322712 A JP2002322712 A JP 2002322712A JP 2002322712 A JP2002322712 A JP 2002322712A JP 2004157004 A JP2004157004 A JP 2004157004A
Authority
JP
Japan
Prior art keywords
developer
electrodes
sensor
electrode
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002322712A
Other languages
Japanese (ja)
Inventor
Chikashi Oishi
近司 大石
Susumu Yoshida
進 吉田
Hiroyuki Sasayama
笹山  洋行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2002322712A priority Critical patent/JP2004157004A/en
Publication of JP2004157004A publication Critical patent/JP2004157004A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress drift (variation in a measurement value generated over time) within a tolerance. <P>SOLUTION: A conductivity sensor has two electrodes 14 coming into contact with the developer of an automatic developing machine and a housing 13 for retaining the electrodes 14. In the housing 13, two electrode accommodation holes 16 are punched and respective electrodes 14 are accommodated in the two electrode accommodation holes 16. A specific voltage is applied between the electrodes 14, a current value flowing between the electrodes 14 is detected, and conductivity in the developer is measured based on the current value. The end face of the electrodes 14 is the same as the opening end face of the electrode accommodation hole 16 or projects outward from the opening end face of the electrode accommodation hole 16. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、回路基板、蛍光体層、各種電極、感光性印刷版などの感光材料を含む記録媒体を現像処理する自動現像機において、現像液の電導度を測定するための電導度センサ、及びこの電導度センサを用いた自動現像機に関する。
【0002】
【従来の技術】
平板印刷に用いられる自動現像機を開示する先行技術としては、以下に掲げるものがある。
【0003】
【特許文献1】
特開2001−290249号公報(第8〜10頁、図1)
【0004】
特許文献1に示される平版印刷用自動現像機では、現像液の劣化度合を知る指標としての電導度を測定する電導度センサが現像液の循環経路中に設けられており、電導度の検出結果に応じて現像補充液の補充制御が行われるようになっている。
【0005】
この場合の電導度センサの測定原理は、被測定液中に浸漬した互いに離間する2つの電極間に所定の電圧を印加すると、被測定液の電導度に応じた出力電流が得られる現象を利用し、この電流値に基づいて電導度を算出するというものである。
【0006】
図10は従来の電導度センサを備えたセンサユニットの構成を示す図である。図10において、1は電導度センサ、2はセンサカバーである。図11は電導度センサ1の先端部分の斜視図である。この電導度センサ1は、絶縁材料(絶縁樹脂)製の円筒状のハウジング3と、ハウジング3に保持された2本の棒状の電極4及び温度センサ5とを備えている。現像液の電導度は温度に応じて変化するので、温度センサ5は温度補正をするために設けられている。
【0007】
ハウジング3には、その先端面3aから長手方向に沿って2本の電極収納孔6が穿設されており、それら電極収納孔6に電極4がそれぞれ収納されている。電極4は、外的損傷防止の観点から、電極収納項6の開口端面から奥まった所に配設されている。すなわち、電極4は、ハウジング3内に凹設された状態となっている。
【0008】
ハウジング3の基端部には取付用のフランジ7が設けられており、そのフランジ7以外の部分が、筒状のセンサカバー2の基端部開口からセンサカバー2の内部に挿入されている。センサカバー2の電導度センサ1の先端面と対向する先端壁には現像液の流入口2aが設けられ、センサカバー2の周側壁には現像液の流出口2bが設けられている。
【0009】
現像液の電導度を測定する場合には、センサカバー2の流入口2aからセンサカバー2内部に現像液を導入し流出口2bから排出する。こうすることにより、電導度センサ1の電極収納孔6内に現像液が侵入して、電極4に現像液が接触する。この状態で現像液に浸漬された両電極4間に交流電源19から所定の電圧を印加して、電極4間を流れる電流値を検出し、その電流値に基づいて現像液の電導度を算出する。その際、必要に応じて温度センサ5の測定する温度値に応じた補正を行う。
【0010】
【発明が解決しようとする課題】
ところで、例えばシリケート(珪酸塩)系のアルカリ現像液を使用してアルミ支持体からなる平版印刷版を現像処理すると、高アルカリにより支持体のアルミが溶解し、不溶性の珪酸アルミニウムが生じる。特に、従来の電導度センサ1では、電極収納孔6内に現像液が滞留し易く、電極収納孔6内にカスが発生し易いという問題があった。従って、上記のように電導度センサ1で現像液の電導度を検出してpHに換算し、正しいpHになるように現像液の補充制御を行う場合、長期に亘って処理を続けていると、電導度センサ1の電極収納孔6の内側面や電極4上に現像液中に生じるカス(珪酸アルミニウム等)が堆積して正確な測定ができなくなり、その結果、計測値にドリフト(経時的に生じる計測値の変動)が生じて、現像液の補充制御が不正確になってしまうことがある。このため、従来では、センサ計測値の信頼性を維持するために短い間隔で定期的に洗浄する必要があった。
【0011】
本発明は、上記事情を考慮し、ドリフト(経時的に生じる計測値の変動)を抑制し、計測値の信頼性を向上させた電導度センサ及びこれを用いた自動現像機を提供することを目的とする。また、本発明の他の目的は、メンテナンス性の良好な電導度センサを提供することにある。
【0012】
【課題を解決するための手段】
