JP2004156943A - Measuring instrument and measuring method for charged pressure - Google Patents

Measuring instrument and measuring method for charged pressure Download PDF

Info

Publication number
JP2004156943A
JP2004156943A JP2002320943A JP2002320943A JP2004156943A JP 2004156943 A JP2004156943 A JP 2004156943A JP 2002320943 A JP2002320943 A JP 2002320943A JP 2002320943 A JP2002320943 A JP 2002320943A JP 2004156943 A JP2004156943 A JP 2004156943A
Authority
JP
Japan
Prior art keywords
pressure
measuring
flow rate
time
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002320943A
Other languages
Japanese (ja)
Inventor
Daisuke Mizukawa
大輔 水川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2002320943A priority Critical patent/JP2004156943A/en
Publication of JP2004156943A publication Critical patent/JP2004156943A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a charged pressure measuring instrument wherein a pressure change, time, a flow rate, and temperature are measured to calculate the charged pressure from the physical properties of a gas, thereby enhancing the measurement accuracy of the charged pressure. <P>SOLUTION: This charged pressure measuring instrument 1 for measuring a charged pressure in a pressure vessel 21 such as an accumulator, has a means for pressurizing the interior of the pressure vessel by pressing a fluid into a fluid chamber 25 of the pressure vessel 21, a means for measuring a flow rate, time, pressure, and temperature during the pressurization by the pressurizing means, and a personal computer 8 for collecting and computing measurement data obtained by the measuring means. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、アキュムレータ等の圧力容器における封入圧の大きさを測定する封入圧測定装置および封入圧測定方法に関するものである。
【0002】
【従来の技術】
蓄圧装置または脈圧吸収装置等として用いられるアキュムレータに封入されるガスの圧力すなわち封入圧を測定することは、アキュムレータの作動特性を特定し仕様を設定する上で極めて重要とされている。封入圧とは大気圧下、規定の温度雰囲気における封入ガスの圧力をいう。
【0003】
従来、アキュムレータの封入圧を測定する場合には、アキュムレータのフルード室にフルードを圧入してアキュムレータ内を加圧し、圧力の変曲点(ポートが開く点)を求めることにより封入圧を測定する方法が開発されている(特許文献1参照)。
【0004】
この先行技術は、封入圧を比較的容易に測定できる優れた技術であるが、以下の点で不都合を有している。
▲1▼ ポートが開くとき、張付きが起こり、封入圧より高い値を示すことがある。
▲2▼ 張付きによる外圧との圧力差から平衡状態に移行するまでに、ガス圧が不安定になり、圧力変動によるノイズが発生し、正確な封入圧を検出しにくい。
【0005】
【特許文献1】
特開平7−139501号公報
【特許文献2】
特開2001−13044号公報
【0006】
【発明が解決しようとする課題】
本発明は以上の点に鑑み、上記従来の変曲点検出による測定方法に代わり、圧力変化、時間、流量、温度を測定することで気体の物性から封入圧を算出し、もって封入圧の測定精度を向上させることができる封入圧測定装置および封入圧測定方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明の請求項1による測定装置は、アキュムレータ等の圧力容器における封入圧を測定する封入圧測定装置において、前記圧力容器のフルード室にフルードを圧入して前記圧力容器内を加圧する手段と、前記加圧手段による加圧中に流量、時間、圧力および温度を測定する手段と、前記測定手段による測定データを収集して演算処理するパソコンとを有することを特徴とするものである。
【0008】
また、本発明の請求項2による測定装置は、上記した請求項1の封入圧測定装置において、封入圧をP、封入ガスボリュームをV、流量をQ、時間をt、圧力をP、ポリトロープ指数をnとして、

