JP3613478B2 - Development device for photosensitive lithographic printing plate - Google Patents

Development device for photosensitive lithographic printing plate Download PDF

Info

Publication number
JP3613478B2
JP3613478B2 JP30778194A JP30778194A JP3613478B2 JP 3613478 B2 JP3613478 B2 JP 3613478B2 JP 30778194 A JP30778194 A JP 30778194A JP 30778194 A JP30778194 A JP 30778194A JP 3613478 B2 JP3613478 B2 JP 3613478B2
Authority
JP
Japan
Prior art keywords
conductivity
developer
processing
replenishment
threshold value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30778194A
Other languages
Japanese (ja)
Other versions
JPH08160629A (en
Inventor
近司 大石
笹山  洋行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP30778194A priority Critical patent/JP3613478B2/en
Publication of JPH08160629A publication Critical patent/JPH08160629A/en
Application granted granted Critical
Publication of JP3613478B2 publication Critical patent/JP3613478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、感光性平版印刷版(以下、PS版と略称することもある)の現像装置において、現像処理中の現像液の活性度を一定に保ち現像感度を安定化させるための技術に関する。
【0002】
【従来の技術】
PS版の現像装置では、PS版の現像処理に伴い現像液中の処理成分が減少し現像性能が低下して行く。また、現像液が空気と接触すると、空気中の二酸化炭素が現像液中に溶け込み現像液の性能が低下する。このように、現像液は処理及び経時に伴い性能が低下することから、現像補充液を適宜補充して現像液の活性度を一定に保っている
従来の現像補充方法としては、例えば特開昭61−61164号公報に記載の技術がある。この技術は、現像液の電導度を測定し、この電導度があらかじめ設定された電導度以下になったら補充装置が作動して、現像補充液が補充されるようになっている。
上記の補充は、現像液の性能が低下すると電導度が低下するという知見に基づくものであり、現像性能と電導度が適正に関連付けられている条件のもとでは、現像液性能が適正に維持される。
【0003】
【発明が解決しようとする課題】
例えば、現像液はPS版を処理することによって劣化するのは当然であるが、現像液には常に空気中の二酸化炭素が溶け込み、現像液は溶け込んだ二酸化炭素の影響でも劣化する。したがって、現像液の性能を回復するための補充として、PS版の処理による劣化を補う補充と、二酸化炭素による劣化を補う補充とを実施する必要がある。
前記特開昭61−61164号公報に記載の技術のように、現像液の電導度を測定して、現像液の電導度に応じて補充液を補充する構成では、補充時期を判断する電導度を設定する必要があり、電導度の設定値も適宜上昇又は下降させる必要がある。これは、現像液の母液置換率(現像タンク内の現像母液に対する補充液の割合)が増加するに従って、そのときの適正な電導度も上昇又は下降するからである。
母液置換率と電導度との関係は、例えば図7に示すものであり、実験的に求められ、単位時間当たりの処理量を一定とし、かつ二酸化炭素による劣化を考慮して設定されている。
【0004】
一方、PS版の処理頻度が高いとPS版の処理による疲労度が大きく、処理頻度が低いとPS版の処理による疲労度が小さい。単位時間当たりの二酸化炭素による疲労度は一定であるため、PS版の処理による疲労度と二酸化炭素による疲労度との比は、処理頻度によって異なる。すると、両者の疲労度の比が一定であるとして設定した、補充制御用の上記の置換率と電導度との関係が変わってしまい、適正な補充が行われなくなってしまう。
したがって、従来のように電導度だけに基づいて補充を行っているだけでは、現像感度を安定化させることができない。
また、各ユーザーごとに処理頻度を測定して、そのユーザーの処理頻度に応じて母液置換率と電導度との関係を設定すれば、適正な補充は可能であるが、補充に先立つ設定作業が煩雑であった。
また、従来の自動現像装置では、現像槽からの蒸発があると現像液が濃縮され、現像液の電導度が見かけ上増加し、処理能力としては低下しているのに電導度が十分高いとコンピュータが判断して補充が行われず、結果的に現像不良が発生する危険性があった。これを防止するために一定時間ごとに蒸発した分を見込んで水を補充する方法があるが、蒸発量は設置環境や季節変動で変化し、補充システムとして完璧とは言えなかった。
【0005】
本発明の目的は、上記従来の問題を解決することにあり、ユーザーの処理頻度や設置環境が変わっても、安定した現像処理を長期間にわたって行うことができる現像装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明の上記目的は下記構成により達成される。
(1) 現像液の電導度が設定値より低いときに現像補充液を補充する補充装置を備えた感光性平版印刷版の現像装置において、
前記補充装置は、予め定めた周期毎に感光性平版印刷版の該1周期内に処理された処理量を測定する処理量測定手段と、測定値に基づいて前記電導度の設定値を変更する制御手段と、前記1周期内に処理された処理量と電導度との適正な関係を記憶した記憶手段とを備え、電導度の前記設定値を前記1周期内に処理された処理量の増減に従って低高させることを特徴とする感光性平版印刷版の現像装置。
【0007】
(2) 前記電導度は、現像液の置換率と対応付けられた関係にあり、所定置換率に対応した電導度を補充制御用の設定値とすることを特徴とする前記(1)記載の現像装置。
【0008】
(3) 前記電導度と置換率との関係を補正することにより、電導度の補充用設定値を処理量の増減に従って低高させることを特徴とする前記(1)又は(2)に記載の現像装置。
【0009】
【作用】
単位時間当たりの処理量が少ないとき、すなわち閑散処理状態では、処理による疲労より二酸化炭素による疲労の割合が大きくなる。処理による疲労より二酸化炭素による疲労の方が、より高い電導度値で現像感度が回復することが実験的にわかっているので、処理量が少ないときは、補充制御用の置換率に対する電導度の設定値を高めることにより、現像感度を安定化することができる。
【0010】
また逆に、単位時間当たりの処理量が多いとき、すなわち連続処理状態では、二酸化炭素による疲労より処理による疲労の割合が大きくなる。二酸化炭素による疲労より処理による疲労の方が、より低い電導度で現像感度が回復することが実験的にわかっているので、処理量が多いときは、補充制御用の置換率に対する電導度の設定値を低めることにより、現像感度を安定化することができる。
また、現像液の比重に影響する要因としては、感光層の溶解と水分蒸発及び現像補充液の比重が考えられる。すなわち、感光層が溶解すると、その比重が現像液の比重より大きければ現像液の比重も上昇する。水分蒸発は直接的に溶解成分の濃度を上昇させるので液の比重も上昇する。現像補充液の比重が現像仕込み液の比重より大きければ、補充が進んで補充液への置換率が大きくなるに従って現像槽内の現像液の比重は上昇する。したがって、感光層の溶解量、すなわちPS版の処理面積と現像液の比重及び補充液への置換率との関係をあらかじめ実験によって求めプログラム化しておきコンピュータ制御することにより、蒸発量のバラツキにも影響されない安定な現像処理を行うことができる。
【0011】
【実施例】
以下、添付図面を参照して本発明の実施例を説明する。
図1は現像装置の構成図である。現像装置1は、PS版3の現像液を収容して現像処理を行う現像槽5と、現像後のPS版3を洗浄するリンス槽7とを備えている。露光後のPS版3は、搬送ローラ9により現像槽5内の現像液中に浸漬搬送されて現像処理が行われる。現像後のPS版3は引き続きリンス槽7に搬送されて、リンス液を噴射されて洗浄が行われる。
現像槽5内の現像液は、フィルタ11により濾過されポンプ13により循環されながらPS版3に向けて吹きつけられ、PS版3の被処理面での液交換率が高まるようになっている。なお、本実施例のように、現像槽5内の現像液は、浮き蓋15で液面を覆うことにより空気との接触を出来る限り防止されることが好ましい。また、現像槽5に、上方空間を気密に覆うカバーを設けてもよい。また、現像促進手段として、版面をこする回転ブラシを設けてもよい。
【0012】
現像槽5は、詳細を図2に示す現像補充液補充装置17を備えている。補充装置17は、キーボード・表示装置19と、PS版3の処理量を測定する光電スイッチ21と、現像液の電導度を測定する電導度センサ23と、現像液の比重を測定する比重センサ25と、現像液に異常が生じたときに警告を発する警告装置27と、補充液29と希釈水31とを充填した各補充タンク33,35と、補充液29を現像槽5に供給する現像補充ポンプ37と、希釈水31を現像槽5に供給する水補充ポンプ39と、キーボード・表示装置19や、光電スイッチ21や、電導度センサ23や、比重センサ25からの信号に基づいて、警告装置27、現像補充ポンプ37、水補充ポンプ39等の作動を制御するコントローラ41とからなる。
なお、警告装置27、現像補充ポンプ37、水補充ポンプ39は、それぞれ作動用リレー43,45,47を介してコントローラ41と接続されている。
【0013】
コントローラ41は、各要素の作動を制御するCPU49と、補充を行う際の基準値として設定した電導度等を記憶する第1メモリ(RAM)51と、各補充液の補充量等の補充に必要な情報を記憶した第2メモリ(ROM)53と、入出力ポート55と、タイマ57と、A/D変換器59とを備えている。
第1メモリ(RAM)51には、PS版3の幅情報W、現像液の置換率情報X、処理面積を測定する周期ti 、測定した比重に基づく希釈水の補充量tw 、測定した電導度に基づく現像補充液の補充量td 、測定した処理量S、単位時間当たりの処理量ΔS等を書換え可能に記憶している。
また第2メモリ(ROM)は、単位希釈水補充量Hw 、水ポンプ流量Uw 、単位現像補充液補充量Hd 、現像ポンプ流量Ud 、搬送速度V、現像タンク容量V、比重しきい値、電導度第1しきい値、電導度第2しきい値、ΔS1 ,………,ΔSn の各電導度第3しきい値等を記憶している。
【0014】
この補充装置17は、電導度センサ23により常に現像液の電導度を測定し、測定した電導度が設定値を下回ったら、各タンク33,35内の補充液29及び希釈水31を補充するようになっている。
更に、光電スイッチ21は例えば単位時間当たりのPS版3の搬送量を測定し、CPU49はこの搬送量とPS版3の幅とから処理量としての面積を算出する。面積の算出手段としては、幅検出センサ(例えば多数のマイクロスイッチを搬送方向と直交方向に並べ、ONした個数で幅を検知するもの)を装置の挿入口に設けてONしていた時間との積で求めるのもよい。そして、CPU49は、処理頻度に応じた適正な電導度を第2メモリ(ROM)53から読み込み、その電導度を新たに補充制御用の設定値として、前記第1メモリ(RAM)51に書き込み、常に適正な設定値を基準に補充を行うようになっている。
【0015】
次に、上記現像補充液の補充動作について説明する。図3〜図5は補充制御処理を表すフローチャートであり、図3は比重に基づく補充制御、図4は電導率に基づく補充制御、図5は処理頻度を演算する制御である。
本実施例において、現像液の比重に基づく補充制御(図3)は、電導率に基づく補充制御(図4)に先立って行われる。
【0016】
まず、電源がONとなると(ステップS1)、PS版3の処理頻度を演算する周期ti を設定する(ステップS3)。本実施例の場合、ti =24時間であり、24時間ごとに処理頻度を演算するようになっている。
比重センサ25により現像液の比重Dを測定すると(ステップS5)、測定した比重Dをその時の現像液置換率を参照して比較演算用に補正する(ステップS7)。次いで、あらかじめ補充制御用に設定してある比重しきい値を読み込み(ステップS9)、このしきい値と補正した測定比重Daとを比較し、補充の要否を判断する(ステップS11)。測定比重Daが比重しきい値よりも大きければ、あらかじめ設定してある量の希釈水を補充して(ステップS13)、現像液の比重を低下させる。また、測定比重Daが比重しきい値よりも小さければ、希釈水の補充を行わず、次の電導度に基づく補充制御(図4)に移行する。
【0017】
電導度に基づく補充制御は、まず処理頻度の測定周期(ti =24時間)をカウントするタイマを起動することから始まる(ステップS21)。
次いで、電導度センサ23により現像液の電導度Rを測定し(ステップS23)する。次いで、このときの現像液置換率Xを第1メモリ(RAM)51から読み込み、測定した電導度Rを置換率に基づいて比較演算用に補正する(ステップS25)。本例の場合、補正した測定電導度Raは、下記数1式により得られる。
【0018】
【数1】
Ra=R+(100−x)・(Re−Rs)/100
Rs:置換率0%のときのしきい値
Re:第3しきい値、あるいは置換率100%のときのしきい値
【0019】
次いで、第2メモリ(ROM)53から電導度の第1しきい値を読み込み(ステップS27)、第1しきい値と補正した測定電導度(以下、単に測定電導度という)Raとを比較し、測定電導度Raが第1しきい値より低いか否かを判断する(ステップS29)。測定電導度Raが第1しきい値より低いときは、電導度があまりにも低すぎるときであり、これは異常と見なされ、警告が発せられる(ステップS31)。