本発明の請求項1記載の電導度センサは、自動現像機の現像液と接触する2つの電極と、前記電極を保持するハウジングとを有し、前記ハウジングには2つの電極収納孔が穿設され、前記2つの電極収納孔に前記電極をそれぞれ収納し、前記両電極間に所定の電圧を印加して前記両電極間に流れる電流値を検出し、その電流値に基づいて現像液の電導度を測定する電導度センサであって、
前記両電極の端面を、前記電極収納孔の開口端面と同一とし、又は、前記電極収納孔の開口端面から外方へ突出させたことを特徴とする。
【0013】
本発明の請求項2記載の自動現像機は、請求項1に記載のセンサを、流量が5〜30リットル/分、且つ、流速が0.5〜3m/秒の現像液循環系に配設したことを特徴とする。
【0014】
本発明の請求項3記載の自動現像機は、請求項2記載の自動現像機であって、前記電導度センサを、前記電極の端面が現像液循環系の液流の上流側に向くように配置したことを特徴とする。
【0015】
本発明の請求項4記載の自動現像機は、請求項1に記載の電導度センサを、前記電極の端面が現像液循環系内の液流の上流側を向くように配置したことを特徴とする。
【0016】
本発明の請求項5記載の自動現像機は、請求項2から請求項4のいずれか1項に記載の自動現像機であって、前記両電極間に、測定時にのみ所定の電圧を印加することを特徴とする。
【0017】
【発明の実施の形態】
以下、本発明の各実施形態を図面に基づいて説明する。図1〜図7は各実施形態の電導度センサを説明するための図であり、図9はそれらの電導度センサの適用対象の自動現像機の概略構成図である。ここでは、まず、各実施形態の電導度センサについて説明し、その後で自動現像機について説明する。
【0018】
図1は第1実施形態の電導度センサ11をセンサカバー2に取り付けて構成したセンサユニットU1の断面図、図2は電導度センサ11の先端部の構成を示す斜視図である。
【0019】
図1、図2に示すように、電導度センサ11は、絶縁材料(絶縁樹脂)製の円筒状のハウジング13と、ハウジング13に保持された2本の棒状のステンレス製の電極14及び温度センサ5とを備えている。ハウジング10の材質は、塩化ビニル、ポリエチレン、ポリプロピレン、ポリアセタール等が用いられる。ハウジング13には、そのフラットな先端面13aから長手方向に沿って平行に2本の電極収納孔16が穿設されており、それら電極収納孔16に、該収納孔16の内周との間に適当な隙間を保った状態で、電極14がそれぞれ収納されている。この場合、電極14は、その先端をハウジング13の先端面13aに露出させた位置に、つまり、電極14のフラットな先端面をハウジング13の先端面13aと、詳述すれば、電極収納孔16の開口端面と面一とした位置に配されている。
【0020】
また、ハウジング13の基端部には取付用のフランジ17が設けられ、そのフランジ17に、電極14や温度センサ5と、外部配線とを接続するコネクタ18が設けられている。外部配線は、検流計20を介して交流電源19に接続されている。交流電源19は、所定の電圧を両電極16,16間に印加する。検流計20は、両電極16,16間を流れる電流値を検出して、外部の制御装置21に出力する。制御装置21は、検出される電流値をもとに、現像液の電導度を測定する。
【0021】
また、電導度センサ11のフランジ17以外の部分が、筒状のセンサカバー2の基端部開口からセンサカバー2の内部に挿入されており、これによりセンサユニットU1が構成されている。なお、センサカバー2の構成については、図10に示した従来例と同様であるので説明を省略する。
【0022】
このセンサユニットU1を用いて現像液の電導度を測定する場合には、センサカバー2の流入口2aからセンサカバー2の内部に現像液を導入し流出口2bから排出するように、センサユニットU1を現像液の循環回路中に接続する。こうすることにより、電導度センサ11の電極収納孔16内に現像液が侵入して、電極14に現像液が接触する。この状態で現像液に浸漬された両電極14間に交流電源19から所定の交流電圧を印加して、電極4間を流れる電流値を検出し、その電流値に基づいて現像液の電導度を算出する。その際、必要に応じて温度センサ5の測定する温度値に応じた補正を行う。
【0023】
このように電導度の測定を実施した場合、電導度センサ11の先端に当たる現像液が勢いよく電極14に直接接触することになるので、現像液中に生成するカス(珪酸アルミニウム)が電極14上に付着しにくくなる。特に、電極14の先端面を、図1のように循環回路中の、液量の流れ方向の上流に向けて配置すると、現像液の流勢が強く作用してその効果が顕著になる。この作用は、主として電極14への攪拌効果と捉えることができる。従って、その影響でドリフトの発生が抑制でき、電導度の測定が正確に行われて、安定した現像液の補充制御が行われるようになる。また、安定した電導度測定が可能となることから、定期的な洗浄の間隔を延ばしたり、場合によっては洗浄の必要がなくなる。
なお、実際には適当なサンプリング間隔で電導度の測定を行うので、その測定のときにだけ、交流電源19は電極14に交流電圧を印加するようにする。そうすることにより、電気化学的な反応物の生成量を極力少なくすることができる。
【0024】
なお、上記実施形態では、電極収納孔16の内周と電極14との間に隙間ができるように電極14を電極収納孔16に収納した場合を示したが、図3、図4に示すセンサユニットU2における電導度センサ21のように、電極14の外径と電極収納孔16の内径を殆ど等しく設定し、電極収納孔16の内周と電極14との間に隙間ができないように電極14を電極収納孔16に収納してもよい。そうした場合は、電極収納孔16内に現像液が侵入しなくなるので、電極収納孔16内でのカスの発生を防止できる。尚、電導度センサ21の先端面においては、上述した配置により、カスが現像液の勢いに押し流れ去るため、カスの付着を抑制できる。
【0025】
電極14の先端面へのカスの付着をより一層効率的に抑制するためには、電極14の表面粗さRaが、0.5μm以下であることが好ましく、0.3μm以下であることがより好ましく、0.1μm以下であることが特に好ましい。
【0026】
また、上記実施形態では、電導度センサ11、21の先端面がフラットな場合を説明したが、図5に示すセンサユニットU3における電導度センサ31のように、先端面31aを球面状に形成したり、図6に示すセンサユニットU4における電導度センサ41のように、先端面41aを錐状に形成したりしてもよい。そうすれば、電導度センサ31、41の先端面に衝突する現像液がより流れやすくなることで、先端面31a、41aにおける現像液の滞留がなくなるので、一層カスの付着の問題が解消される。なお、図6に示す電導度センサ41の場合、図7(a)に示すように先端面41aを1点41bを頂点とする円錐状に形成してもよいし、先端面41aを直線的な峰41bを有する山状に形成してもよい。
【0027】
なお、センサユニットU1では、センサカバー2の外側面に超音波発振子10を取り付けて、センサカバー2内に導入した現像液に対して超音波振動を付与することで、電導度センサ11への珪酸アルミニウムの付着を極力減らすようにしている。この点は他の実施形態のセンサユニットU2、U3、U4についても同様である。
【0028】
なお、図8に示すセンサユニットU5のように、現像液が電導度センサ11の先端面13aに平行に衝突するように、先端面13aの延長線上にあたるセンサカバー2に現像液の流入口2cを設け、また先端面13aの延長線上で、且つ、流入口2cに対向する位置に流出口2dを設けるように構成してもよい。センサユニットU5の構成であっても、センサユニットU1〜U4と同様に、電導度センサ11の先端に位置する電極14には、勢いの強い現像液が直接接触することになるので、現像液中に生成するカス(珪酸アルミニウム)が電極14上に付着しにくくなる。