Figure 2004156943
上記(1)式により演算処理を実行することを特徴とするものである。
【0009】
また、本発明の請求項3による測定方法は、アキュムレータ等の圧力容器における封入圧を測定する封入圧測定方法において、前記圧力容器のフルード室にフルードを圧入して前記圧力容器内を加圧し、加圧中に流量、時間、圧力および温度を測定し、得られた測定データをパソコンを用いて演算処理することにより前記封入圧を測定することを特徴とするものである。
【0010】
更にまた、本発明の請求項4による測定方法は、上記した請求項3の封入圧測定方法において、封入圧をP、封入ガスボリュームをV、流量をQ、時間をt、圧力をP、ポリトロープ指数をnとして、
Figure 2004156943
上記(1)式により演算処理を実行することを特徴とするものである。
【0011】
【発明の実施の形態】
つぎに本発明の実施例を図面にしたがって説明する。
【0012】
図1は、本発明の実施例に係る封入圧測定装置1の概略を示しており、この測定装置1はアキュムレータ21の封入圧を測定するものである。アキュムレータ21は、シェル22の内部にブラダ23を架設することによってシェル22の内部をガス室24とフルード室25とに区画しており、このうちのガス室24に封入されたガスの圧力すなわち封入圧を測定する。
【0013】
構成としては先ず、アキュムレータ21のフルード室25にフルード(作動油)を圧入してアキュムレータ21内を加圧する加圧手段として、タンク2、ポンプ3および配管4などが設けられており、加圧手段による加圧中に、流量、圧力および温度を測定する測定手段として、流量計5、圧力計6および温度計7などが設けられており、測定手段による測定データを収集し演算処理する手段としてパソコン8が設けられている。ポンプ3は定流量ポンプである。流量計5は流量をアナログ電圧で出力する。圧力計6は圧力をアナログ電圧で出力する。温度計7は温度をアナログ電圧で出力する。パソコン8はデータ収集用であり、流量計5、圧力計6および温度計7からの電圧値をA/Dボードで変換し、内部クロックで時間を測定する。取り込んだデータはパソコン8内で処理を行ない、封入圧を算出する。フルードとしてはブレーキフルードを使用する。
【0014】
ポンプ3から吐き出されたフルードは、流量計5および圧力計6を経てアキュムレータ21に流れる。そのときの時間、流量および圧力の変化をパソコン8によって測定する。容積の変化は、ガスボリューム(初期容積)が分かっていれば時間と流量の関係から導き出すことができる。また、温度計7により規定温度での封入圧値に換算する。
【0015】
演算処理は以下のようにして行なわれる。
【0016】
(1)理論式
時間t、圧力P、容積V、流量Qとし、時間t、t、tにおけるそれぞれの値を添え字1、2、3で表わすとする。このとき、圧力Pは封入圧、容積Vはガスボリュームとなる。
【0017】
圧縮を受ける気体の状態式は、ポリトロープ指数をnとすると、
Figure 2004156943
上の式より
Figure 2004156943
以上の式より、封入圧Pは以下のように表わされる。
Figure 2004156943
【0018】
また、理論圧力変化は以下の式で表わすことができる。
Figure 2004156943
【0019】
(2)データ処理
実験は流量を一定とした上で行なった。
【0020】
図2の「圧力−時間線図」参照。
【0021】
この図2の測定時間9秒弱のあたりにある特性が変わっている点が変曲点であり、アキュムレータの内圧とポンプから送られた作動油の圧力が平衡し、アキュムレータのポートが開く点である。
【0022】
上記従来の変曲点検出による測定方法は、上記変曲点におけるデータをもとに圧力変化値を微分して、変化のタイミングで変曲点圧力を決定していた。
【0023】
図3の「従来技術における封入圧の検出」参照。
【0024】
しかし、この方法では、ポートの張付きによる誤差や、開いたあとのノイズの影響により、測定精度は数kgf/cm程度であった。
【0025】
これに対して、本発明による測定方法では、上記変曲点を開始時間ととっているが、変曲点のばらつきによる時間的誤差はほとんど影響がない。
【0026】
図4の「ポリトロープ指数算出」参照。
【0027】
そこから、任意の2点以上での圧力および時間を選択し、以下の式を用いることでポリトロープ指数を算出する。
すなわち、任意の2点(添え字1、2)における時間と圧力より、ポリトロープ指数は
Figure 2004156943
となる。
求めたポリトロープ指数をフィードバックし、それぞれの測定値を(1)式に代入することで、任意の点において封入圧を求めることができる。
【0028】
図5の「封入圧算出結果」参照。
【0029】
本発明方法における封入圧測定の精度はそれぞれの誤差の影響にもよるが、±0.5kgf/cmと良く、封入圧の測定誤差を抑えることができる。
【0030】
(3)評価実験
▲1▼評価実験の構成
アキュムレータ内の圧力および温度を測定できるサンプルを用意し、本発明方法の評価を行なった。
【0031】
評価実験装置11の構成は図6に示すとおりであり、ポンプの代わりに、ピストン13の移動量をコントロールできる設備(ハイドロパルス試験機)12を用い、圧力計は装置側圧力検出センサ(センサA)14、流量計の代わりにレーザー変位計15を用いてピストン13の移動量から流量を求めた。また、アキュムレータ21内に取り付けたACC内圧力検出センサ(センサB)16および温度センサ(センサC)17により、アキュムレータ21内の圧力と温度の変化を測定することで、本発明方法の評価に用いる指標とした。
【0032】
評価実験には3種類のワークを用意し、流量60、50、40、13.5cc/secの条件において繰り返し測定を行なった。
【0033】
封入圧として、センサB16により測定した加圧前の圧力を正とし、そこからの誤差を、従来方式である変曲点検出方法との比較を行なうことで評価する。
【0034】
図7の「測定画面と封入圧算出結果」参照。
【0035】
▲2▼評価実験の結果
図8ないし図11のグラフは、それぞれの流量において、ACC内圧力検出センサ16より求めた封入圧を正とし、そこからの誤差の絶対値を比較したものである。それぞれの流量において、図上上側のグラフが本発明方法の結果、図上下側のグラフが従来方法の結果を示している。また、プロットは平均値を示しており、バーは最大値および最小値の幅を示している。
【0036】
▲3▼評価実験の結論
流量の高低やワークに関係なく、従来技術である変曲点検出による測定方法に比べて、本発明の測定方法は格段に封入圧検出精度が高いことが確認できた。また、再現性があることも確認することができた。
【0037】
【発明の効果】
本発明は、以下の効果を奏する。
【0038】
すなわち、上記構成を備えた本発明の各請求項による測定装置および測定方法によれば、圧力変化、時間、流量および温度を測定することにより気体の物性から封入圧を算出するようにしたので、封入圧の測定精度を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施例に係る封入圧測定装置の構成説明図
【図2】圧力および時間の関係を示すグラフ図
【図3】従来技術における封入圧検出方法を示すグラフ図
【図4】ポリトロープ指数算出方法を示すグラフ図
【図5】封入圧算出結果を示すグラフ図
【図6】評価実験装置の構成説明図
【図7】測定画面および封入圧算出結果を示すグラフ図
【図8】評価実験結果(60cc/sec)を示すグラフ図
【図9】評価実験結果(50cc/sec)を示すグラフ図
【図10】評価実験結果(40cc/sec)を示すグラフ図
【図11】評価実験結果(13.5cc/sec)を示すグラフ図
【符号の説明】
1 封入圧測定装置
2 タンク
3 ポンプ
4 配管
5 流量計
6 圧力計
7 温度計
8 パソコン
11 評価実験装置
12 ハイドロパルス試験機
13 ピストン
14 装置側圧力検出センサ
15 レーザー変位計
16 ACC内圧力検出センサ
17 温度センサ
21 アキュムレータ(圧力容器)
22 シェル
23 ブラダ
24 ガス室
25 フルード室[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sealing pressure measuring device and a sealing pressure measuring method for measuring the magnitude of a sealing pressure in a pressure vessel such as an accumulator.
[0002]
[Prior art]
It is extremely important to measure the pressure of a gas sealed in an accumulator used as a pressure accumulator or a pulse pressure absorbing device, that is, a sealed pressure, in specifying operating characteristics of an accumulator and setting specifications. The filling pressure refers to the pressure of the filling gas in a specified temperature atmosphere under atmospheric pressure.