【0020】
測定電導度Raが第1しきい値より高いときは、次いで第2メモリ(ROM)53から電導度の第2しきい値を読み込み(ステップS33)、測定電導度Raが第2しきい値より低いか否かを判断する(ステップS35)。測定電導度Raが第2しきい値より高いときは、電導度があまりにも高すぎるときであり、これも何らかの異常と見なされ、警告が発せられる(ステップS31)。
【0021】
測定電導度Raが第2しきい値よりも低ければ、第1メモリ(RAM)51から補充制御用の電導度の適切な第3しきい値Reを読み込む(ステップS37)。ここで、第3しきい値Reは、置換率100%のときの電導度しきい値であり、後述するPS版3の処理頻度の演算結果に基づいて適切に設定された値であり、処理頻度が変わるごとに、第3しきい値Reも書き換えられる。例えば、処理頻度がΔS1 であれば、処理頻度ΔS1 に対応して適切に設定された電導度Re1 が補充制御用の設定値として用いられる。同様に、処理頻度がΔSn であれば、処理頻度ΔSn に対応して適切に設定された電導度Ren が補充制御用の設定値として用いられる。第2メモリ(ROM)53内には処理頻度に対応した補充制御用の電導度が記憶されており、例えば、下記数2式に示すような処理頻度と電導度との関係が記憶されている。
【0022】
【数2】
Re=Rs+a+c/(ΔS+b)
Re:第3しきい値、あるいは置換率100%のときの電導度しきい値
Rs:置換率0%のときの電導度しきい値
ΔS:単位時間当たりの処理量
a,b,c:定数
【0023】
処理頻度が多いときは、第3しきい値Reを低く設定し、処理頻度が少ないときは、第3しきい値Reを高く設定する。
第3しきい値Reが設定されると、置換率0%のときの電導度しきい値Rsとにより、置換率に対する電導度の特性曲線が決まり、この特性曲線によって補正された測定電導度Raが、第3しきい値Reを下回ったときに補充液の補充が行われる。
【0024】
適切な電導度の第3しきい値Reが読み込まれると、測定電導度Raが第3しきい値Reより大きいかを判断する(ステップS39)。測定電導度Raが第3しきい値Reより小さいと、あらかじめ設定してある量の現像補充液を補充して(ステップS41)、現像液の電導度を上昇させる。
測定電導度Raが第3しきい値Reより大きいときは、現像補充液の補充が不要のときであるから、補充を行わずに、処理頻度の演算(図5)に移行する。また、所定の補充が行われると(ステップS41)、補充した量に従って現像液置換率を更新し(ステップS43)、処理頻度の演算(図5)に移行する。
このように、現像槽5内に所定量の補充液29と希釈水31とが補充されると、現像液は低下した活性度が回復し良好な現像を行い得るようになる。
【0025】
次に、図5に示す処理頻度の演算について説明する。
光電スイッチ21は、PS版3を検出し(ステップS51)、PS版3の検出信号を累積加算して行くことで総処理量tを測定し(ステップS53)、次いで処理頻度の演算時期であるかを判断する(ステップS55)。処理頻度の演算時期でないとき、すなわち前回の処理頻度の演算から24時間経過していないときは、処理頻度を演算することなく、電源がOFFかを判断する(ステップS65)。電源がOFFでなければ、処理頻度の周期の測定を再開するステップSに戻り、同じ内容が繰り返される。
【0026】
ステップS55において、処理頻度の演算時期であると判断すると、第2メモリ(ROM)53からPS版3の幅W、搬送速度Vを読み込み(ステップS57)、これらの値と測定した長さとからPS版3の処理面積Sを演算する(ステップS59)。次いで、PS版3の処理面積Sから単位時間当たりの(本例では24時間当たりの)処理量ΔSを演算する(ステップS61)。次いで、この処理量ΔSn を第1メモリ(RAM)51に書き込んで更新し(ステップS63)、次の電導度の第3しきい値の読み込みに際し、ΔSn に対応した電導度Rn を補充制御用の第3しきい値として設定し、補充に用いる。
したがって、そのときどきの処理頻度に応じた適正な設定電導度に基づいて補充制御を行うことができ、処理頻度が変化したり、環境条件が変化しても、現像液の活性度を安定化させることができる。
【0027】
以下に、図6を参照して電導度の具体的な設定について説明する。稼働を開始すると、図6中の直線(例えば、a,b,c,d)により補正された測定電導度Raと、第3しきい値Reとを比較して補充制御が行われる。補充制御用の設定値を変更する周期は例えば24時間であり、本例では、24時間当たりの処理量は、0m/日、10m/日、50m/日、100m/日である。そして、処理量が10m/日になったときの置換率は30%、処理量が100m/日になったときの置換率は60%、処理量が50m/日になったときの置換率は70%である。
前記数2式において、実験により求めた定数としてRs=50、a=10、b=28、c=280を代入すると、下記数3式が得られる。
【0028】
【数3】
Re=60+280/(ΔS+28)
【0029】
この数3式において、処理量ΔSが0m/日、10m/日、50m/日、100m/日と変化したとき、第3しきい値Reは70、67.4、63.6、62.2と変化する。
したがって、処理開始直後、処理量ΔSが0m/日のときは、第3しきい値Reは70であることから、置換率0%での電導度しきい値Rsとから、図6に符号aで示す直線が設定される。そして、この特性曲線に基づいて測定電導度Rを補正する。この結果、処理量の演算を行ったとき、すなわち処理開始直後は、第3しきい値Reが70の直線に基づいて補充制御が行われる。
【0030】
また、次の処理量演算において(このときの現像液置換率を例えば30%とする)、処理量ΔSが10m/日に増えると、第3しきい値Reは67.4であることから、置換率0%での電導度しきい値Rsとから、図6に符号bで示す直線が設定される。そして、この特性曲線により、測定電導度Rを補正する。この結果、処理量の演算を行ったとき、すなわち置換率が30%となったとき以降は、第3しきい値Reが67.4の直線に基づいて補充制御が行われる。
同様に、次の処理量演算において(このときの置換率は60%)、処理量ΔSが100m/日に増えると、上記数3式より第3しきい値Reは62.2となり、置換率0%での電導度しきい値Rsと第3しきい値Reとにより決定される図6に符号dで示す直線が補充制御用の直線となり、この直線に従って測定電導度Rが補正される。そして、置換率60%以降は、この直線に基づいて補充制御が行われる。
【0031】
同様に、次の処理量演算において(このときの置換率は70%)、処理量ΔSが50m/日に減ると、上記数3式より第3しきい値Reは63.6となり、置換率0%での電導度しきい値Rsと第3しきい値Reとにより決定される図6に符号cで示す直線が補充制御用の直線となり、この直線に従って測定電導度Rが補正される。そして、置換率70%以降は、この直線に基づいて補充制御が行われる。
この結果、補充用の制御直線は図6に示すような、各置換率の間で異なる傾きDの直線が設定された特性となり、この特性線で示す置換率と電導度との関係に従って、補充の要否を判断する。
【0032】
【発明の効果】
本発明によれば、PS版の現像処理頻度が変わっても、そのときの処理頻度に応じた適正な電導度が補充制御用のしきい値として設定されるので、現像装置の設置環境や処理頻度に変動があっても、現像液の活性度を安定化させることができ、現像性能を一定に保持することができる。したがって、環境等の要因に左右されることなく常に良好な現像性能が得られる。
【図面の簡単な説明】
【図1】PS版現像装置の概略構成図である。
【図2】補充装置のブロック構成図である。
【図3】比重に基づく補充制御のフローチャートである。
【図4】電導率に基づく補充制御のフローチャートである。
【図5】処理頻度を演算し設定するフローチャートである。
【図6】本発明実施例における、補充制御に用いられる置換率と電導度との関係を表すグラフである。
【図7】従来の補充制御に用いられる置換率と電導度との関係を表すグラフである。
【符号の説明】
1 PS版現像装置
3 PS版
5 現像槽
7 リンス槽
9 搬送ローラ
13 ポンプ
17 補充装置
21 光電スイッチ
23 電導度センサ
25 比重センサ
29 現像補充液
31 希釈水
33 補充液タンク
35 希釈水タンク
37 現像補充ポンプ
39 水補充ポンプ
41 コントローラ
49 CPU
51 第1メモリ(RAM)
53 第2メモリ(ROM)
57 タイマ
[0001]
[Industrial application fields]
The present invention relates to a technique for stabilizing the development sensitivity of a developing device for a photosensitive lithographic printing plate (hereinafter sometimes abbreviated as “PS plate”) while keeping the activity of a developing solution constant during development processing.
[0002]
[Prior art]
In the PS plate developing apparatus, the processing components in the developer decrease with the development processing of the PS plate, and the developing performance deteriorates. Further, when the developer comes into contact with air, carbon dioxide in the air dissolves in the developer and the performance of the developer is degraded. Thus, since the performance of the developer deteriorates with processing and time, a conventional developer replenishing method for maintaining the activity of the developer constant by appropriately replenishing the developer replenisher is disclosed in, for example, There is a technique described in Japanese Patent No. 61-61164. In this technique, the conductivity of the developer is measured, and when the conductivity falls below a preset conductivity, the replenisher is activated to replenish the developer replenisher.
The above replenishment is based on the knowledge that the conductivity decreases when the developer performance decreases, and the developer performance is maintained properly under the condition that the development performance and conductivity are properly associated. Is done.
[0003]
[Problems to be solved by the invention]
For example, the developer is naturally deteriorated by processing the PS plate, but carbon dioxide in the air is always dissolved in the developer, and the developer is also deteriorated by the influence of the dissolved carbon dioxide. Therefore, as replenishment for recovering the performance of the developer, it is necessary to carry out replenishment that compensates for deterioration due to processing of the PS plate and replenishment that compensates for deterioration due to carbon dioxide.
In the configuration in which the conductivity of the developer is measured and the replenisher is replenished according to the conductivity of the developer, as in the technique described in Japanese Patent Laid-Open No. 61-61164, the conductivity for determining the replenishment timing. Must be set, and the set value of conductivity needs to be raised or lowered as appropriate. This is because as the mother liquor replacement rate of the developing solution (ratio of the replenishing solution to the developing mother solution in the developing tank) increases, the appropriate conductivity at that time also increases or decreases.