【0029】
なお、センサユニットU1〜U5では、電極14の先端面がハウジング13の先端面13aに露出させた位置、つまり、電極収納孔16の開口端面と面一とした位置に配されているが、これに限られず、電極14の先端面が電極収納孔16の開口端面から一部外方へ突出する構成であってもよい。本構成であっても、電導度センサ11の先端に当たる現像液が勢いよく電極14に直接接触するため、現像液中に生成するカス(珪酸アルミニウム)が電極14上に付着しにくくなり、安定した電導度測定を行うことが可能となる。
【0030】
また、センサユニットU1〜U5では、所定の電圧を両電極間に印加し、両電極間を流れる電流値を検出するとしたが、これに限られず、両電極間に所定の電流を通じて、両電極間に印加される電圧値を検出することにより、電導度測定を行うように構成してもよい。
【0031】
次に自動現像機について説明する。図9は上記構成のセンサユニット(電導度センサ)を具備した自動現像機の概略構成図である。
【0032】
この自動現像機は、感光性平版印刷版(以下「PS版」という)100を現像処理するための現像部101と、現像後のPS版100に付着した現像液を洗い流すとともにガム液を塗布する2段構成のフィニッシャー部102と、ガム液塗布後のPS版100を乾燥する乾燥部103とを備えている。
【0033】
自動現像機の側板の挿入口104から挿入されたPS版100は、搬送ローラにより現像部101へ搬送される。現像部101の現像槽110内には各種のローラが備えられ、PS版100は、これらローラにより搬送されながら現像液中に浸漬されて現像処理される。現像部101に連続したフィニッシャー部102には、フィニッシャー槽120A、120B内のガム液をPS版100に吹き付ける噴射部材106が設けられており、現像処理後のPS版100は、搬送ローラにより搬送されながら噴出部材106によりガム液を吹き付け塗布される。
【0034】
フィニッシャー部102に連続した乾燥部103は、図示しない乾燥手段を備えており、乾燥手段により乾燥されたPS版100は排出口107から外に排出される。フィニッシャー部102の後段のフィニッシャー槽120Bには、ガム液タンク121内のガム液が、ポンプ122により補充されると共に、補充希釈液貯留タンク131内の希釈液が、補充希釈液供給ポンプ132により補充される。
【0035】
現像槽110には、現像液の循環用配管111が接続されている。循環用配管111中には、現像液循環用ポンプ112、電導度センサ113及びフィルタ(図示せず)が設けられている。現像液循環用ポンプ112は、現像槽110内の現像液を、現像槽110底部の吸入孔から循環用配管111中に吸入させると共に、循環用配管111中を流通させ、再び現像槽110中に吐出させる。フィルタは、循環用配管111中を流れる現像液を濾過する。電導度センサ113は、循環用配管111中を流れる現像液の電導度を測定する。そして、この電導度センサ113として、前述した各実施形態の電導度センサ11〜41を備えたセンサユニットU1〜U4を装備する。
【0036】
また、現像部101には、補充装置を構成する補充用配管115、116と、補充用配管115に接続される補充原液貯留タンク117と、補充用配管116に介在される補充原液供給ポンプ118と、補充用配管116に接続される補充希釈液貯留タンク131と、補充用配管116に介在される補充希釈液供給ポンプ119とが設けられ、現像槽110からオーバーフローした現像廃液は、廃液タンク140に回収される。
【0037】
補充原液供給ポンプ118は、版検出センサ151及び時間計測部152に基づいて、補充希釈液供給ポンプ119は、版検出センサ151、時間計測部152及び電導度センサ113からの信号に基づいて、条件記憶手段である制御ROM153及び時間計測部152を備えた制御装置150によって制御される。即ち、制御装置150は、版が搬送されてきたかどうかの有無及びその搬送された版の版面積等を測定可能な版検出センサ151から信号に基づいて、補充原液供給ポンプ118及び補充希釈液供給ポンプ119を制御し、自動現像機の実際の運転条件に合わせて設定された現像液の制御ROM153によって記憶された補充条件に基づいて補充を行う。これにより制御装置150は、補充条件に見合う量の現像補充液(現像補充原液+補充希釈液)を、補充原液貯留タンク117及び補充希釈液貯留タンク131から例えば版1枚毎の処理毎に補充する。
【0038】
このような自動現像機に上述した電導度センサ11〜41を装備する場合に、現像液の循環流量は5〜30リットル/分、且つ、流速を0.5〜3m/秒に管理することが、カスの付着を抑制する上では好ましい。より好ましくは、流量が8〜20リットル/分、且つ、流速が0.75〜2m/秒、特に好ましくは、流量が10〜15リットル/分、且つ、流速が0.5〜1.5m/秒である。
【0039】
【発明の効果】
以上説明したように、本発明によれば、電極の先端をハウジングの先端面に露出させたから、現像液中に生成する物質の付着が原因によるドリフト(経時的に生じる計測値の変動)を防止することができ、電導度の測定を正確に行うことができる。従って、安定した現像液の補充制御を行うことができ、定期的な洗浄の間隔を延ばしたり、場合によっては洗浄の必要をなくすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態の電導度センサをセンサカバーに取り付けて構成したセンサユニットの断面図である。
【図2】図1の電導度センサの先端部の構成を示す斜視図である。
【図3】本発明の第2の実施形態の電導度センサをセンサカバーに取り付けて構成したセンサユニットの断面図である。
【図4】図3の電導度センサの先端部の構成を示す斜視図である。
【図5】本発明の第3の実施形態の電導度センサをセンサカバーに取り付けて構成したセンサユニットの断面図である。
【図6】本発明の第4の実施形態の電導度センサをセンサカバーに取り付けて構成したセンサユニットの断面図である。
【図7】図4の電導度センサの正面図であり、(a)は円錐状に形成した場合、(b)は直線的な峰を有する山形に形成した場合を示す図である。
【図8】本発明の第1の実施形態の電導度センサが取り付けられるセンサカバーの変形例を示す断面図である。
【図9】本発明の電導度センサの適用対象である自動現像機の概略構成図である。
【図10】従来の電導度センサをセンサカバーに取り付けて構成したセンサユニットの断面図である。
【図11】図10の電導度センサの先端部の構成を示す斜視図である。
【符号の説明】
11,21,31,41,113 電導度センサ
13 ハウジング
13a 先端面
14 電極
16 電極収納孔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electric conductivity sensor for measuring the electric conductivity of a developer in an automatic processor for developing a recording medium containing a photosensitive material such as a circuit board, a phosphor layer, various electrodes, and a photosensitive printing plate, and The present invention relates to an automatic processor using this conductivity sensor.