[0003]
Conventionally, when measuring the filling pressure of an accumulator, a method of measuring the filling pressure by injecting fluid into a fluid chamber of the accumulator, pressurizing the inside of the accumulator, and finding an inflection point of the pressure (a point at which a port opens). Has been developed (see Patent Document 1).
[0004]
This prior art is an excellent technique that can relatively easily measure the sealing pressure, but has the following disadvantages.
{Circle around (1)} When the port is opened, sticking may occur and the value may be higher than the sealing pressure.
{Circle around (2)} The gas pressure becomes unstable until a transition to an equilibrium state from the pressure difference from the external pressure due to sticking, noise is generated due to pressure fluctuation, and it is difficult to detect an accurate sealing pressure.
[0005]
[Patent Document 1]
JP-A-7-139501 [Patent Document 2]
JP 2001-13044 A
[Problems to be solved by the invention]
In view of the above, the present invention calculates the sealing pressure from the physical properties of gas by measuring pressure change, time, flow rate, and temperature, instead of the above-described conventional measuring method using inflection point detection, and thereby measuring the sealing pressure. It is an object of the present invention to provide a sealing pressure measuring device and a sealing pressure measuring method capable of improving accuracy.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, a measuring apparatus according to claim 1 of the present invention is an enclosure pressure measuring apparatus for measuring an enclosure pressure in a pressure vessel such as an accumulator, wherein the pressure vessel is press-fitted into a fluid chamber of the pressure vessel. Means for pressurizing the inside, means for measuring flow rate, time, pressure and temperature during pressurization by the pressurizing means, and a personal computer for collecting and measuring data measured by the measuring means, Is what you do.
[0008]
The measuring apparatus according to claim 2 of the present invention is the same as the above-described filling pressure measuring apparatus according to claim 1, wherein the filling pressure is P 0 , the filling gas volume is V 0 , the flow rate is Q, the time is t, the pressure is P, Assuming that the polytropic index is n,
Figure 2004156943
It is characterized in that the arithmetic processing is executed by the above equation (1).
[0009]
In addition, the measuring method according to claim 3 of the present invention is a method for measuring a sealing pressure in a pressure vessel such as an accumulator, wherein a fluid is press-fitted into a fluid chamber of the pressure vessel to pressurize the inside of the pressure vessel, The method is characterized in that the flow rate, time, pressure and temperature are measured during pressurization, and the obtained measurement data is subjected to arithmetic processing using a personal computer to measure the sealing pressure.
[0010]
Furthermore, the measuring method according to claim 4 of the present invention is the same as the above-described method for measuring filling pressure according to claim 3, wherein the filling pressure is P 0 , the filling gas volume is V 0 , the flow rate is Q, the time is t, and the pressure is P. , And the polytropic index is n,
Figure 2004156943
It is characterized in that the arithmetic processing is executed by the above equation (1).
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 schematically shows a sealing pressure measuring device 1 according to an embodiment of the present invention. The measuring device 1 measures the sealing pressure of an accumulator 21. The accumulator 21 divides the inside of the shell 22 into a gas chamber 24 and a fluid chamber 25 by bridging a bladder 23 inside the shell 22, and the pressure of the gas sealed in the gas chamber 24, that is, the sealing of the gas chamber 24. Measure the pressure.
[0013]