The relationship between the mother liquor replacement rate and the conductivity is, for example, as shown in FIG. 7 and is determined experimentally, and is set in consideration of deterioration due to carbon dioxide with a constant processing amount per unit time.
[0004]
On the other hand, when the processing frequency of the PS plate is high, the fatigue level due to the processing of the PS plate is large, and when the processing frequency is low, the fatigue level due to the processing of the PS plate is small. Since the fatigue level due to carbon dioxide per unit time is constant, the ratio of the fatigue level due to processing of the PS plate and the fatigue level due to carbon dioxide varies depending on the processing frequency. As a result, the relationship between the above replacement rate for replenishment control and conductivity, which is set as a constant ratio of the fatigue levels of both, changes, and proper replenishment cannot be performed.
Therefore, the development sensitivity cannot be stabilized only by replenishment based only on the electrical conductivity as in the prior art.
In addition, by measuring the processing frequency for each user and setting the relationship between the mother liquor replacement rate and the conductivity according to the processing frequency of the user, proper replenishment is possible, but setting work prior to replenishment is possible. It was complicated.
In addition, in the conventional automatic developing apparatus, if the developer is evaporated, the developer is concentrated, and the conductivity of the developer is apparently increased. There is a risk that replenishment will not occur as a result of the computer's judgment, resulting in a development failure. In order to prevent this, there is a method of replenishing water in anticipation of evaporation that occurs at regular intervals, but the amount of evaporation varies depending on the installation environment and seasonal fluctuations, and it cannot be said that the replenishment system is perfect.
[0005]
An object of the present invention is to solve the above-described conventional problems, and to provide a developing device capable of performing a stable developing process over a long period of time even if a user's processing frequency or installation environment changes.
[0006]
[Means for Solving the Problems]
The above object of the present invention can be achieved by the following constitution.
(1) In a developing device for a photosensitive lithographic printing plate comprising a replenisher for replenishing a developer replenisher when the conductivity of the developer is lower than a set value,
The replenishing device changes a set value of the conductivity based on the measured value, and a processing amount measuring means for measuring a processing amount processed in the one period of the photosensitive lithographic printing plate for each predetermined period. And a storage means for storing an appropriate relationship between the processing amount processed in the one cycle and the conductivity, and the set value of the conductivity of the processing amount processed in the one cycle. A photosensitive lithographic printing plate developing device characterized in that the height is lowered according to an increase or decrease.
[0007]
(2) The electric conductivity has a relationship associated with the replacement rate of the developer, and the electric conductivity corresponding to the predetermined replacement rate is set as a set value for replenishment control. Development device.
[0008]
(3) According to the above (1) or (2), the conductivity supplementary set value is raised or lowered according to the increase or decrease of the processing amount by correcting the relationship between the conductivity and the replacement rate. Development device.
[0009]
[Action]
When the amount of treatment per unit time is small, that is, in a quiet treatment state, the rate of fatigue due to carbon dioxide is greater than the fatigue due to treatment. Since it has been experimentally found that fatigue due to carbon dioxide recovers development sensitivity at a higher conductivity value than fatigue due to processing, when the processing amount is small, the conductivity relative to the replacement rate for replenishment control By increasing the set value, the development sensitivity can be stabilized.
[0010]
Conversely, when the amount of processing per unit time is large, that is, in the continuous processing state, the rate of fatigue due to processing is greater than that due to carbon dioxide. Since it is experimentally known that processing sensitivity recovers with lower electrical conductivity than with carbon dioxide, so setting the conductivity relative to the replacement rate for replenishment control when the throughput is large. By reducing the value, the development sensitivity can be stabilized.
Further, as factors affecting the specific gravity of the developing solution, dissolution of the photosensitive layer, water evaporation, and the specific gravity of the developing replenisher can be considered. That is, when the photosensitive layer is dissolved, the specific gravity of the developer increases if the specific gravity is greater than the specific gravity of the developer. Since water evaporation directly increases the concentration of dissolved components, the specific gravity of the liquid also increases. If the specific gravity of the developer replenisher is larger than the specific gravity of the developer charging solution, the specific gravity of the developer in the developing tank increases as replenishment proceeds and the replacement ratio with the replenisher increases. Therefore, the amount of dissolution of the photosensitive layer, that is, the relationship between the processing area of the PS plate, the specific gravity of the developing solution, and the replacement rate with the replenishing solution is obtained in advance through experiments and programmed to control the amount of evaporation. A stable development process that is not affected can be performed.
[0011]
【Example】
Embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of the developing device. The developing device 1 includes a developing tank 5 that stores a developing solution of the PS plate 3 and performs development processing, and a rinse tank 7 that cleans the PS plate 3 after development. The exposed PS plate 3 is dipped and conveyed in the developer in the developing tank 5 by the conveying roller 9 and subjected to development processing. The developed PS plate 3 is continuously conveyed to the rinsing tank 7 and rinsed by spraying a rinsing liquid.
The developer in the developing tank 5 is blown toward the PS plate 3 while being filtered by the filter 11 and circulated by the pump 13, so that the liquid exchange rate on the surface to be processed of the PS plate 3 is increased. As in this embodiment, the developer in the developing tank 5 is preferably prevented from contacting with the air as much as possible by covering the liquid surface with the floating lid 15. Further, the developing tank 5 may be provided with a cover that airtightly covers the upper space. Moreover, you may provide the rotating brush which rubs a printing plate as a development promotion means.
[0012]
The developing tank 5 includes a developing replenisher replenishing device 17 shown in detail in FIG. The replenishing device 17 includes a keyboard / display device 19, a photoelectric switch 21 that measures the throughput of the PS plate 3, a conductivity sensor 23 that measures the conductivity of the developer, and a specific gravity sensor 25 that measures the specific gravity of the developer. A warning device 27 that issues a warning when an abnormality occurs in the developing solution, each of the replenishing tanks 33 and 35 filled with the replenishing solution 29 and the diluting water 31, and the development replenishment that supplies the replenishing solution 29 to the developing tank 5. Based on signals from the pump 37, the water replenishment pump 39 that supplies the dilution water 31 to the developing tank 5, the keyboard / display device 19, the photoelectric switch 21, the conductivity sensor 23, and the specific gravity sensor 25, a warning device 27, a development replenishment pump 37, a water replenishment pump 39, and the like.
The warning device 27, the development replenishment pump 37, and the water replenishment pump 39 are connected to the controller 41 via operation relays 43, 45, and 47, respectively.
[0013]
The controller 41 is necessary for replenishment of the CPU 49 for controlling the operation of each element, a first memory (RAM) 51 for storing the conductivity set as a reference value for replenishment, and the replenishment amount of each replenisher. A second memory (ROM) 53 storing various information, an input / output port 55, a timer 57, and an A / D converter 59.
In the first memory (RAM) 51, the width information W of the PS plate 3, the replacement rate information X of the developing solution, the period ti for measuring the processing area, the replenishment amount tw of the dilution water based on the measured specific gravity, the measured conductivity The replenishment amount td of the development replenisher based on the above, the measured processing amount S, the processing amount ΔS per unit time, etc. are stored in a rewritable manner.
The second memory (ROM) has a unit dilution water replenishment amount Hw, a water pump flow rate Uw, a unit development replenisher replenishment amount Hd, a development pump flow rate Ud, a transport speed V, a development tank capacity V t , a specific gravity threshold value, a conductivity 1st threshold value, electrical conductivity second threshold value, each electrical conductivity third threshold value of ΔS1,..., ΔSn, and the like are stored.
[0014]
The replenishing device 17 always measures the conductivity of the developer by the conductivity sensor 23, and replenishes the replenisher 29 and the dilution water 31 in the tanks 33 and 35 when the measured conductivity falls below a set value. It has become.
Further, for example, the photoelectric switch 21 measures the transport amount of the PS plate 3 per unit time, and the CPU 49 calculates an area as a processing amount from the transport amount and the width of the PS plate 3. As a means for calculating the area, a width detection sensor (for example, a device in which a number of micro switches are arranged in a direction orthogonal to the conveyance direction and the width is detected by the number of ON switches) is provided at the insertion port of the apparatus and the time during which the switch is ON It is also good to calculate by product Then, the CPU 49 reads the appropriate conductivity according to the processing frequency from the second memory (ROM) 53, writes the conductivity as a new setting value for replenishment control in the first memory (RAM) 51, Replenishment is always performed based on an appropriate set value.
[0015]
Next, the replenishment operation of the development replenisher will be described. 3 to 5 are flowcharts showing the replenishment control process, FIG. 3 is a replenishment control based on specific gravity, FIG. 4 is a replenishment control based on conductivity, and FIG. 5 is a control for calculating the processing frequency.
In this embodiment, the replenishment control based on the specific gravity of the developer (FIG. 3) is performed prior to the replenishment control based on the conductivity (FIG. 4).
[0016]
First, when the power is turned on (step S1), a cycle ti for calculating the processing frequency of the PS plate 3 is set (step S3). In this embodiment, ti = 24 hours, and the processing frequency is calculated every 24 hours.
When the specific gravity D of the developer is measured by the specific gravity sensor 25 (step S5), the measured specific gravity D is corrected for comparison calculation with reference to the developer replacement rate at that time (step S7). Next, a specific gravity threshold value set in advance for replenishment control is read (step S9), and this threshold value is compared with the corrected measured specific gravity Da to determine whether replenishment is necessary (step S11). If the measured specific gravity Da is larger than the specific gravity threshold value, a predetermined amount of dilution water is replenished (step S13), and the specific gravity of the developer is lowered. Further, if the measured specific gravity Da is smaller than the specific gravity threshold, the dilution water is not replenished, and the control proceeds to the replenishment control based on the next conductivity (FIG. 4).