[0002]
[Prior art]
Prior arts that disclose an automatic developing machine used for lithographic printing include the following.
[0003]
[Patent Document 1]
JP 2001-290249 A (pages 8 to 10, FIG. 1)
[0004]
In the lithographic printing automatic developing machine disclosed in Patent Document 1, a conductivity sensor for measuring conductivity as an index for knowing the degree of deterioration of the developer is provided in the developer circulation path, and the result of detection of conductivity In response to this, replenishment control of the development replenisher is performed.
[0005]
The measurement principle of the conductivity sensor in this case utilizes the phenomenon that an output current corresponding to the conductivity of the liquid to be measured can be obtained when a predetermined voltage is applied between two electrodes that are immersed in the liquid to be measured and are separated from each other. The conductivity is calculated based on the current value.
[0006]
FIG. 10 is a diagram showing a configuration of a sensor unit including a conventional conductivity sensor. In FIG. 10, 1 is a conductivity sensor, and 2 is a sensor cover. FIG. 11 is a perspective view of the tip portion of the conductivity sensor 1. The conductivity sensor 1 includes a cylindrical housing 3 made of an insulating material (insulating resin), and two rod-shaped electrodes 4 and a temperature sensor 5 held by the housing 3. Since the conductivity of the developer changes according to the temperature, the temperature sensor 5 is provided for temperature correction.
[0007]
In the housing 3, two electrode housing holes 6 are formed along the longitudinal direction from the front end surface 3 a, and the electrodes 4 are housed in the electrode housing holes 6, respectively. The electrode 4 is disposed in a place recessed from the opening end face of the electrode housing item 6 from the viewpoint of preventing external damage. That is, the electrode 4 is recessed in the housing 3.
[0008]
A flange 7 for attachment is provided at the base end portion of the housing 3, and a portion other than the flange 7 is inserted into the inside of the sensor cover 2 from the base end opening of the cylindrical sensor cover 2. A developer inlet 2 a is provided on the tip wall of the sensor cover 2 facing the conductivity sensor 1, and a developer outlet 2 b is provided on the peripheral side wall of the sensor cover 2.
[0009]
When measuring the conductivity of the developer, the developer is introduced into the sensor cover 2 from the inlet 2a of the sensor cover 2 and discharged from the outlet 2b. By doing so, the developer enters the electrode housing hole 6 of the conductivity sensor 1, and the developer contacts the electrode 4. In this state, a predetermined voltage is applied from the AC power source 19 between both electrodes 4 immersed in the developer, the current value flowing between the electrodes 4 is detected, and the conductivity of the developer is calculated based on the current value. To do. At that time, correction according to the temperature value measured by the temperature sensor 5 is performed as necessary.
[0010]
[Problems to be solved by the invention]
By the way, when a lithographic printing plate comprising an aluminum support is developed using, for example, a silicate (silicate) -based alkaline developer, the aluminum on the support is dissolved by high alkali to produce insoluble aluminum silicate. In particular, the conventional conductivity sensor 1 has a problem that the developer is liable to stay in the electrode housing hole 6 and the residue is easily generated in the electrode housing hole 6. Therefore, when the conductivity of the developer is detected by the conductivity sensor 1 as described above, converted to pH, and the developer replenishment control is performed so that the correct pH is obtained, the processing is continued for a long time. In addition, debris (aluminum silicate, etc.) generated in the developer is deposited on the inner surface of the electrode housing hole 6 of the conductivity sensor 1 or on the electrode 4 and accurate measurement cannot be performed. Variation of the measured value that occurs in the developer), the developer replenishment control may become inaccurate. For this reason, conventionally, in order to maintain the reliability of the sensor measurement values, it has been necessary to periodically clean at short intervals.
[0011]
In consideration of the above circumstances, the present invention provides an electrical conductivity sensor that suppresses drift (variation of measurement values that occur over time) and improves the reliability of measurement values, and an automatic processor using the same. Objective. Another object of the present invention is to provide a conductivity sensor with good maintainability.
[0012]
[Means for Solving the Problems]
The electrical conductivity sensor according to claim 1 of the present invention has two electrodes that are in contact with a developer of an automatic processor and a housing that holds the electrodes, and the housing is provided with two electrode housing holes. The electrodes are respectively housed in the two electrode housing holes, a predetermined voltage is applied between the electrodes, a current value flowing between the electrodes is detected, and a developer is conducted based on the current values. A conductivity sensor for measuring the degree of
The end surfaces of both electrodes are made the same as the opening end surface of the electrode housing hole, or protruded outward from the opening end surface of the electrode housing hole.
[0013]
According to a second aspect of the present invention, there is provided an automatic developing machine in which the sensor according to the first aspect is disposed in a developer circulation system having a flow rate of 5 to 30 liters / minute and a flow rate of 0.5 to 3 m / seconds. It is characterized by that.
[0014]
The automatic developing machine according to claim 3 of the present invention is the automatic developing machine according to claim 2, wherein the conductivity sensor is arranged so that the end surface of the electrode faces the upstream side of the liquid flow in the developer circulation system. It is arranged.
[0015]
An automatic processor according to claim 4 of the present invention is characterized in that the conductivity sensor according to claim 1 is arranged so that the end face of the electrode faces the upstream side of the liquid flow in the developer circulation system. To do.
[0016]
The automatic processor according to claim 5 of the present invention is the automatic processor according to any one of claims 2 to 4, wherein a predetermined voltage is applied between the electrodes only during measurement. It is characterized by that.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, each embodiment of the present invention will be described with reference to the drawings. 1 to 7 are diagrams for explaining the conductivity sensors of the respective embodiments, and FIG. 9 is a schematic configuration diagram of an automatic processor to which these conductivity sensors are applied. Here, first, the conductivity sensor of each embodiment will be described, and then the automatic developing machine will be described.
[0018]
FIG. 1 is a cross-sectional view of a sensor unit U1 configured by attaching the conductivity sensor 11 of the first embodiment to the sensor cover 2, and FIG. 2 is a perspective view showing the configuration of the tip of the conductivity sensor 11.
[0019]
As shown in FIGS. 1 and 2, the conductivity sensor 11 includes a cylindrical housing 13 made of an insulating material (insulating resin), two rod-shaped stainless steel electrodes 14 held in the housing 13, and a temperature sensor. And 5. The material of the housing 10 is vinyl chloride, polyethylene, polypropylene, polyacetal, or the like. The housing 13 is provided with two electrode housing holes 16 extending in parallel from the flat front end surface 13 a along the longitudinal direction, and the electrode housing holes 16 are spaced from the inner periphery of the housing hole 16. The electrodes 14 are housed in a state where an appropriate gap is maintained. In this case, the electrode 14 is located at a position where the tip thereof is exposed to the tip surface 13 a of the housing 13, that is, the flat tip surface of the electrode 14 is referred to as the tip surface 13 a of the housing 13. It is arranged at a position flush with the opening end face.
[0020]
Further, a flange 17 for attachment is provided at the base end portion of the housing 13, and a connector 18 for connecting the electrode 14, the temperature sensor 5, and external wiring is provided on the flange 17. The external wiring is connected to the AC power source 19 via the galvanometer 20. The AC power source 19 applies a predetermined voltage between the electrodes 16 and 16. The galvanometer 20 detects the value of the current flowing between the electrodes 16 and 16 and outputs it to the external control device 21. The control device 21 measures the electric conductivity of the developer based on the detected current value.
[0021]
Further, a portion other than the flange 17 of the conductivity sensor 11 is inserted into the sensor cover 2 from the base end opening of the cylindrical sensor cover 2, thereby constituting the sensor unit U <b> 1. The configuration of the sensor cover 2 is the same as that of the conventional example shown in FIG.
[0022]
When the conductivity of the developer is measured using the sensor unit U1, the sensor unit U1 is configured such that the developer is introduced into the sensor cover 2 from the inlet 2a of the sensor cover 2 and discharged from the outlet 2b. To the developer circulation circuit. By doing so, the developer enters the electrode housing hole 16 of the conductivity sensor 11, and the developer contacts the electrode 14. In this state, a predetermined AC voltage is applied from the AC power source 19 between the electrodes 14 immersed in the developer, the current value flowing between the electrodes 4 is detected, and the conductivity of the developer is determined based on the current value. calculate. At that time, correction according to the temperature value measured by the temperature sensor 5 is performed as necessary.
[0023]
When the conductivity is measured in this way, the developer that hits the tip of the conductivity sensor 11 comes into direct contact with the electrode 14 vigorously, so that debris (aluminum silicate) generated in the developer is formed on the electrode 14. It becomes difficult to adhere to. In particular, when the tip surface of the electrode 14 is arranged toward the upstream in the flow direction of the liquid amount in the circulation circuit as shown in FIG. 1, the flow of the developer acts strongly and the effect becomes remarkable. This action can be mainly regarded as a stirring effect on the electrode 14. Therefore, the occurrence of drift can be suppressed by the influence, the conductivity is accurately measured, and stable developer replenishment control is performed. In addition, since stable conductivity measurement is possible, there is no need to extend the interval between regular cleanings or in some cases cleaning.
In practice, since the conductivity is measured at an appropriate sampling interval, the AC power source 19 applies an AC voltage to the electrode 14 only during the measurement. By doing so, the production amount of electrochemical reactants can be minimized.
[0024]
In the above embodiment, the case where the electrode 14 is accommodated in the electrode accommodation hole 16 so that a gap is formed between the inner periphery of the electrode accommodation hole 16 and the electrode 14 is shown. However, the sensor shown in FIGS. Like the conductivity sensor 21 in the unit U 2, the outer diameter of the electrode 14 and the inner diameter of the electrode housing hole 16 are set to be almost equal so that there is no gap between the inner periphery of the electrode housing hole 16 and the electrode 14. May be stored in the electrode storage hole 16. In such a case, since the developer does not enter the electrode housing hole 16, it is possible to prevent the generation of debris in the electrode housing hole 16. In addition, on the front end surface of the conductivity sensor 21, the residue is pushed away by the momentum of the developer by the above-described arrangement, so that the adhesion of the residue can be suppressed.
[0025]
In order to suppress the adhesion of debris to the tip surface of the electrode 14 more efficiently, the surface roughness Ra of the electrode 14 is preferably 0.5 μm or less, more preferably 0.3 μm or less. The thickness is preferably 0.1 μm or less.
[0026]
In the above embodiment, the case where the tip surfaces of the conductivity sensors 11 and 21 are flat has been described. However, like the conductivity sensor 31 in the sensor unit U3 shown in FIG. 5, the tip surface 31a is formed in a spherical shape. Alternatively, like the conductivity sensor 41 in the sensor unit U4 shown in FIG. 6, the tip surface 41a may be formed in a conical shape. By doing so, the developer colliding with the tip surfaces of the conductivity sensors 31 and 41 can flow more easily, so that the developer does not stay on the tip surfaces 31a and 41a, thereby further eliminating the problem of residue adhesion. . In the case of the conductivity sensor 41 shown in FIG. 6, the tip surface 41a may be formed in a conical shape having a point 41b as the apex as shown in FIG. 7A, or the tip surface 41a may be linear. You may form in the mountain shape which has the peak 41b.
[0027]
In the sensor unit U1, the ultrasonic oscillator 10 is attached to the outer surface of the sensor cover 2, and ultrasonic vibration is applied to the developer introduced into the sensor cover 2, so that The adhesion of aluminum silicate is reduced as much as possible. This also applies to the sensor units U2, U3, U4 of other embodiments.
[0028]
In addition, like the sensor unit U5 shown in FIG. 8, the developer inlet 2c is provided in the sensor cover 2 on the extension line of the tip surface 13a so that the developer collides in parallel with the tip surface 13a of the conductivity sensor 11. Alternatively, the outlet 2d may be provided on the extended line of the distal end surface 13a and at a position facing the inlet 2c. Even in the configuration of the sensor unit U5, as in the sensor units U1 to U4, the vigorous developer is in direct contact with the electrode 14 located at the tip of the conductivity sensor 11, so The scum (aluminum silicate) that is generated on the electrode 14 is less likely to adhere to the electrode 14.
[0029]
In the sensor units U1 to U5, the tip end surface of the electrode 14 is disposed at the position where the tip end surface 13a of the housing 13 is exposed, that is, the same position as the opening end surface of the electrode housing hole 16. However, the configuration is not limited thereto, and the tip end surface of the electrode 14 may partially protrude outward from the opening end surface of the electrode housing hole 16. Even in this configuration, the developer hitting the tip of the conductivity sensor 11 vigorously comes into direct contact with the electrode 14, so that debris (aluminum silicate) generated in the developer is less likely to adhere to the electrode 14 and is stable. Conductivity measurement can be performed.
[0030]
In the sensor units U1 to U5, a predetermined voltage is applied between both electrodes and the current value flowing between both electrodes is detected. However, the present invention is not limited to this, and a predetermined current is passed between both electrodes. The electrical conductivity may be measured by detecting the voltage value applied to the.
[0031]
Next, the automatic developing machine will be described. FIG. 9 is a schematic configuration diagram of an automatic processor equipped with a sensor unit (conductivity sensor) having the above configuration.
[0032]
This automatic developing machine rinses away the developing unit 101 for developing a photosensitive lithographic printing plate (hereinafter referred to as “PS plate”) 100 and the developing solution adhering to the developed PS plate 100 and applies a gum solution. A finisher unit 102 having a two-stage structure and a drying unit 103 for drying the PS plate 100 after applying the gum solution are provided.
[0033]
The PS plate 100 inserted from the insertion port 104 on the side plate of the automatic developing machine is conveyed to the developing unit 101 by the conveying roller. Various rollers are provided in the developing tank 110 of the developing unit 101, and the PS plate 100 is immersed in the developing solution while being transported by these rollers and is developed. The finisher unit 102 that is continuous with the developing unit 101 is provided with an injection member 106 that sprays the gum solution in the finisher tanks 120A and 120B onto the PS plate 100. The PS plate 100 after the development processing is conveyed by a conveyance roller. The gum solution is sprayed and applied by the ejection member 106.
[0034]
The drying unit 103 connected to the finisher unit 102 includes a drying unit (not shown), and the PS plate 100 dried by the drying unit is discharged from the discharge port 107 to the outside. The finisher tank 120B at the rear stage of the finisher unit 102 is supplemented with the gum solution in the gum solution tank 121 by the pump 122, and the diluent in the supplement diluent storage tank 131 is supplemented by the supplement diluent supply pump 132. Is done.
[0035]
A developing solution circulation pipe 111 is connected to the developing tank 110. In the circulation pipe 111, a developer circulation pump 112, a conductivity sensor 113, and a filter (not shown) are provided. The developer circulation pump 112 sucks the developer in the developer tank 110 from the suction hole at the bottom of the developer tank 110 into the circulation pipe 111, distributes the developer in the circulation pipe 111, and enters the developer tank 110 again. Discharge. The filter filters the developer flowing in the circulation pipe 111. The conductivity sensor 113 measures the conductivity of the developer flowing through the circulation pipe 111. And as this electrical conductivity sensor 113, the sensor units U1-U4 provided with the electrical conductivity sensors 11-41 of each embodiment mentioned above are equipped.
[0036]
The developing unit 101 includes replenishment pipes 115 and 116 constituting a replenisher, a replenishment stock solution storage tank 117 connected to the replenishment pipe 115, and a replenishment stock solution supply pump 118 interposed in the replenishment pipe 116. A replenishment diluent storage tank 131 connected to the replenishment pipe 116 and a replenishment diluent supply pump 119 interposed in the replenishment pipe 116 are provided, and the development waste liquid overflowing from the developing tank 110 is supplied to the waste liquid tank 140. Collected.
[0037]
The replenishment stock solution supply pump 118 is based on the plate detection sensor 151 and the time measurement unit 152, and the replenishment dilution liquid supply pump 119 is based on the signals from the plate detection sensor 151, the time measurement unit 152 and the conductivity sensor 113. Control is performed by a control device 150 including a control ROM 153 and a time measurement unit 152 as storage means. That is, the control device 150 supplies the replenishment stock solution supply pump 118 and the replenishment diluent supply based on signals from the plate detection sensor 151 that can measure whether or not the plate has been transported and the plate area of the transported plate. The pump 119 is controlled to perform replenishment based on the replenishment conditions stored in the developer control ROM 153 set in accordance with the actual operating conditions of the automatic processor. As a result, the control device 150 replenishes an amount of development replenisher (development replenishment stock solution + replenishment dilution solution) corresponding to the replenishment conditions from the replenishment stock solution storage tank 117 and the replenishment dilution solution storage tank 131, for example, for each process of each plate. To do.
[0038]
In the case where the above-described conductivity sensors 11 to 41 are installed in such an automatic developing machine, it is possible to manage the circulating flow rate of the developer at 5 to 30 liters / minute and the flow rate at 0.5 to 3 m / second. In terms of suppressing the adhesion of residue, it is preferable. More preferably, the flow rate is 8 to 20 liters / minute and the flow rate is 0.75 to 2 m / second, and particularly preferably, the flow rate is 10 to 15 liters / minute and the flow rate is 0.5 to 1.5 m / second. Seconds.
[0039]
【The invention's effect】
As described above, according to the present invention, since the tip of the electrode is exposed to the tip of the housing, drift due to adhesion of a substance generated in the developer (measurement value fluctuations that occur over time) is prevented. And the conductivity can be measured accurately. Therefore, stable developer replenishment control can be performed, the interval between regular cleanings can be extended, and in some cases, the need for cleaning can be eliminated.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a sensor unit configured by attaching a conductivity sensor according to a first embodiment of the present invention to a sensor cover.
2 is a perspective view showing a configuration of a distal end portion of the conductivity sensor of FIG. 1. FIG.
FIG. 3 is a cross-sectional view of a sensor unit configured by attaching a conductivity sensor according to a second embodiment of the present invention to a sensor cover.
4 is a perspective view showing a configuration of a distal end portion of the conductivity sensor of FIG. 3. FIG.
FIG. 5 is a cross-sectional view of a sensor unit configured by attaching a conductivity sensor according to a third embodiment of the present invention to a sensor cover.
FIG. 6 is a cross-sectional view of a sensor unit configured by attaching a conductivity sensor according to a fourth embodiment of the present invention to a sensor cover.
7 is a front view of the conductivity sensor of FIG. 4, where (a) shows a case where it is formed in a conical shape, and (b) shows a case where it is formed in a mountain shape having straight peaks.
FIG. 8 is a cross-sectional view showing a modified example of the sensor cover to which the conductivity sensor according to the first embodiment of the present invention is attached.
FIG. 9 is a schematic configuration diagram of an automatic processor to which the conductivity sensor of the present invention is applied.
FIG. 10 is a cross-sectional view of a sensor unit configured by attaching a conventional conductivity sensor to a sensor cover.
11 is a perspective view showing a configuration of a distal end portion of the conductivity sensor of FIG. 10;
[Explanation of symbols]
11, 21, 31, 41, 113 Conductivity sensor 13 Housing 13a End face 14 Electrode 16 Electrode housing hole

Claims (4)

自動現像機の現像液と接触する2つの電極と、前記電極を保持するハウジングとを有し、前記ハウジングには2つの電極収納孔が穿設され、前記2つの電極収納孔に前記電極をそれぞれ収納し、前記両電極間に所定の電圧を印加して前記両電極間に流れる電流値を検出し、その電流値に基づいて現像液の電導度を測定する電導度センサであって、
前記両電極の端面を、前記電極収納孔の開口端面と同一とし、又は、前記電極収納孔の開口端面から外方へ突出させたことを特徴とする電導度センサ。
Two electrodes in contact with the developer of the automatic processor, and a housing for holding the electrodes. The housing has two electrode receiving holes, and the electrodes are respectively inserted into the two electrode receiving holes. An electrical conductivity sensor for detecting a current value flowing between the electrodes by applying a predetermined voltage between the electrodes and measuring the conductivity of the developer based on the current value;
The conductivity sensor is characterized in that the end surfaces of both electrodes are the same as the opening end surface of the electrode housing hole or project outward from the opening end surface of the electrode housing hole.
請求項1に記載のセンサを、流量が5〜30リットル/分、且つ、流速が0.5〜3m/秒の現像液循環系に配設したことを特徴とする自動現像機。An automatic developing machine comprising the sensor according to claim 1 disposed in a developer circulation system having a flow rate of 5 to 30 liters / minute and a flow rate of 0.5 to 3 m / second. 前記電導度センサを、前記電極の端面が現像液循環系の液流の上流側に向くように配置したことを特徴とする請求項2記載の自動現像機。3. The automatic developing machine according to claim 2, wherein the conductivity sensor is arranged so that an end face of the electrode faces an upstream side of a liquid flow in a developer circulation system. 請求項1に記載の電導度センサを、前記電極の端面が現像液循環系内の液流の上流側を向くように配置したことを特徴とする自動現像機。2. An automatic processor according to claim 1, wherein the conductivity sensor is arranged so that an end face of the electrode faces an upstream side of a liquid flow in the developer circulation system.
JP2002322712A 2002-11-06 2002-11-06 Conductivity sensor Pending JP2004157004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322712A JP2004157004A (en) 2002-11-06 2002-11-06 Conductivity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322712A JP2004157004A (en) 2002-11-06 2002-11-06 Conductivity sensor

Publications (1)

Publication Number Publication Date
JP2004157004A true JP2004157004A (en) 2004-06-03

Family

ID=32802820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322712A Pending JP2004157004A (en) 2002-11-06 2002-11-06 Conductivity sensor

Country Status (1)

Country Link
JP (1) JP2004157004A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300535A (en) * 2007-05-30 2008-12-11 Shibaura Mechatronics Corp Laser device, and method of measuring electric resistance of cooling liquid
CN103412009A (en) * 2013-08-21 2013-11-27 中国海洋石油总公司 Fluid conductivity sensor, and device and method for measuring fluid conductivity
CN109946345A (en) * 2017-12-15 2019-06-28 株式会社堀场先进技术 The conductivity meter and specific resistance meter of conductivity meter or the electrode and use of specific resistance the meter electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008300535A (en) * 2007-05-30 2008-12-11 Shibaura Mechatronics Corp Laser device, and method of measuring electric resistance of cooling liquid
CN103412009A (en) * 2013-08-21 2013-11-27 中国海洋石油总公司 Fluid conductivity sensor, and device and method for measuring fluid conductivity
CN103412009B (en) * 2013-08-21 2015-12-02 中国海洋石油总公司 A kind of apparatus and method measuring fluid conductivity
CN109946345A (en) * 2017-12-15 2019-06-28 株式会社堀场先进技术 The conductivity meter and specific resistance meter of conductivity meter or the electrode and use of specific resistance the meter electrode
CN109946345B (en) * 2017-12-15 2023-11-10 株式会社堀场先进技术 Electrode for conductivity meter or specific resistance meter, and conductivity meter and specific resistance meter using the electrode

Similar Documents

Publication Publication Date Title
US20020012542A1 (en) Image developing apparatus, process cartridge, electrophotographic image forming apparatus, and developing unit frame
JP2000122398A (en) Electrophotographic image forming device, process cartridge, developing device, developer feeding container, and measuring equipment
RU2393961C1 (en) Developer cartridge, developer unit and image forming device having said developer unit
JP2008058481A (en) Image forming apparatus and disconnection inspection method therefor
JP2004157004A (en) Conductivity sensor
US20240172910A1 (en) Cleaning device, control method therefor, and computer readable storage medium
US6621989B2 (en) Image forming apparatus and a unit detachably mountable on an image forming apparatus comprising means for detecting the amount of developer contained in a developer container
EP1126330A2 (en) Process cartridge and image forming apparatus
JP2004157005A (en) Conductivity sensor and automatic developing machine
JP2007121585A (en) Toner storage container
US6367324B1 (en) Detecting device
JP3984759B2 (en) Developing device, process cartridge, and electrophotographic image forming apparatus
JPS63132242A (en) Replenisher replenishing device for photosensitive lithographic printing plate developing machine
US6636706B2 (en) Electrophotographic image forming apparatus
JP2004101444A (en) Method and apparatus for detecting concentration
JP2000298357A (en) Apparatus for automatically developing photosensitive planographic printing plate
JP3613478B2 (en) Development device for photosensitive lithographic printing plate
JP3885857B2 (en) Development device
JP2716905B2 (en) Wet electrophotographic developing device
JPH0310512Y2 (en)
US8205480B2 (en) Measuring device
JP2625212B2 (en) Photosensitive material processing equipment
JPH0472218B2 (en)
JP2005092011A (en) Photosensitive material processing apparatus and ph value recovering method for the photosensitive material processing apparatus
JP2002328521A (en) Developer amount detection system, image forming device and process cartridge