First, a tank 2, a pump 3, a pipe 4, and the like are provided as pressurizing means for pressurizing the inside of the accumulator 21 by pressing fluid (hydraulic oil) into the fluid chamber 25 of the accumulator 21. A flow meter 5, a pressure gauge 6, a thermometer 7 and the like are provided as measuring means for measuring a flow rate, a pressure and a temperature during pressurization by a personal computer. 8 are provided. The pump 3 is a constant flow pump. The flow meter 5 outputs the flow rate as an analog voltage. The pressure gauge 6 outputs the pressure as an analog voltage. The thermometer 7 outputs the temperature as an analog voltage. The personal computer 8 is for data collection, converts voltage values from the flow meter 5, the pressure gauge 6, and the thermometer 7 with an A / D board, and measures time with an internal clock. The acquired data is processed in the personal computer 8 to calculate the sealing pressure. Use brake fluid as fluid.
[0014]
Fluid discharged from the pump 3 flows to the accumulator 21 via the flow meter 5 and the pressure gauge 6. The changes in time, flow rate and pressure at that time are measured by the personal computer 8. The change in volume can be derived from the relationship between time and flow if the gas volume (initial volume) is known. Further, the pressure is converted into a sealed pressure value at a specified temperature by the thermometer 7.
[0015]
The arithmetic processing is performed as follows.
[0016]
(1) The theoretical formulas are assumed to be time t, pressure P, volume V, and flow rate Q, and respective values at times t 0 , t 1 , and t 2 are represented by subscripts 1, 2, and 3. At this time, the pressure P 0 is the sealing pressure, and the volume V 0 is the gas volume.
[0017]
The state equation of a gas undergoing compression is as follows, where the polytropic index is n.
Figure 2004156943
From the above formula
Figure 2004156943
From the above equations, filling pressure P 0 is expressed as follows.
Figure 2004156943
[0018]
The theoretical pressure change can be expressed by the following equation.
Figure 2004156943
[0019]
(2) The data processing experiment was performed with the flow rate kept constant.
[0020]
See "Pressure-Time Diagram" in FIG.
[0021]
The inflection point is where the characteristic around the measurement time of less than 9 seconds in FIG. 2 changes, and the point at which the internal pressure of the accumulator and the pressure of the hydraulic oil sent from the pump are balanced and the port of the accumulator opens. is there.
[0022]
In the conventional measurement method using inflection point detection, the pressure change value is differentiated based on the data at the inflection point, and the inflection point pressure is determined at the timing of the change.
[0023]
See "Detection of sealing pressure in prior art" in FIG.
[0024]
However, in this method, the measurement accuracy was about several kgf / cm 2 due to an error due to sticking of the port and the influence of noise after opening.
[0025]
On the other hand, in the measuring method according to the present invention, the inflection point is taken as the start time, but the time error due to the variation of the inflection point has almost no influence.
[0026]
See "Polytropic Index Calculation" in FIG.
[0027]
From there, the pressure and time at any two or more points are selected, and the polytropic index is calculated by using the following equation.
That is, from the time and pressure at any two points (subscripts 1 and 2), the polytropic index is
Figure 2004156943
It becomes.
By feeding back the obtained polytropic index and substituting the respective measured values into the equation (1), the sealing pressure can be obtained at an arbitrary point.
[0028]
See “Results of calculation of sealing pressure” in FIG.
[0029]
Although the accuracy of the sealing pressure measurement in the method of the present invention depends on the influence of each error, it is preferably ± 0.5 kgf / cm 2, and the measurement error of the sealing pressure can be suppressed.
[0030]
(3) Evaluation experiment (1) Construction of evaluation experiment A sample capable of measuring the pressure and temperature in the accumulator was prepared, and the method of the present invention was evaluated.
[0031]
The configuration of the evaluation experiment apparatus 11 is as shown in FIG. 6. Instead of a pump, an equipment (hydropulse tester) 12 capable of controlling the movement amount of a piston 13 is used, and a pressure gauge is used as a device-side pressure detection sensor (sensor A). 14) The flow rate was determined from the amount of movement of the piston 13 using a laser displacement meter 15 instead of the flow meter. The pressure and temperature changes in the accumulator 21 are measured by the ACC pressure detection sensor (sensor B) 16 and the temperature sensor (sensor C) 17 mounted in the accumulator 21, and are used for evaluating the method of the present invention. The index was used.
[0032]
Three types of works were prepared for the evaluation experiment, and the measurement was repeatedly performed under the conditions of flow rates of 60, 50, 40, and 13.5 cc / sec.
[0033]
As the sealing pressure, the pressure before pressurization measured by the sensor B16 is set to be positive, and an error therefrom is evaluated by comparing with an inflection point detection method which is a conventional method.
[0034]
See “Measurement screen and sealing pressure calculation result” in FIG. 7.
[0035]
(2) Results of evaluation experiment The graphs in FIGS. 8 to 11 are obtained by making the sealing pressure obtained by the ACC internal pressure detection sensor 16 positive at each flow rate and comparing the absolute value of the error therefrom. At each flow rate, the upper graph shows the results of the method of the present invention, and the upper and lower graphs show the results of the conventional method. The plot shows the average value, and the bar shows the range between the maximum value and the minimum value.
[0036]
(3) Conclusion of the evaluation experiment Regardless of the flow rate and the work, it was confirmed that the measurement method of the present invention has a significantly higher sealing pressure detection accuracy than the conventional measurement method using the inflection point detection. . In addition, it was confirmed that there was reproducibility.
[0037]
【The invention's effect】
The present invention has the following effects.
[0038]
That is, according to the measuring device and the measuring method according to the claims of the present invention having the above-described configuration, since the pressure change, time, flow rate, and temperature are measured to calculate the sealing pressure from the physical properties of the gas, Measurement accuracy of the sealing pressure can be improved.
[Brief description of the drawings]
FIG. 1 is a configuration explanatory view of a sealing pressure measuring apparatus according to an embodiment of the present invention. FIG. 2 is a graph showing a relationship between pressure and time. FIG. 3 is a graph showing a sealing pressure detecting method in the prior art. FIG. 5 is a graph showing the method of calculating the polytropic index. FIG. 5 is a graph showing the result of calculating the sealing pressure. FIG. 6 is a diagram illustrating the configuration of the evaluation experiment apparatus. FIG. 7 is a graph showing the measurement screen and the result of calculating the filling pressure. FIG. 9 is a graph showing evaluation test results (60 cc / sec). FIG. 9 is a graph showing evaluation experiment results (50 cc / sec). FIG. 10 is a graph showing evaluation experiment results (40 cc / sec). Graph showing experimental results (13.5 cc / sec).
DESCRIPTION OF SYMBOLS 1 Enclosure pressure measuring device 2 Tank 3 Pump 4 Piping 5 Flow meter 6 Pressure gauge 7 Thermometer 8 Personal computer 11 Evaluation experimental device 12 Hydropulse tester 13 Piston 14 Device side pressure detection sensor 15 Laser displacement meter 16 ACC pressure detection sensor 17 Temperature sensor 21 Accumulator (pressure vessel)
22 shell 23 bladder 24 gas chamber 25 fluid chamber