[0017]
The replenishment control based on the conductivity starts by starting a timer that counts the measurement frequency measurement period (ti = 24 hours) (step S21).
Next, the conductivity R of the developer is measured by the conductivity sensor 23 (step S23). Next, the developer replacement rate X at this time is read from the first memory (RAM) 51, and the measured conductivity R is corrected for comparison calculation based on the replacement rate (step S25). In the case of this example, the corrected measurement conductivity Ra is obtained by the following equation (1).
[0018]
[Expression 1]
Ra = R + (100−x) · (Re−Rs) / 100
Rs: threshold value when the substitution rate is 0% Re: third threshold value, or threshold value when the substitution rate is 100%
Next, the first threshold value of conductivity is read from the second memory (ROM) 53 (step S27), and the first threshold value is compared with the corrected measured conductivity (hereinafter simply referred to as measured conductivity) Ra. Then, it is determined whether or not the measured conductivity Ra is lower than the first threshold value (step S29). When the measured conductivity Ra is lower than the first threshold, it is when the conductivity is too low, which is regarded as abnormal and a warning is issued (step S31).
[0020]
When the measured conductivity Ra is higher than the first threshold value, the second threshold value of the conductivity is then read from the second memory (ROM) 53 (step S33), and the measured conductivity Ra is higher than the second threshold value. It is determined whether it is low (step S35). When the measured conductivity Ra is higher than the second threshold, it is when the conductivity is too high, which is also considered as an abnormality and a warning is issued (step S31).
[0021]
If the measured conductivity Ra is lower than the second threshold value, an appropriate third threshold value Re of the conductivity for replenishment control is read from the first memory (RAM) 51 (step S37). Here, the third threshold value Re is a conductivity threshold value when the replacement rate is 100%, and is a value that is appropriately set based on the calculation result of the processing frequency of the PS plate 3 to be described later. Every time the frequency changes, the third threshold value Re is also rewritten. For example, if the processing frequency is ΔS1, the conductivity Re1 appropriately set corresponding to the processing frequency ΔS1 is used as a set value for replenishment control. Similarly, if the processing frequency is ΔSn, the conductivity Ren appropriately set corresponding to the processing frequency ΔSn is used as a setting value for replenishment control. The conductivity for replenishment control corresponding to the processing frequency is stored in the second memory (ROM) 53. For example, the relationship between the processing frequency and the conductivity as shown in the following formula 2 is stored. .
[0022]
[Expression 2]
Re = Rs + a + c / (ΔS + b)
Re: third threshold value or conductivity threshold value when substitution rate is 100% Rs: conductivity threshold value when substitution rate is 0% ΔS: throughput per unit time a, b, c: constant [0023]
When the processing frequency is high, the third threshold value Re is set low, and when the processing frequency is low, the third threshold value Re is set high.
When the third threshold value Re is set, a characteristic curve of conductivity relative to the substitution rate is determined by the conductivity threshold value Rs when the substitution rate is 0%, and the measured conductivity Ra corrected by this characteristic curve. However, the replenisher is replenished when it falls below the third threshold value Re.
[0024]
When the third threshold value Re having an appropriate conductivity is read, it is determined whether or not the measured conductivity Ra is greater than the third threshold value Re (step S39). If the measured conductivity Ra is smaller than the third threshold value Re, a predetermined amount of the developer replenisher is replenished (step S41), and the conductivity of the developer is increased.
When the measured electrical conductivity Ra is larger than the third threshold value Re, it is a time when replenishment of the developing replenisher is unnecessary, and therefore, the processing frequency calculation (FIG. 5) is performed without replenishment. When the predetermined replenishment is performed (step S41), the developer replacement rate is updated according to the replenished amount (step S43), and the process shifts to the processing frequency calculation (FIG. 5).
As described above, when a predetermined amount of the replenisher 29 and the dilution water 31 are replenished in the developing tank 5, the decreased activity of the developer is recovered and good development can be performed.
[0025]
Next, the processing frequency calculation shown in FIG. 5 will be described.
The photoelectric switch 21 detects the PS plate 3 (step S51), the detection signal of the PS plate 3 to measure the total processing amount t i by going cumulatively added (step S53), then in operation timing of the processing frequency It is determined whether or not there is (step S55). When it is not the calculation time of the processing frequency, that is, when 24 hours have not elapsed since the previous calculation of the processing frequency, it is determined whether the power is OFF without calculating the processing frequency (step S65). If the power is not OFF, the process returns to step S where the measurement of the processing frequency cycle is resumed, and the same contents are repeated.
[0026]
If it is determined in step S55 that the processing frequency is being calculated, the width W and the conveyance speed V of the PS plate 3 are read from the second memory (ROM) 53 (step S57), and the PS is calculated from these values and the measured length. The processing area S of the plate 3 is calculated (step S59). Next, a processing amount ΔS per unit time (per 24 hours in this example) is calculated from the processing area S of the PS plate 3 (step S61). Next, the processing amount ΔSn is written and updated in the first memory (RAM) 51 (step S63), and when reading the third threshold value of the next conductivity, the conductivity Rn corresponding to ΔSn is used for replenishment control. It is set as the third threshold value and used for replenishment.
Therefore, replenishment control can be performed based on the appropriate set conductivity according to the processing frequency at that time, and the activity of the developer is stabilized even if the processing frequency changes or environmental conditions change. be able to.
[0027]
Hereinafter, specific setting of the conductivity will be described with reference to FIG. When the operation is started, the replenishment control is performed by comparing the measured conductivity Ra corrected by a straight line (for example, a, b, c, d) in FIG. 6 with the third threshold value Re. The cycle for changing the set value for replenishment control is, for example, 24 hours. In this example, the processing amount per 24 hours is 0 m 2 / day, 10 m 2 / day, 50 m 2 / day, and 100 m 2 / day. . The replacement rate is 30% when the processing amount is 10 m 2 / day, the replacement rate is 60% when the processing amount is 100 m 2 / day, and the processing rate is 50 m 2 / day. The substitution rate is 70%.
Substituting Rs = 50, a = 10, b = 28, and c = 280 as constants obtained by experiments in the above formula 2, the following formula 3 is obtained.
[0028]
[Equation 3]
Re = 60 + 280 / (ΔS + 28)
[0029]
In Equation 3, when the processing amount ΔS changes as 0 m 2 / day, 10 m 2 / day, 50 m 2 / day, and 100 m 2 / day, the third threshold value Re is 70, 67.4, 63.6. , 62.2.
Therefore, immediately after the start of processing, when the amount of processing ΔS is 0 m 2 / day, the third threshold value Re is 70, and therefore, from the conductivity threshold value Rs at a substitution rate of 0%, the sign in FIG. A straight line indicated by a is set. Then, the measured conductivity R is corrected based on this characteristic curve. As a result, when the processing amount is calculated, that is, immediately after the processing is started, the replenishment control is performed based on the straight line with the third threshold value Re being 70.
[0030]
In the next processing amount calculation (the developing solution replacement rate at this time is set to 30%, for example), when the processing amount ΔS increases by 10 m 2 / day, the third threshold value Re is 67.4. From the conductivity threshold value Rs at a substitution rate of 0%, a straight line indicated by symbol b in FIG. 6 is set. The measured conductivity R is corrected by this characteristic curve. As a result, when the processing amount is calculated, that is, after the replacement rate reaches 30%, the replenishment control is performed based on the straight line with the third threshold value Re of 67.4.
Similarly, in the next processing amount calculation (the replacement rate at this time is 60%), when the processing amount ΔS increases to 100 m 2 / day, the third threshold value Re becomes 62.2 from the above equation 3, and the replacement A straight line indicated by reference sign d in FIG. 6 determined by the conductivity threshold value Rs and the third threshold value Re at a rate of 0% is a straight line for replenishment control, and the measured conductivity R is corrected according to this straight line. . Then, after the replacement rate of 60%, replenishment control is performed based on this straight line.
[0031]
Similarly, in the next processing amount calculation (the replacement rate at this time is 70%), when the processing amount ΔS decreases by 50 m 2 / day, the third threshold value Re becomes 63.6 from the above equation 3, and the replacement A straight line indicated by symbol c in FIG. 6 determined by the conductivity threshold value Rs and the third threshold value Re at a rate of 0% is a straight line for replenishment control, and the measured conductivity R is corrected according to this straight line. . Then, after the replacement rate of 70%, replenishment control is performed based on this straight line.
As a result, the replenishment control straight line has a characteristic in which straight lines having different slopes D are set between the respective replacement rates, as shown in FIG. 6, and the replenishment control line is replenished according to the relationship between the replacement rate and the conductivity indicated by the characteristic line. Determine the necessity of
[0032]
【The invention's effect】
According to the present invention, even if the development processing frequency of the PS plate changes, an appropriate conductivity corresponding to the processing frequency at that time is set as a threshold value for replenishment control. Even if the frequency varies, the activity of the developer can be stabilized and the development performance can be kept constant. Therefore, a good development performance can always be obtained without being influenced by factors such as the environment.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a PS plate developing apparatus.
FIG. 2 is a block configuration diagram of a replenishing device.
FIG. 3 is a flowchart of replenishment control based on specific gravity.
FIG. 4 is a flowchart of replenishment control based on conductivity.
FIG. 5 is a flowchart for calculating and setting a processing frequency.
FIG. 6 is a graph showing the relationship between the replacement rate used for the replenishment control and the conductivity in the embodiment of the present invention.
FIG. 7 is a graph showing a relationship between a replacement rate and conductivity used in conventional replenishment control.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 PS plate developing device 3 PS plate 5 Developing tank 7 Rinse tank 9 Conveying roller 13 Pump 17 Replenisher 21 Photoelectric switch 23 Conductivity sensor 25 Specific gravity sensor 29 Developer replenisher 31 Diluted water 33 Replenisher tank 35 Diluted water tank 37 Developer replenishment Pump 39 Water replenishment pump 41 Controller 49 CPU
51 First memory (RAM)
53 Second memory (ROM)
57 timer