Claims (4)

アキュムレータ等の圧力容器における封入圧を測定する封入圧測定装置において、
前記圧力容器のフルード室にフルードを圧入して前記圧力容器内を加圧する手段と、前記加圧手段による加圧中に流量、時間、圧力および温度を測定する手段と、前記測定手段による測定データを収集して演算処理するパソコンとを有することを特徴とする封入圧測定装置。
In an enclosure pressure measuring device that measures the enclosure pressure in a pressure vessel such as an accumulator,
Means for pressurizing the inside of the pressure vessel by injecting fluid into the fluid chamber of the pressure vessel, means for measuring flow rate, time, pressure and temperature during pressurization by the pressurizing means, and measurement data by the measuring means And a personal computer that collects and performs arithmetic processing.
請求項1の封入圧測定装置において、
封入圧をP、封入ガスボリュームをV、流量をQ、時間をt、圧力をP、ポリトロープ指数をnとして、
Figure 2004156943
上記(1)式により演算処理を実行することを特徴とする封入圧測定装置。
The sealing pressure measuring device according to claim 1,
When the filling pressure is P 0 , the filling gas volume is V 0 , the flow rate is Q, the time is t, the pressure is P, and the polytropic index is n,
Figure 2004156943
An enclosure pressure measuring device, which performs arithmetic processing by the above equation (1).
アキュムレータ等の圧力容器における封入圧を測定する封入圧測定方法において、
前記圧力容器のフルード室にフルードを圧入して前記圧力容器内を加圧し、加圧中に流量、時間、圧力および温度を測定し、得られた測定データをパソコンを用いて演算処理することにより前記封入圧を測定することを特徴とする封入圧測定方法。
In an enclosure pressure measuring method for measuring an enclosure pressure in a pressure vessel such as an accumulator,
By pressurizing the inside of the pressure vessel by injecting fluid into the fluid chamber of the pressure vessel, measuring the flow rate, time, pressure and temperature during the pressurization, and performing arithmetic processing on the obtained measurement data using a personal computer. A method for measuring the filling pressure, comprising measuring the filling pressure.
請求項3の封入圧測定方法において、
封入圧をP、封入ガスボリュームをV、流量をQ、時間をt、圧力をP、ポリトロープ指数をnとして、
Figure 2004156943
上記(1)式により演算処理を実行することを特徴とする封入圧測定方法。
In the method for measuring a sealing pressure according to claim 3,
When the filling pressure is P 0 , the filling gas volume is V 0 , the flow rate is Q, the time is t, the pressure is P, and the polytropic index is n,
Figure 2004156943
A method of measuring an enclosed pressure, wherein the arithmetic processing is performed by the above equation (1).
JP2002320943A 2002-11-05 2002-11-05 Measuring instrument and measuring method for charged pressure Pending JP2004156943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320943A JP2004156943A (en) 2002-11-05 2002-11-05 Measuring instrument and measuring method for charged pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320943A JP2004156943A (en) 2002-11-05 2002-11-05 Measuring instrument and measuring method for charged pressure

Publications (1)

Publication Number Publication Date
JP2004156943A true JP2004156943A (en) 2004-06-03

Family

ID=32801637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320943A Pending JP2004156943A (en) 2002-11-05 2002-11-05 Measuring instrument and measuring method for charged pressure

Country Status (1)

Country Link
JP (1) JP2004156943A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242275A (en) * 2010-05-19 2011-12-01 Nok Corp Method and device for measuring fluid pressure within pressure container
CN103257015A (en) * 2013-05-09 2013-08-21 浙江理工大学 High-speed spinning cup internal flow field dynamic pressure wireless measuring device
WO2013142541A2 (en) * 2012-03-22 2013-09-26 Caterpillar Inc. Hydraulic accumulator pre-charge pressure detection
US8833143B2 (en) 2012-03-22 2014-09-16 Caterpillar Inc. Hydraulic accumulator pre-charge pressure detection
US9366269B2 (en) 2012-03-22 2016-06-14 Caterpillar Inc. Hydraulic accumulator health diagnosis
GB2546790A (en) * 2016-01-29 2017-08-02 Ge Oil & Gas Uk Ltd Hydraulic accumulator monitoring system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011242275A (en) * 2010-05-19 2011-12-01 Nok Corp Method and device for measuring fluid pressure within pressure container
WO2013142541A2 (en) * 2012-03-22 2013-09-26 Caterpillar Inc. Hydraulic accumulator pre-charge pressure detection
WO2013142541A3 (en) * 2012-03-22 2013-11-14 Caterpillar Inc. Hydraulic accumulator pre-charge pressure detection
US8833143B2 (en) 2012-03-22 2014-09-16 Caterpillar Inc. Hydraulic accumulator pre-charge pressure detection
CN104204544A (en) * 2012-03-22 2014-12-10 卡特彼勒公司 Hydraulic accumulator pre-charge pressure detection
US9366269B2 (en) 2012-03-22 2016-06-14 Caterpillar Inc. Hydraulic accumulator health diagnosis
CN103257015A (en) * 2013-05-09 2013-08-21 浙江理工大学 High-speed spinning cup internal flow field dynamic pressure wireless measuring device
CN103257015B (en) * 2013-05-09 2014-11-05 浙江理工大学 High-speed spinning cup internal flow field dynamic pressure wireless measuring device
GB2546790A (en) * 2016-01-29 2017-08-02 Ge Oil & Gas Uk Ltd Hydraulic accumulator monitoring system

Similar Documents

Publication Publication Date Title
JP4673376B2 (en) Method and apparatus for determining flow pressure using density information
CN106802176A (en) A kind of water level detecting system
CN106153522B (en) Core porosity measuring device and measuring method
CN107831103B (en) A kind of precision assessment method of pressure pulse decaying gas permeability test device
CN104729974B (en) A kind of gas gaging hole porosity measuring method for considering temperature effect
CN201858993U (en) Device for measuring flow quantity of double-directional unstable fluid flow
JP2004156943A (en) Measuring instrument and measuring method for charged pressure
CN105653808A (en) Specified plasticity extension strength uncertainty evaluation method based on Monte Carlo
EP1519185A3 (en) Method of and device for measuring bulk modulus of minute specimens
CN110522435A (en) A method of detection electronic sphygmomanometer cuff bundlees elasticity
JP5135367B2 (en) Flow measuring device and method
CN201060148Y (en) Daqu volume weight measuring apparatus
WO2005052522A1 (en) Volume measuring device
US10732067B2 (en) Detecting test gas fluctuations during sniffer leak searching
CN115979355A (en) Gas measuring device, gas flow rate measuring method, and total gas amount measuring method
EP3476678B1 (en) Brake pipe length estimation
CN111272236B (en) Gas flow calculation method of gas laminar flow meter and gas laminar flow meter
KR20030060445A (en) Method and system for obtaining characteristic measuring factors of pneumotachometer
WO2015023672A1 (en) Oximetry signal, pulse-pressure correlator
CN105466631B (en) A kind of calibration method and calibrating installation of piston gage piston effective area
KR20160111982A (en) Flow measurement system and method for determining at least one property of a medium
CN104849175A (en) Method for measuring densities of cotton substances by adopting Young&#39;s modulus tensile tester
JPH04332824A (en) Method and system for measuring residual amount of bubbling liquid material
RU2504748C2 (en) Calibration method of gas analytical leak detector
EP1391714A3 (en) Method of measuring gas transmission rate of plastic film and measuring apparatus and computer program product used therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080806