Claims (3)

現像液の電導度が設定値より低いときに現像補充液を補充する補充装置を備えた感光性平版印刷版の現像装置において、
前記補充装置は、予め定めた周期毎に感光性平版印刷版の該1周期内に処理された処理量を測定する処理量測定手段と、測定値に基づいて前記電導度の設定値を変更する制御手段と、前記1周期内に処理された処理量と電導度との適正な関係を記憶した記憶手段とを備え、電導度の前記設定値を前記1周期内に処理された処理量の増減に従って低高させることを特徴とする感光性平版印刷版の現像装置。
In the developing device for a photosensitive lithographic printing plate provided with a replenishing device for replenishing a developing replenisher when the conductivity of the developer is lower than a set value,
The replenishing device changes a set value of the conductivity based on the measured value, and a processing amount measuring means for measuring a processing amount processed in the one period of the photosensitive lithographic printing plate for each predetermined period. And a storage means for storing an appropriate relationship between the processing amount processed in the one cycle and the conductivity, and the set value of the conductivity of the processing amount processed in the one cycle. A photosensitive lithographic printing plate developing device characterized in that the height is lowered according to an increase or decrease.
前記電導度は、現像液の置換率と対応付けられた関係にあり、所定置換率に対応した電導度を補充制御用の設定値とすることを特徴とする請求項1記載の現像装置。The developing device according to claim 1, wherein the conductivity has a relationship associated with a replacement rate of the developer, and the conductivity corresponding to the predetermined replacement rate is set as a set value for replenishment control. 前記電導度と置換率との関係を補正することにより、電導度の補充用設定値を処理量の増減に従って低高させることを特徴とする請求項1又は2に記載の現像装置。3. The developing device according to claim 1, wherein the set value for replenishing the conductivity is lowered in accordance with the increase or decrease in the processing amount by correcting the relationship between the conductivity and the replacement rate.
JP30778194A 1994-12-12 1994-12-12 Development device for photosensitive lithographic printing plate Expired - Fee Related JP3613478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30778194A JP3613478B2 (en) 1994-12-12 1994-12-12 Development device for photosensitive lithographic printing plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30778194A JP3613478B2 (en) 1994-12-12 1994-12-12 Development device for photosensitive lithographic printing plate

Publications (2)

Publication Number Publication Date
JPH08160629A JPH08160629A (en) 1996-06-21
JP3613478B2 true JP3613478B2 (en) 2005-01-26

Family

ID=17973189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30778194A Expired - Fee Related JP3613478B2 (en) 1994-12-12 1994-12-12 Development device for photosensitive lithographic printing plate

Country Status (1)

Country Link
JP (1) JP3613478B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005077781A (en) * 2003-09-01 2005-03-24 Toppan Printing Co Ltd Control apparatus and method for developing time
CN104458823B (en) * 2014-12-12 2017-06-30 华南师范大学 A kind of method of quick detection developing liquid developing effect
CN108919616A (en) * 2018-08-29 2018-11-30 滁州千字文印务有限公司 A kind of developer solution for semi-automatic developing machine is automatically replenished and liquid level alarm device

Also Published As

Publication number Publication date
JPH08160629A (en) 1996-06-21

Similar Documents

Publication Publication Date Title
JP3534211B2 (en) Automatic developing system for photosensitive lithographic printing plate
US5930547A (en) Process and apparatus for developing radiation-sensitive, exposed printing forms
GB2208249A (en) Method for supplementing replenisher for developer in automatic developing machine for presensitized plate
JP3613478B2 (en) Development device for photosensitive lithographic printing plate
US6207037B1 (en) Recovery of metal from solution
EP0355744B1 (en) Photographic processing apparatus
JP2659260B2 (en) Watering method for photosensitive material processing equipment
US6187167B1 (en) Recovery of metal from solution
US6120195A (en) Method for supplying water to a treatment liquid and a photo-developing apparatus
JP2916093B2 (en) Etching control device
JP2000298357A (en) Apparatus for automatically developing photosensitive planographic printing plate
JPH07140671A (en) Substrate developing device
JP2938606B2 (en) Replenisher replenishment method for automatic processor
JP2710506B2 (en) Watering method for photosensitive material processing equipment
JP3803991B2 (en) Photosensitive material processing equipment
EP0909983B1 (en) Processing photographic material
JP3364337B2 (en) Replenisher replenishment method for photosensitive material processing equipment
JPH10246966A (en) Method and device for replenishing of replenisher for photosensitive planographic printing plate
JPH07128460A (en) Time management method
JP2002351038A (en) Method and system for calculating fractional exposure of photographic material
JPH0533388B2 (en)
JPS6048042A (en) Supplementing device of automatic developing machine
JPH08220772A (en) Method for replenishing processing liquid for photosensitive material
JPH0472218B2 (en)
JPH0990587A (en) Replenisher supplying device for automatic developing equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041022

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071105

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071105

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees