JP2004155520A - Safety device for high altitude working vehicle - Google Patents

Safety device for high altitude working vehicle Download PDF

Info

Publication number
JP2004155520A
JP2004155520A JP2002320321A JP2002320321A JP2004155520A JP 2004155520 A JP2004155520 A JP 2004155520A JP 2002320321 A JP2002320321 A JP 2002320321A JP 2002320321 A JP2002320321 A JP 2002320321A JP 2004155520 A JP2004155520 A JP 2004155520A
Authority
JP
Japan
Prior art keywords
worktable
workbench
signal
safety device
regulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320321A
Other languages
Japanese (ja)
Other versions
JP4227798B2 (en
Inventor
Shinji Noguchi
真児 野口
Kazuaki Kyohara
和明 鏡原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tadano Ltd
Original Assignee
Tadano Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tadano Ltd filed Critical Tadano Ltd
Priority to JP2002320321A priority Critical patent/JP4227798B2/en
Publication of JP2004155520A publication Critical patent/JP2004155520A/en
Application granted granted Critical
Publication of JP4227798B2 publication Critical patent/JP4227798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Forklifts And Lifting Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a safety device for a high altitude working vehicle capable of stopping travel of a work base 6 when the work base 6 is positioned in a regulation region S, stopping the work base 6 at a position where stop positions for the regulation region S are the same even if the work base 6 is stopped by positioning it in the regulation region S from a condition in which positions of the work base 6 differ depending on a condition of a telescopic boom 3, and preventing deceleration beyond necessity when the work base 6 is not positioned in the regulation region S and moves in close proximity to the regulation region S. <P>SOLUTION: The shortest distance L from the work base 6 to the regulation region S when viewed in a plan and vector component K in the direction in which it crosses a regulation boundary line applied to the regulation region S orthogonally among travel speed vectors of the work base 6 when viewed in a plan are calculated. Travel speed of the work base 6 is decelerated in accordance with a function based on the distance L and the vector component K. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、高所作業車の安全装置に関するものである。
【0002】
【従来の技術】
この種の高所作業車は、図4に図示するように車両1上に旋回可能に旋回台2を配置し、旋回台2に起伏可能に伸縮ブーム3を配置している。車両1と旋回台2間には適宜の旋回駆動手段を配置し、車両1に対して旋回台2を旋回駆動可能にしてある。伸縮ブーム3は、基ブーム3aに中間ブーム3bを、中間ブーム3bに先ブーム3cを順次伸縮自在に嵌挿させ、各ブーム間には伸縮用油圧シリンダ等の適宜伸縮駆動手段を配置し、適宜伸縮ブーム3を伸縮駆動させるようにしている。基ブーム3aと旋回台2の適所間には伸縮ブーム3を起伏駆動させる起伏駆動手段(起伏用油圧シリンダ4)を配置している。伸縮ブーム3の先端部には、垂直維持装置により伸縮ブーム3の起伏動に関係なく常に鉛直姿勢を維持するよう垂直維持部材5を配置している。垂直維持部材5に首振り可能に作業台6を配置し、垂直維持部材5と作業台6間には適宜の首振り駆動手段を配置している。作業台6上には各駆動手段を駆動操作する各操作レバー7,7,…を配置してある。車両1の前後左右にそれぞれジャッキ8,8…を配置し、当該ジャッキ8,8…は、作業時に車幅より側方に張出して車両を安定支持させ、車両の走行時に車幅内に格納するようにしている。
【0003】
このような高所作業車は、適宜各操作レバー7,7,…を操作することで各駆動手段を駆動して作業台6を目的の高所に位置させ、作業台6に搭乗した作業者により高所作業をするものである。
【0004】
ところで、このような高所作業車は、一般道路上の路側に寄せて設置して行う作業現場が多い。したがって、図5および図6に図示するように、車側縁に沿った規制領域Sを設け、この規制領域Sから作業台6がはみ出さないようにして、設置した高所作業車の側方を走行する車に接触しないようにした高所作業車の安全装置が公知である。(例えば特開2001−180900公報)
【0005】
【特許文献1】
特開2001−180900公報
【0006】
【発明が解決しょうとする課題】
ところで、上記高所作業車の安全装置は、次のような課題を有している。例えば、図5に図示するように、伸縮ブーム3を旋回駆動させて作業台6を規制領域S方向に移動させる場合に、平面視における作業台6の位置が規制領域Sに位置した時に停止させるのであるが、伸縮ブーム3により作業半径を大きくしている場合と、小さくしている場合とでは、作業台6の停止位置が規制領域Sの規制境界線Nに対して同じ位置で停止しない。すなわち、作業半径が大のときには作業台6の側縁が規制境界線Nから離間した規制領域S内の位置で停止し、作業半径が小のときには作業台6の側縁が規制境界線Nに略近接して停止する。これは、図5に図示するように、同じ旋回速度で同じ停止時間をかけて停止させた場合、作業半径の相違により規制領域S方向への旋回速度ベクトル成分K1,K2の大きさが異なることに起因して、上記のように作業台6の停止位置が相違するのである。
【0007】
このことは、伸縮ブーム3を旋回駆動させる場合だけでなく、同様に他の油圧アクチュエーチを駆動する場合も同じである。例えば、伸縮ブーム3を伸縮駆動させる場合には、図6に図示するように、伸縮ブーム3を伸長させて作業台6を同じ伸縮速度で同じ停止時間をかけて停止させた場合に、平面視における規制領域S方向への伸縮ブームの伸長速度ベクトル成分Kが大きいか、小さいか、によって作業台6の停止位置が規制領域Sの規制境界線Nに対して同じ位置で停止しない。すなわち、図6に図示する場合では、伸縮ブーム3の作業半径が小さい場合の方が大きい場合に比較して作業台6の側縁が規制領域S内の規制境界線Nから離間した規制領域S内の位置で停止する。
【0008】
そこで、規制領域Sの手前に減速線Lを設け、減速線Lから規制領域Sまでに減速領域Mを備え、作業台6が減速領域Mに位置している時には、作業台6が規制領域Sに近づくにつれて作業台6の移動速度を減速させるようにした高所作業車の安全装置が考えられている。すなわち、作業台6が減速線Lに位置すると、作業台6の移動速度を減速させるようにしているものだから、作業台6が規制領域Sに位置すると作業台6の移動を即停止させることができ、作業台6の側縁が規制領域Sの規制境界線Nに略位置して停止し、上記作業台6の停止位置の相違をなくするよう対応させたものである。
【0009】
ところが、この場合次のような課題を有している。例えば図7に図示するように、伸縮ブーム3を旋回操作して途中作業台6が減速領域Mに位置するが、伸縮ブーム3をこのまま旋回し続けても規制領域S内に作業台6が位置しない場合であっても、伸縮ブーム3の旋回速度は減速領域M内で減速させてしまうことになり、不必要に作業台6の移動速度を遅くしてしまうこととなり、場合によっては操作性を悪くするものである。
【0010】
本発明は、伸縮ブーム3の状態によって作業台6の位置が異なっ状態から規制領域Sに位置して作業台6を停止させても規制領域Sに対する停止位置が同じ位置で停止し、作業台6が規制領域Sに位置しないで規制領域Sに近接して移動する場合には不必要に減速させない、高所作業車の安全装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
上記の目的を達成するため、本発明の請求項1記載の高所作業車の安全装置は、車両上に旋回および起伏可能に伸縮ブームを配置し、伸縮ブームの先端部に首振り可能に作業台を備えた高所作業車に、作業台を移動させる際に操作する各操作手段と、各操作手段からの操作信号に基づいて作業台を移動させる制御信号を出力する制御出力手段と、制御出力手段からの信号に基づいて作業台を移動させる各駆動手段と、車体に対する作業台の位置を検出する作業台位置検出手段と、車体に対する所定の規制領域を設定記憶した規制領域記憶手段と、作業台位置検出手段と規制領域記憶手段からの信号を受けて作業台が所定の規制領域に位置しているか否かを判別する判別手段と、判別手段により作業台が所定の規制領域に位置していると判別されたときに警報する警報手段または作業台の移動を規制する規制手段とを備えた高所作業車の安全装置であって、
前記作業台位置検出手段と前記規制領域記憶手段からの信号を受け平面視における作業台から規制領域までの最短距離を算出する距離算出手段と、前記作業台位置検出手段と前記規制領域記憶手段および各操作手段からの信号を受け平面視における作業台の移動速度ベクトルのうち規制領域にかかる規制境界線に直交する方向のベクトル成分を算出するベクトル成分算出手段と、両算出手段からの信号を受け前記距離と前記ベクトル成分に基づく関数に応じて、前記制御出力手段から各駆動手段に出力される信号を規制して作業台の移動速度を減速させる減速制御手段とを備えたことを特徴とするものである。
【0012】
請求項2の高所作業車の安全装置は、請求項1において、前記減速制御手段の関数は、距離が所定距離以内に達した時に距離と前記ベクトル成分に基づき前記制御出力手段から各駆動手段に出力される信号を規制して作業台の移動速度を減速させるように構成していることを特徴とするものである。
【0013】
請求項3の高所作業車の安全装置は、請求項2において、前記減速制御手段の関数は、距離が小さいほど、前記ベクトル成分の大きさが大きいほど作業台の移動速度の減速を大きくするよう前記制御出力手段から各駆動手段に出力される信号を規制するよう構成してあることを特徴とするものである。
【0014】
請求項4の高所作業車の安全装置は、請求項1乃至請求項3において、前記作業台位置検出手段は、伸縮ブームの旋回角、起伏角、ブーム長さ、作業台の首振り角を検出する各検出器と、各検出器からの信号で作業台位置を算出する作業台位置演算手段とで検出するよう構成したことを特徴とするものである。
【0015】
請求項5の高所作業車の安全装置は、請求項1乃至請求項4において、前記規制領域記憶手段は、車側縁または車両前後縁に沿って規制領域を予め設定記憶させて構成したことを特徴とするものである。
【0016】
【発明の実施の形態】
以下本発明に係る高所作業車の安全装置の実施形態について、図1および図2に図示し以下に説明する。なお、本発明の高所作業車の安全装置の実施形態を説明するにあたって、従来の技術で説明した高所作業車に本発明の高所作業車の安全装置を備えた場合を以下に説明するので、従来の技術で使用し説明した符号1〜符号8、符号3a〜符号3cは、同じものとして同符号を使用し詳細な説明は省略する。
【0017】
図1において、20は、伸縮操作手段であって、操作レバー7を有し、当該操作レバー7を操作することで伸縮ブーム3を伸縮させる操作手段である。21は、起伏操作手段であって、操作レバー7を有し、当該操作レバー7を操作することで伸縮ブーム3を起伏させる操作手段である。22は、旋回操作手段であって、操作レバー7を有し、当該操作レバー7を操作することで旋回台2を旋回させる操作手段である。23は、首振り操作手段であって、操作レバー7を有し、当該操作レバー7を操作することで作業台6を首振りさせる操作手段である。24は、水平操作手段であって、操作レバー7を有し、当該操作レバー7を操作することで作業台6を操作方向に水平移動操作させる操作手段である。25は、垂直操作手段であって、操作レバー7を有し、当該操作レバー7を操作することで作業台6を操作方向に垂直移動操作させる操作手段である。
【0018】
26は、制御出力手段であって、各操作手段からの信号を受け、各操作手段からの操作信号に基づいて次に説明する各駆動手段に操作信号を出力する。27は、伸縮駆動手段であって、制御出力手段26からの伸縮操作に基づく操作信号により、伸縮ブーム3を伸縮させる伸縮用油圧シリンダ等(図示しない)を駆動制御する駆動手段である。28は、起伏駆動手段であって、制御出力手段26からの起伏操作に基づく操作信号により、伸縮ブーム3を起伏させる起伏用油圧シリンダ4を駆動制御する駆動手段である。29は、旋回駆動手段であって、制御出力手段26からの旋回操作に基づく操作信号により、旋回台2を旋回させる旋回駆動装置(図示しない)を駆動制御する駆動手段である。30は、首振り駆動手段であって、制御出力手段26からの首振り操作に基づく操作信号により、作業台6を首振りさせる首振り駆動装置(図示しない)を駆動制御する駆動手段である。
【0019】
なお、制御出力手段26は、各操作手段に対応した操作信号を各駆動手段に出力するものであるが、水平操作手段24と垂直操作手段25からの信号に基づいては操作方向に基づく操作方向と操作量より、作業台6を操作方向に操作量に基づく速度で移動させるように適宜複数の各駆動手段27〜30に制御信号を出力させるようになっている。
【0020】
31は、作業台位置検出手段であって、作業台6の位置を検出する手段であって、次の各検出器と演算手段で構成している。32は、旋回角検出器であって、車両1に対する旋回台2の旋回角を検出する検出器である。33は、起伏角検出器であって、伸縮ブーム3の起伏角を検出する検出器である。34は、ブーム長さ検出器であって、伸縮ブーム3のブーム長さを検出する検出器である。35は、首振り角検出器であって、伸縮ブーム3の先端部に配置した垂直維持部材5に首振り可能に取付けられた作業台6の首振り角を検出する検出器である。
【0021】
なお、上記各検出器は、高所作業車の他の安全装置の検出器として備えたものと兼用したものでよい。
【0022】
36は、作業台位置演算手段であって、前記各検出器からの信号を受け、作業台6の位置を演算して算出する手段である。特に、作業台位置演算手段36は、作業台6の一部が次に説明する規制領域Sに位置しているか否かを判別させるために使用するものであるから、規制領域方向での作業台6の最外縁位置を演算算出するようにしている。
【0023】
37は、規制領域記憶手段であって、車体1に対する所定の規制領域Sを記憶しており、例えば図5に図示するように、車側縁に沿った規制領域Sを記憶している。この場合は平面視における車側より張出したジャッキ8を結ぶ直線近傍を規制領域Sの境界線Nとし、境界線Nによる垂直面から離間する空間領域を規制領域Sとして予め記憶させているものである。この規制領域Sは、作業台6の許容移動領域が狭くなるが、車両1の車側縁に沿った直線を境界線N’として境界線N’による垂直面から離間する空間領域を規制領域S’として予め記憶させてもよい。
【0024】
38は、判別手段であって、前記作業台位置検出手段31の作業台位置演算手段36からの信号と、前記規制領域記憶手段37からの信号を受けて、作業台6が規制領域Sに位置しているか否かの判別する手段である。そして判別手段38は、作業台6が所定の規制領域Sに位置していると判別すると、次に説明する規制手段39に規制信号を出力する手段である。
【0025】
39は、規制手段であって、前記制御手段26から各駆動手段27〜30へ出力される回路の途中に介装され、常時は回路を連通させているが判別手段38からの規制信号を受けると回路を遮断し、前記制御手段26からの出力される各駆動手段27〜30への出力信号の伝達を阻止する手段である。
【0026】
40は、距離算出手段であって、前記作業台位置検出手段31の作業台位置演算手段36からの信号と、前記規制領域記憶手段37からの信号を受けて、平面視における作業台6から規制領域Sまでの最短距離を算出する手段である。
【0027】
41は、ベクトル成分算出手段であって、前記作業台位置検出手段31と前記規制領域記憶手段37および各操作手段20〜25からの信号を受け平面視における作業台6の移動速度ベクトルのうち規制領域Sにかかる規制境界線Nに直交する方向のベクトル成分Kを算出する手段である。
【0028】
なお、ベクトル成分算出手段41で算出される上記ベクトル成分Kは、図5および図6に図示するように簡易的に伸縮ブーム3の先端部におけるベクトル成分Kを求めているが、特に図5の伸縮ブーム3を旋回させる場合では、旋回作業半径が最大になる作業台6の側縁部における正確なベクトル成分Kを求めるようにした方がよい。
【0029】
42は、減速制御手段であって、前記両算出手段40、41からの信号を受け前記距離と前記ベクトル成分に基づく関数に応じて、前記制御出力手段26から各駆動手段27〜30に出力される信号を規制して作業台6の移動速度を減速させる手段である。減速制御手段42の関数は、図2に図示する関係によって、前記距離算出手段40で算出される距離Lとベクトル成分算出手段41で算出されるベクトル成分Kの大きさに基づいて減速信号Vが出力される。
【0030】
具体的には、図2に図示するように、距離Lと速度Vの関係をベクトル成分の大きさによってグラフを使い分ける関係で減速信号を決定するようにしてある。すなわち、ベクトル成分が大きいK1の時にはK1で表示される関数関係のグラフが使用され、ベクトル成分が小さいK2の時にはK2で表示される関数関係のグラフが使用され、ベクトル成分の大きさによってK1〜K2の間の関数関係のグラフ(図2にはグラフの記載を省略している。)が使用される。
【0031】
例えば、ベクトル成分がK1の時には、距離LがL1になると速度VをV1から次第に減速させる信号を出力し、距離LがL3になると速度VをV3まで減速させる信号を出力する。そして、K1〜K2のグラフは、距離Lが小さいほど、ベクトル成分の大きさが大きいほど(K1>K2)速度Vを減速させるような関数関係に設定している。
【0032】
なお、図1に図示する実施形態では、減速制御手段42を制御出力手段26と規制手段39間に配置したが、各操作手段20〜25と制御出力手段26間に介装させるようにしてもよい。
【0033】
43は、解除操作手段であって、作業台6が規制領域Sに位置し、規制手段39により各駆動手段27〜30の駆動が規制され、各操作手段20〜25の操作をしても作業台6の移動ができなくなった時に、この解除操作手段43を操作することにより前記規制を解除して各操作手段20〜25による操作で作業台6を安全側へ復帰させる操作手段である。
【0034】
44は、解除手段であって、判別手段38から規制手段39に規制信号を出力する回路途中に介装され、常時は連通させているが、解除操作手段43からの操作信号を受けると回路を遮断し判別手段38から規制手段39に出力される規制信号の伝達を阻止する手段である。
【0035】
すなわち、解除操作手段43と解除手段44は、作業台6が規制領域Sに位置し、規制手段39により各駆動手段27〜30の駆動が規制されている時に、解除操作手段43を操作することで規制手段39による規制を解除して、各操作手段20〜25による操作で作業台6を安全側へ復帰させるようにしたものである。
【0036】
Aは、コントローラであって、前記各検出器と各操作手段からの信号を受け、前記制御手段26、前記作業台位置演算手段36、規制領域記憶手段37、判別手段38、規制手段39、距離算出手段40、ベクトル成分算出手段41、減速制御手段42、解除手段44の各機能を備え、各駆動手段27〜30に信号を出力するものである。
【0037】
このように構成した本発明に係る高所作業車の安全装置は、次のように作用する。先ず作業台6が規制領域Sから所定距離以上離間(L>L1)した位置に位置しているとする。そしてこの位置から、旋回操作手段22を操作して作業台6を規制領域Sの方向に操作する。
【0038】
この時、前記ベクトル成分算出手段41は、旋回操作手段22と規制領域記憶手段37および作業台位置演算手段36からの信号を受けて、旋回操作に伴う作業台6の平面視における旋回移動速度ベクトルのうち規制領域Sにかかる規制境界線Nに直交する方向のベクトル成分の大きさKを求める。また、距離算出手段40は、作業台位置演算手段36と規制領域記憶手段37の信号を受けて、平面視における作業台から規制領域Sまでの最短距離Lを算出する。そして両算出手段40,41で算出したベクトル成分の大きさと最短距離は、減速制御手段42に入力される。
【0039】
作業台6は、規制領域Sから所定距離以上離間(L>L1)した位置に位置しているから、図2に図示するように減速制御手段42は、制御出力手段26から出力される旋回操作手段22に基づく出力信号を減速させずに旋回駆動手段29に出力する。よって作業台6は伸縮ブーム3の旋回駆動に伴って移動する。
【0040】
いま前記ベクトル成分算出手段41で算出されたベクトル成分の大きさKが、図2に図示するK2であるとする。そしてこのまま伸縮ブーム3を旋回駆動し続けると、距離算出手段40で算出した最短距離LがL2になった時点から減速制御手段42は、図2に図示するように作業台6が規制領域Sに近づくにつれて減速する減速信号Vで以って制御出力手段26からの信号を減速して旋回駆動手段28に出力し、作業台6の移動速度は減速される。
【0041】
そして、作業台6の移動速度は、距離算出手段40で算出した最短距離LがL3になる時点までに、ベクトル成分の大きさがK2において規制手段39により制御出力信号が遮断して旋回駆動を停止させても即停止できる作業台6の移動速度まで減速させる。よって最短距離LがL3からは作業台6が規制領域Sに位置しても(規制境界線Nに位置し最短距離Lが0になる時)作業台6を即停止できる移動速度にまで減速させた状態にある。
【0042】
作業台6が規制領域Sの規制境界線Nに位置すると、判別手段38が作業台位置演算手段36と規制領域記憶手段37からの信号を受け、作業台6が規制領域Sに位置していると判別して、規制手段39に信号を出力する。規制手段39は、減速制御手段42を経過して出力する制御出力手段26からの信号を遮断して、旋回駆動手段29への信号出力を阻止し、作業台6の旋回移動を停止させる。この時に既に作業台6を即停止できる移動速度にまで減速させた状態にあることから、作業台6の移動を即停止することができ、作業台6が規制領域S内に入り込んで停止することはない。
【0043】
また、前記ベクトル成分算出手段41で算出されたベクトル成分の大きさKが、図2に図示するK1であるとする。そしてこのまま伸縮ブーム3を旋回駆動し続けると、距離算出手段40で算出した最短距離LがL1になった時点から減速制御手段42は、図2に図示するように作業台6が規制領域Sに近づくにつれて減速する減速信号Vで以って制御出力手段26からの信号を減速して旋回駆動手段28に出力し、作業台6の移動速度は減速される。
【0044】
そして、作業台6の移動速度は、距離算出手段40で算出した最短距離LがL3になる時点までに、ベクトル成分の大きさがK1において規制手段39により制御出力信号が遮断して旋回駆動を停止させるようにしても即停止できる作業台6の移動速度まで減速させる。よって最短距離LがL3からは作業台6が規制領域Sに位置しても(規制境界線Nに位置し最短距離Lが0になる時)作業台6を即停止できる移動速度にまで減速させた状態にある。
【0045】
作業台6が規制領域Sの規制境界線Nに位置すると、判別手段38が作業台位置演算手段36と規制領域記憶手段37からの信号を受け、作業台6が規制領域Sに位置していると判別して、規制手段39に信号を出力する。規制手段39は、減速制御手段42を経過して出力する制御出力手段26からの信号を遮断して、旋回駆動手段29への信号出力を阻止し、作業台6の移動を停止させる。この時に既に作業台6を即停止できる移動速度にまで減速させた状態にあることから、作業台6の移動を即停止することができ、作業台6が規制領域S内に入り込んで停止することはない。
【0046】
ここで、前記ベクトル成分算出手段41で算出されたベクトル成分の大きさKが、図2に図示するK1とK2の間の大きさである場合には、図2に図示するK1とK2の間の特性で同様に減速させる。
【0047】
このように、最短距離Lとベクトル成分の大きさKに基づく関数に応じて制御出力手段26から旋回駆動手段29に出力される信号を減速制御手段42で規制して減速させるようにしたものであるから、伸縮ブーム3の状態が相違することによる作業台6の位置が違っても、同じ旋回速度で同じ停止時間をかけて停止させた場合に、規制領域S方向への旋回速度ベクトル成分の大きさKが異なることに起因して作業台6の停止位置が相違することの防止がはかれる。
【0048】
また、規制領域Sに所定距離近接した場合には、規制領域Sに近づくにつれて減速を大きくするようにしているが、規制領域S方向への旋回速度ベクトル成分の大きさKによっても減速度を変更するようにしているものであるから、作業台6が規制領域Sに近接していても旋回速度ベクトル成分の大きさKが小さい場合には不必要に減速をしないようにしてある。
【0049】
例えば図2に図示するように、最短距離LがL1〜L2間では、規制領域S方向への旋回速度ベクトル成分の大きさKがK2の時には減速しないが、規制領域S方向への旋回速度ベクトル成分の大きさKがK1の時には減速するようにしてあり、不必要に減速させることを可及的に阻止するようにしてある。
【0050】
なお、上記説明では旋回操作時のみについて説明したが、同様に伸縮操作、起伏操作、首振り操作、水平操作ででも、実施できること勿論である。更に、各操作の複合操作時においても、ベクトル成分算出手段41は、複合操作による平面視における作業台6の移動速度ベクトルのうち規制領域Sにかかる規制境界線Nに直交する方向のベクトル成分をベクトル成分算出手段41で算出できるようにしているものであるから、同様に実施できること勿論である。
【0051】
また、上記実施形態では、作業台6を規制領域Sに位置させた状態では作業台6の作動を規制するようにしたが、規制させずに警報だけするようにした高所作業車の安全装置にも適用できる。この場合の実施形態について図3に図示し以下に説明する。図3に図示する実施形態では、判別手段38が作業台位置演算手段36と規制領域記憶手段37からの信号を受け、作業台6が規制領域Sに位置していると判別した時に、警報手段46(警音器あるいは音声警報装置などにより警報する手段)を作動させるようにしており、各駆動手段27〜30には直接減速手段42から信号を出力するようにしている点で図1図示する実施形態と相違している。よってコントローラBは、コントローラAと解除手段44と規制手段39を備えていない点で相違している。
【0052】
この場合は、警報手段46が作動した時に、手動により各操作手段20〜25を停止操作させて作業台6の移動を停止させるもので、図1で説明した上記実施形態のものと、自動で停止させるか、手動で停止させるかの違いがあるものの、同様に最短距離Lとベクトル成分の大きさKに基づく関数に応じて制御出力手段26から旋回駆動手段29に出力される信号を減速制御手段42で規制して減速させるようにしたものであるから、伸縮ブーム3の状態が相違することによる作業台6の位置が違っても、規制領域S方向への旋回速度ベクトル成分の大きさKが異なることに起因して作業台6の停止位置が相違することの防止がはかれる。
【0053】
また、規制領域Sに所定距離近接した場合には、規制領域Sに近づくにつれて減速を大きくするようにしているが、規制領域S方向への旋回速度ベクトル成分Kの大きさによっても減速度を変更するようにしているものであるから、作業台6が規制領域Sに近接していても旋回速度ベクトル成分Kの大きさが小さい場合には減速を大きくしないようにしてあり、不必要に減速させることを可及的に阻止することができる。
【0054】
次に、上記実施形態では、規制領域記憶手段37には車側縁に沿った規制領域Sとして、車側より張出したジャッキ8を結ぶ直線近傍を規制領域Sの規制境界線Nとし、規制境界線Nによる垂直面から離間する空間領域を規制領域Sとして予め記憶させたものであるが、この他に複数の規制領域を記憶しておき、規制領域選択手段45を配置し、当該規制領域を図1および図2に図示するように規制領域選択手段45で選択させるようにしてもよい。
【0055】
具体的には、上記境界線Nから離間する空間領域を規制領域Sとした他に、車両1の車側縁直線を規制境界線N’として規制境界線N’による垂直面から離間する空間領域を規制領域S’として記憶させた場合や、規制領域S、規制領域S’を左右別にそれぞれ記憶させた4種類の規制領域を記憶させ、これらの規制領域から目的の規制領域を規制領域選択手段45で選択させるようにしてもよい。また、車側縁に沿った規制境界線をジャッキ8を結ぶ直線近傍より更に離間させて記憶させるようにした場合であってもよい。(図7参照)更に、車両の前後縁にそれぞれ沿った規制領域を記憶させておき、複数種類の規制領域を記憶させ、これらの規制領域から目的の規制領域を規制領域選択手段45で選択させるようにしてもよい。
【0056】
なお、上記実施形態では、規制領域選択手段45を手動で切換えるようにしたが、例えば車側に沿って複数の規制領域を記憶させておき、複数の規制領域からの選択を、ジャッキ8の張出し幅を検出して、ジャッキ8の張出し幅に応じて規制領域を自動的に選択させるようにしてもよい。
【0057】
また、上記実施形態では、作業台位置検出手段31として、各検出器と作業台位置演算手段36で構成したが、GPSなどにより車体1の位置を記憶させ車体1に対する作業台6の位置を計測するようにしたものであってもよい。
【0058】
【発明の効果】
請求項1乃至請求項3に係る本発明の高所作業車の安全装置は、以上のように構成し作用するものであるから、伸縮ブームの状態が相違することによる作業台の位置が違っても、平面視における作業台の移動速度ベクトルのうち規制領域にかかる規制境界線に直交する方向へのベクトル成分の大きさが異なることに起因して作業台の停止位置が相違することの防止がはかれる。
【0059】
また、規制領域に所定距離近接した場合には、規制領域に近づくにつれて減速を大きくするようにしても、規制領域方向への前記ベクトル成分の大きさによっても減速度を変更するようにしているものであるから、作業台が規制領域に近接していても前記ベクトル成分の大きさが小さい場合には減速しないようにしてあり、不必要に減速させることを可及的に阻止することができる。
【0060】
請求項2に係る本発明の高所作業車の安全装置は、作業台の位置検出を各検出器と各検出器からの信号で作業台位置を算出するようにしたもので、高所作業車に他の安全装置用として用いた検出器を利用して作業台の位置検出をすることができる。
【0061】
請求項3に係る本発明の高所作業車の安全装置は、車側縁または車両前後縁に沿って規制領域を予め設定記憶させているものであるから、作業現場で設置した車両より危険側へ作業台が飛出すのを規制して安全な作業を可能にする。
【図面の簡単な説明】
【図1】本発明に係る高所作業車の安全装置を説明するブロック図である。
【図2】距離とベクトル成分に基づく関数よる減速制御を説明するグラフである。
【図3】本発明に係る高所作業車の安全装置を説明する他の実施形態のブロック図である。
【図4】高所作業車を説明する説明図である。
【図5】高所作業車の作業台を旋回駆動により規制領域に位置させた状態を説明する説明図である。
【図6】高所作業車の作業台を伸縮駆動により規制領域に位置させた状態を説明する説明図である。
【図7】高所作業車の作業台を旋回駆動により規制領域に近接させて移動させる状態を説明する説明図である。
【符号の説明】
1 車両
3 伸縮ブーム
6 作業台
20 伸縮操作手段
21 起伏操作手段
22 旋回操作手段
23 首振り操作手段
24 水平操作手段
25 垂直操作手段
26 制御出力手段
27 伸縮駆動手段
28 起伏駆動手段
29 旋回駆動手段
30 首振り駆動手段
31 作業台位置検出手段
32 旋回角検出器
33 起伏角検出器
34 ブーム長さ検出器
35 首振り角検出器
36 作業台位置演算手段
37 規制領域記憶手段
38 判別手段
39 規制手段
40 距離算出手段
41 ベクトル成分算出手段
42 減速制御手段
46 警報手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a safety device for an aerial work vehicle.
[0002]
[Prior art]
In this type of aerial work vehicle, as shown in FIG. 4, a swivel base 2 is arranged so as to be able to turn on a vehicle 1, and a telescopic boom 3 is arranged so that the swivel base 2 can be raised and lowered. Appropriate turning drive means is arranged between the vehicle 1 and the turntable 2 so that the turntable 2 can be turned with respect to the vehicle 1. The telescopic boom 3 has the intermediate boom 3b inserted into the base boom 3a and the leading boom 3c inserted into the intermediate boom 3b so as to be able to expand and contract sequentially, and an appropriate telescopic drive means such as a hydraulic cylinder for expansion and contraction is arranged between the respective booms. The telescopic boom 3 is driven to expand and contract. An up / down driving means (up / down hydraulic cylinder 4) for driving up / down the telescopic boom 3 is disposed between the base boom 3a and the swivel base 2 at appropriate positions. At the distal end of the telescopic boom 3, a vertical maintaining member 5 is arranged by a vertical maintaining device so as to always maintain a vertical posture regardless of the up-and-down movement of the telescopic boom 3. A worktable 6 is arranged on the vertical maintenance member 5 so as to be able to swing, and an appropriate swing drive means is arranged between the vertical maintenance member 5 and the worktable 6. On the work table 6, operation levers 7, 7,... For driving each driving means are arranged. Are arranged on the front, rear, left and right sides of the vehicle 1, respectively, and the jacks 8, 8,... Protrude laterally from the vehicle width at the time of work to stably support the vehicle, and are stored in the vehicle width when the vehicle travels. Like that.
[0003]
In such an aerial work vehicle, an operator operating the operation levers 7, 7,... Drives the respective driving means to position the worktable 6 at a desired height, and Work at higher places.
[0004]
By the way, there are many work sites where such an aerial work vehicle is installed near a road on a general road. Therefore, as shown in FIGS. 5 and 6, a restriction area S is provided along the side edge of the vehicle, and the workbench 6 does not protrude from the restriction area S so that the side of the installed aerial work vehicle 2. Description of the Related Art A safety device for an aerial work vehicle that is prevented from coming into contact with a vehicle traveling on a road is known. (For example, JP-A-2001-180900)
[0005]
[Patent Document 1]
JP 2001-180900 A
[0006]
[Problems to be solved by the invention]
By the way, the safety device for an aerial work vehicle has the following problems. For example, as shown in FIG. 5, when the workbench 6 is moved in the direction of the restriction area S by turning the telescopic boom 3, the workbench 6 is stopped when the position of the worktable 6 in the plan view is located in the restriction area S. However, the stop position of the worktable 6 does not stop at the same position with respect to the regulation boundary line N of the regulation area S when the work radius is increased by the telescopic boom 3 and when the work radius is decreased. That is, when the working radius is large, the side edge of the worktable 6 stops at a position in the regulation area S separated from the regulation boundary line N, and when the work radius is small, the side edge of the worktable 6 is at the regulation boundary line N. Stop almost in proximity. This is because, as shown in FIG. 5, when stopping at the same turning speed with the same stopping time, the magnitudes of the turning speed vector components K1 and K2 in the regulation area S direction are different due to the difference in the working radius. As a result, the stop position of the worktable 6 is different as described above.
[0007]
This applies not only to the case where the telescopic boom 3 is driven to rotate, but also to the case where another hydraulic actuator is driven. For example, when the telescopic boom 3 is driven to expand and contract, as shown in FIG. 6, when the telescopic boom 3 is extended and the worktable 6 is stopped at the same telescopic speed and with the same stop time, a plan view is taken. The stop position of the worktable 6 does not stop at the same position with respect to the regulation boundary line N of the regulation area S depending on whether the extension speed vector component K of the telescopic boom in the regulation area S direction is large or small. That is, in the case illustrated in FIG. 6, when the working radius of the telescopic boom 3 is small, the side edge of the worktable 6 is separated from the regulating boundary line N within the regulating region S as compared with the case where the working radius is large. Stop at the position inside.
[0008]
Therefore, a deceleration line L is provided in front of the regulation area S, and a deceleration area M is provided from the deceleration line L to the regulation area S. When the work table 6 is located in the deceleration area M, the work table 6 A safety device for an aerial work vehicle, in which the moving speed of the worktable 6 is reduced as the vehicle approaches, has been considered. That is, when the work table 6 is located on the deceleration line L, the moving speed of the work table 6 is reduced, so that when the work table 6 is located in the restriction area S, the movement of the work table 6 can be immediately stopped. In this case, the side edge of the worktable 6 is positioned substantially at the regulation boundary line N of the regulation area S and stopped, so that the difference in the stop position of the worktable 6 is eliminated.
[0009]
However, this case has the following problems. For example, as shown in FIG. 7, the workbench 6 is positioned in the deceleration area M by turning the telescopic boom 3, but the worktable 6 is positioned within the restriction area S even when the telescopic boom 3 is continuously turned. Even if not, the turning speed of the telescopic boom 3 will be decelerated in the deceleration area M, and the moving speed of the workbench 6 will be unnecessarily slowed down. It will make you worse.
[0010]
According to the present invention, even if the position of the workbench 6 is different depending on the state of the telescopic boom 3 and the workbench 6 is stopped in the regulation area S, the stop position with respect to the regulation area S stops at the same position. It is an object of the present invention to provide a safety device for an aerial work vehicle that does not unnecessarily decelerate when the vehicle moves close to the restriction region S without being located in the restriction region S.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the safety device for an aerial work vehicle according to the first aspect of the present invention includes a telescopic boom arranged on the vehicle so as to be able to turn and undulate, and is capable of swinging at the tip of the telescopic boom. Control means for operating the workbench on the aerial work vehicle equipped with a platform, control output means for outputting a control signal for moving the workbench based on an operation signal from each operation means, and control Each drive means for moving the workbench based on a signal from the output means, a workbench position detection means for detecting the position of the workbench with respect to the vehicle body, a regulation area storage means for setting and storing a predetermined regulation area for the car body, Determining means for receiving a signal from the workbench position detecting means and the control area storage means to determine whether or not the workbench is positioned in the predetermined control area; and determining that the worktable is positioned in the predetermined control area. Is determined to be A safety device of aerial platforms with a restricting means for restricting the movement of the alarm means or workbench to alarm when a,
Distance calculating means for receiving a signal from the worktable position detecting means and the control area storage means and calculating the shortest distance from the worktable to the control area in plan view, the worktable position detection means and the control area storage means, A vector component calculation unit that receives a signal from each operation unit and calculates a vector component in a direction orthogonal to a regulation boundary line of the regulation area in the movement speed vector of the worktable in a plan view, and receives signals from both calculation units. A deceleration control unit that regulates a signal output from the control output unit to each drive unit to reduce a moving speed of the worktable according to a function based on the distance and the vector component. Things.
[0012]
According to a second aspect of the present invention, in the safety device for an aerial work vehicle according to the first aspect, the function of the deceleration control means is such that when the distance has reached a predetermined distance or less, the control output means is configured to output each drive means based on the distance and the vector component. Is controlled so that the moving speed of the workbench is reduced by regulating the signal output to the work table.
[0013]
According to a third aspect of the present invention, in the safety device for an aerial work vehicle according to the second aspect, the function of the deceleration control means increases the deceleration of the moving speed of the worktable as the distance is shorter and the magnitude of the vector component is larger. As described above, the control output means is configured to regulate a signal output to each drive means.
[0014]
According to a fourth aspect of the present invention, in the safety device for an aerial work vehicle according to any one of the first to third aspects, the workbench position detecting means determines a swing angle, an up-and-down angle, a boom length, and a swing angle of the workbench of the telescopic boom. Each of the detectors to be detected and a workbench position calculating means for calculating a workbench position based on a signal from each of the detectors are configured to detect the workbench position.
[0015]
According to a fifth aspect of the present invention, in the safety device for an aerial work vehicle according to any one of the first to fourth aspects, the restriction area storage unit is configured to store and set a restriction area in advance along a vehicle side edge or a vehicle front and rear edge. It is characterized by the following.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a safety device for an aerial work vehicle according to the present invention will be described below with reference to FIGS. 1 and 2. In describing an embodiment of a safety device for an aerial work vehicle of the present invention, a case where the aerial work vehicle described in the related art is provided with the aerial work vehicle safety device of the present invention will be described below. Therefore, reference numerals 1 to 8 and reference numerals 3a to 3c used and described in the related art are the same, the same reference numerals are used, and detailed description is omitted.
[0017]
In FIG. 1, reference numeral 20 denotes an expansion / contraction operation means, which has an operation lever 7 and is an operation means for operating the operation lever 7 to extend / contract the telescopic boom 3. Reference numeral 21 denotes a raising / lowering operation means, which has the operation lever 7 and is an operation means for raising / lowering the telescopic boom 3 by operating the operation lever 7. Reference numeral 22 denotes a turning operation means which has the operation lever 7 and turns the turntable 2 by operating the operation lever 7. Reference numeral 23 denotes a swinging operation means, which has the operation lever 7 and is an operation means for swinging the worktable 6 by operating the operation lever 7. Reference numeral 24 denotes a horizontal operation unit having an operation lever 7 and operating the operation table 7 to horizontally move the worktable 6 in the operation direction. Reference numeral 25 denotes a vertical operation unit having the operation lever 7 and operating the operation lever 7 to vertically move the work table 6 in the operation direction.
[0018]
Reference numeral 26 denotes a control output unit that receives a signal from each operation unit and outputs an operation signal to each drive unit described below based on the operation signal from each operation unit. Reference numeral 27 denotes a telescopic drive unit, which is a driving unit that drives and controls a telescopic hydraulic cylinder and the like (not shown) that expands and contracts the telescopic boom 3 based on an operation signal based on a telescopic operation from the control output unit 26. Reference numeral 28 denotes an up-and-down driving unit, which is a driving unit that drives and controls the up-and-down hydraulic cylinder 4 that raises and lowers the telescopic boom 3 based on an operation signal based on the up-down operation from the control output unit 26. Reference numeral 29 denotes a turning drive unit which drives and controls a turning drive device (not shown) for turning the swivel base 2 based on an operation signal based on a turning operation from the control output unit 26. Numeral 30 denotes a swing drive unit which drives and controls a swing drive device (not shown) for swinging the worktable 6 based on an operation signal based on the swing operation from the control output unit 26.
[0019]
The control output means 26 outputs an operation signal corresponding to each operation means to each drive means, but based on signals from the horizontal operation means 24 and the vertical operation means 25, an operation direction based on the operation direction. Based on the operation amount and the operation amount, a control signal is appropriately output to each of the plurality of driving units 27 to 30 so as to move the work table 6 in the operation direction at a speed based on the operation amount.
[0020]
Reference numeral 31 denotes a workbench position detecting means, which is means for detecting the position of the workbench 6, and includes the following detectors and arithmetic means. Reference numeral 32 denotes a turning angle detector which detects a turning angle of the turntable 2 with respect to the vehicle 1. Reference numeral 33 denotes an undulation angle detector which detects the undulation angle of the telescopic boom 3. Reference numeral 34 denotes a boom length detector, which detects the boom length of the telescopic boom 3. Reference numeral 35 denotes a swing angle detector which detects the swing angle of the worktable 6 which is swingably attached to the vertical maintenance member 5 disposed at the tip of the telescopic boom 3.
[0021]
The above detectors may also be used as detectors of other safety devices for aerial work vehicles.
[0022]
Reference numeral 36 denotes a workbench position calculating means, which receives signals from the detectors and calculates and calculates the position of the workbench 6. In particular, the workbench position calculating means 36 is used to determine whether or not a part of the workbench 6 is located in the restriction area S described below. 6 is calculated and calculated.
[0023]
Reference numeral 37 denotes a restriction area storage unit which stores a predetermined restriction area S for the vehicle body 1 and, for example, stores a restriction area S along a vehicle side edge as shown in FIG. In this case, the vicinity of a straight line connecting the jacks 8 protruding from the vehicle side in plan view is defined as the boundary N of the restriction region S, and the space region separated from the vertical plane by the boundary N is stored in advance as the restriction region S. is there. In the restriction area S, the allowable movement area of the workbench 6 is reduced, but a space area separated from a vertical plane defined by the boundary line N ′ is defined as a boundary line N ′ using a straight line along the vehicle side edge of the vehicle 1. 'May be stored in advance.
[0024]
Numeral 38 denotes a discriminating means which receives the signal from the workbench position calculating means 36 of the workbench position detecting means 31 and the signal from the restricted area storage means 37, and moves the worktable 6 to the restricted area S. This is a means for determining whether or not it is performed. The discriminating means 38 is a means for outputting a regulation signal to a regulating means 39 described below, when it is determined that the worktable 6 is located in the predetermined regulation area S.
[0025]
Numeral 39 denotes a regulating means which is interposed in the middle of a circuit output from the control means 26 to each of the driving means 27 to 30 and which normally communicates with the circuit but receives a regulating signal from the discriminating means 38. And a circuit for interrupting transmission of an output signal from the control means 26 to each of the driving means 27 to 30.
[0026]
Numeral 40 denotes a distance calculating means, which receives a signal from the workbench position calculating means 36 of the workbench position detecting means 31 and a signal from the restricted area storage means 37 and controls the distance from the workbench 6 in plan view. This is a means for calculating the shortest distance to the area S.
[0027]
Numeral 41 denotes a vector component calculating means which receives signals from the worktable position detecting means 31, the restricted area storage means 37 and each of the operating means 20 to 25, and controls the moving speed vector of the worktable 6 in plan view. This is a means for calculating a vector component K in a direction orthogonal to the regulation boundary line N over the area S.
[0028]
The vector component K calculated by the vector component calculating means 41 simply obtains the vector component K at the distal end of the telescopic boom 3 as shown in FIGS. When the telescopic boom 3 is turned, it is better to obtain an accurate vector component K at the side edge of the worktable 6 at which the turning work radius is maximized.
[0029]
Reference numeral 42 denotes a deceleration control unit which receives signals from the calculation units 40 and 41 and outputs the signals from the control output unit 26 to the driving units 27 to 30 according to a function based on the distance and the vector component. This is a means for restricting the traffic signal and reducing the moving speed of the worktable 6. The function of the deceleration control means 42 is based on the distance L calculated by the distance calculation means 40 and the magnitude of the vector component K calculated by the vector component calculation means 41 according to the relationship shown in FIG. Is output.
[0030]
Specifically, as shown in FIG. 2, the deceleration signal is determined based on the relationship between the distance L and the speed V by using a graph depending on the magnitude of the vector component. That is, when the vector component is K1, the graph of the functional relationship represented by K1 is used. When the vector component is K2, the graph of the functional relationship represented by K2 is used. A graph of the functional relationship between K2 (illustration of the graph is omitted in FIG. 2) is used.
[0031]
For example, when the vector component is K1, when the distance L becomes L1, a signal for gradually reducing the speed V from V1 is output, and when the distance L becomes L3, a signal for reducing the speed V to V3 is output. In the graphs K1 to K2, a functional relationship is set such that the speed V decreases as the distance L decreases and the magnitude of the vector component increases (K1> K2).
[0032]
In the embodiment shown in FIG. 1, the deceleration control means 42 is arranged between the control output means 26 and the regulating means 39, but may be interposed between the operation means 20 to 25 and the control output means 26. Good.
[0033]
Reference numeral 43 denotes a release operation means. The work table 6 is located in the restriction area S, and the driving of each of the driving means 27 to 30 is restricted by the restriction means 39. When the movement of the platform 6 becomes impossible, the regulation is released by operating the release operating means 43, and the operating table 6 is returned to the safe side by the operation of each of the operating means 20 to 25.
[0034]
Reference numeral 44 denotes a release means, which is interposed in the middle of a circuit for outputting a regulation signal from the determination means 38 to the regulation means 39 and is always in communication, but when an operation signal from the release operation means 43 is received, the circuit is switched off. This is a means for blocking the transmission of the regulation signal output from the discrimination means 38 to the regulation means 39.
[0035]
That is, the release operation means 43 and the release means 44 operate the release operation means 43 when the worktable 6 is located in the restriction area S and the driving of each of the driving means 27 to 30 is restricted by the restriction means 39. Then, the regulation by the regulation means 39 is released, and the work table 6 is returned to the safe side by the operation of each of the operation means 20 to 25.
[0036]
A is a controller, which receives signals from each of the detectors and each operating means, and receives the signals from the control means 26, the worktable position calculating means 36, the restricted area storage means 37, the discriminating means 38, the restricting means 39, It has the functions of a calculation means 40, a vector component calculation means 41, a deceleration control means 42, and a release means 44, and outputs a signal to each of the drive means 27 to 30.
[0037]
The safety device for an aerial work vehicle according to the present invention configured as described above operates as follows. First, it is assumed that the worktable 6 is located at a position separated from the regulation area S by a predetermined distance or more (L> L1). Then, from this position, the turntable 22 is operated to operate the worktable 6 in the direction of the restriction area S.
[0038]
At this time, the vector component calculating means 41 receives signals from the turning operation means 22, the restriction area storage means 37, and the worktable position calculating means 36, and receives the turning movement speed vector in plan view of the worktable 6 accompanying the turning operation. The magnitude K of the vector component in the direction orthogonal to the regulation boundary line N over the regulation area S is obtained. Further, the distance calculating means 40 receives the signals from the worktable position calculating means 36 and the restricted area storage means 37 and calculates the shortest distance L from the worktable to the restricted area S in plan view. Then, the magnitude and the shortest distance of the vector component calculated by the calculation means 40 and 41 are input to the deceleration control means 42.
[0039]
Since the worktable 6 is located at a position separated from the regulation area S by a predetermined distance or more (L> L1), the deceleration control unit 42 controls the turning operation output from the control output unit 26 as shown in FIG. The output signal based on the means 22 is output to the turning drive means 29 without deceleration. Therefore, the worktable 6 moves with the turning drive of the telescopic boom 3.
[0040]
Now, it is assumed that the magnitude K of the vector component calculated by the vector component calculation means 41 is K2 shown in FIG. When the telescopic boom 3 continues to be driven to rotate as it is, the deceleration control means 42 moves the worktable 6 to the regulation area S as shown in FIG. 2 when the shortest distance L calculated by the distance calculation means 40 becomes L2. The signal from the control output means 26 is decelerated by the deceleration signal V which decelerates as it approaches, and is output to the turning drive means 28, so that the moving speed of the worktable 6 is reduced.
[0041]
The moving speed of the worktable 6 is controlled so that the control output signal is cut off by the regulating means 39 when the magnitude of the vector component is K2 before the shortest distance L calculated by the distance calculating means 40 becomes L3, and the turning drive is started. Even if it is stopped, it is reduced to the moving speed of the worktable 6 that can be stopped immediately. Therefore, even if the worktable 6 is located in the regulation area S from the shortest distance L3 (when the shortest distance L is 0 when the worktable 6 is located in the regulation boundary line N), the worktable 6 is decelerated to a moving speed at which it can be immediately stopped. It is in the state that it was.
[0042]
When the workbench 6 is located on the regulation boundary line N of the regulation area S, the determination means 38 receives signals from the worktable position calculation means 36 and the regulation area storage means 37, and the worktable 6 is located in the regulation area S. And outputs a signal to the regulating means 39. The restricting means 39 interrupts a signal from the control output means 26 which is output after passing through the deceleration control means 42, prevents a signal output to the turning drive means 29, and stops the turning movement of the worktable 6. At this time, since the work table 6 has already been decelerated to a moving speed at which the work table 6 can be immediately stopped, the movement of the work table 6 can be immediately stopped, and the work table 6 enters the regulation area S and stops. There is no.
[0043]
It is also assumed that the magnitude K of the vector component calculated by the vector component calculation means 41 is K1 shown in FIG. If the telescopic boom 3 continues to be driven to rotate as it is, the deceleration control unit 42 moves the worktable 6 to the restriction area S as shown in FIG. 2 when the shortest distance L calculated by the distance calculation unit 40 becomes L1. The signal from the control output means 26 is decelerated by the deceleration signal V which decelerates as it approaches, and is output to the turning drive means 28, so that the moving speed of the worktable 6 is reduced.
[0044]
By the time the shortest distance L calculated by the distance calculation means 40 becomes L3, the control output signal is cut off by the restriction means 39 when the magnitude of the vector component is K1, and the turning drive is started. Even if it is stopped, the speed is reduced to the moving speed of the worktable 6 which can be stopped immediately. Therefore, even if the worktable 6 is located in the regulation area S from the shortest distance L3 (when the shortest distance L is 0 when the worktable 6 is located in the regulation boundary line N), the worktable 6 is decelerated to a moving speed at which the worktable 6 can be immediately stopped. It is in the state that it was.
[0045]
When the workbench 6 is located on the regulation boundary line N of the regulation area S, the determination means 38 receives signals from the worktable position calculation means 36 and the regulation area storage means 37, and the worktable 6 is located in the regulation area S. And outputs a signal to the regulating means 39. The restricting means 39 interrupts a signal from the control output means 26 which is output after passing through the deceleration control means 42, prevents a signal output to the turning drive means 29, and stops the movement of the worktable 6. At this time, since the work table 6 has already been decelerated to a moving speed at which the work table 6 can be immediately stopped, the movement of the work table 6 can be immediately stopped, and the work table 6 enters the regulation area S and stops. There is no.
[0046]
Here, when the magnitude K of the vector component calculated by the vector component calculation means 41 is a magnitude between K1 and K2 shown in FIG. 2, the magnitude between K1 and K2 shown in FIG. In the same way, decelerate with the characteristics described above.
[0047]
In this way, the signal output from the control output means 26 to the turning drive means 29 is regulated by the deceleration control means 42 in accordance with a function based on the shortest distance L and the magnitude K of the vector component to decelerate. Therefore, even if the position of the workbench 6 is different due to the different state of the telescopic boom 3, when the worktable 6 is stopped at the same turning speed with the same stopping time, the turning speed vector component in the restricted area S direction is obtained. It is possible to prevent the stop position of the worktable 6 from being different due to the difference in the size K.
[0048]
When the vehicle approaches the restriction region S by a predetermined distance, the deceleration is increased as the vehicle approaches the restriction region S. However, the deceleration is also changed by the magnitude K of the turning speed vector component in the direction of the restriction region S. Therefore, even when the work table 6 is close to the restriction area S, unnecessary deceleration is prevented when the magnitude K of the turning speed vector component is small.
[0049]
For example, as shown in FIG. 2, when the shortest distance L is between L1 and L2, the rotation speed vector component in the direction of the restriction area S does not decelerate when the magnitude K of the component is K2, but the rotation speed vector in the direction of the restriction area S does not decrease. When the magnitude K of the component is K1, deceleration is performed, and unnecessary deceleration is prevented as much as possible.
[0050]
In the above description, only the turning operation has been described. However, it is needless to say that the operation can be similarly performed by a telescopic operation, an undulating operation, a swing operation, and a horizontal operation. Further, also at the time of the composite operation of each operation, the vector component calculation means 41 calculates the vector component of the moving speed vector of the worktable 6 in the plan view by the composite operation in the direction orthogonal to the regulation boundary line N on the regulation area S. Since the calculation can be performed by the vector component calculation means 41, it is needless to say that the same can be implemented.
[0051]
In the above-described embodiment, the operation of the work table 6 is regulated when the work table 6 is located in the regulation area S. Also applicable to An embodiment in this case is shown in FIG. 3 and will be described below. In the embodiment shown in FIG. 3, when the determination means 38 receives signals from the workbench position calculation means 36 and the restriction area storage means 37 and determines that the worktable 6 is located in the restriction area S, the alarm means 46 (means for giving an alarm by a horn or a voice alarm device) is activated, and signals are directly outputted from the deceleration means 42 to the respective drive means 27 to 30 as shown in FIG. This is different from the embodiment. Therefore, the controller B is different in that it does not include the controller A, the releasing means 44, and the regulating means 39.
[0052]
In this case, when the alarm means 46 is activated, each of the operation means 20 to 25 is manually stopped to stop the movement of the work table 6, and the operation of the embodiment described with reference to FIG. Although there is a difference between stopping and manual stopping, a signal output from the control output unit 26 to the turning drive unit 29 is similarly decelerated according to a function based on the shortest distance L and the magnitude K of the vector component. Since the deceleration is controlled by the means 42, even if the position of the worktable 6 is different due to the different state of the telescopic boom 3, the magnitude K of the turning speed vector component in the direction of the restricted area S is maintained. The stop position of the worktable 6 is prevented from being different due to the difference between the two.
[0053]
When the vehicle approaches the restriction region S by a predetermined distance, the deceleration is increased as the vehicle approaches the restriction region S. However, the deceleration is also changed by the magnitude of the turning speed vector component K in the direction of the restriction region S. Therefore, even if the worktable 6 is close to the restriction area S, the deceleration is not increased when the size of the turning speed vector component K is small. Can be prevented as much as possible.
[0054]
Next, in the above-described embodiment, the regulation area S is defined in the regulation area storage means 37 as a regulation area S along the vehicle side edge, and the vicinity of a straight line connecting the jacks 8 projecting from the vehicle side is defined as the regulation boundary line N of the regulation area S. Although the space area separated from the vertical plane by the line N is stored in advance as the restriction area S, a plurality of other restriction areas are stored, and the restriction area selection means 45 is arranged, and the restriction area is determined. As shown in FIGS. 1 and 2, the restriction area selection means 45 may be used to make a selection.
[0055]
Specifically, in addition to the space region separated from the boundary line N as the restriction region S, the vehicle side edge straight line of the vehicle 1 is set as the restriction boundary line N ′ and the space region separated from the vertical plane by the restriction boundary line N ′. Is stored as the restriction area S ′, or four types of restriction areas in which the restriction area S and the restriction area S ′ are stored separately for the left and right are stored, and a target restriction area is selected from these restriction areas by the restriction area selecting unit. The selection may be made at 45. Further, the regulation boundary line along the vehicle side edge may be stored further away from the vicinity of the straight line connecting the jacks 8 and stored. (Refer to FIG. 7) Further, the control areas are respectively stored along the front and rear edges of the vehicle, a plurality of types of control areas are stored, and the target control area is selected by the control area selecting means 45 from these control areas. You may do so.
[0056]
In the above-described embodiment, the regulation area selection means 45 is manually switched. However, for example, a plurality of regulation areas are stored along the vehicle side, and the selection from the plurality of regulation areas is performed by the overhang of the jack 8. The width may be detected, and the restriction area may be automatically selected according to the overhang width of the jack 8.
[0057]
Further, in the above-described embodiment, the work platform position detecting means 31 is constituted by the detectors and the work platform position calculating means 36. However, the position of the vehicle body 1 is stored by GPS or the like, and the position of the work platform 6 with respect to the vehicle body 1 is measured. It may be configured to do so.
[0058]
【The invention's effect】
Since the safety device for an aerial work platform according to the first to third aspects of the present invention is configured and operates as described above, the position of the workbench is different due to the different states of the telescopic boom. Also, it is possible to prevent the stop position of the worktable from being different due to the difference in the magnitude of the vector component in the direction orthogonal to the regulation boundary line in the regulation area in the movement speed vector of the worktable in plan view. To be peeled off.
[0059]
Further, in the case where the deceleration is made closer to the regulation area by a predetermined distance, the deceleration is changed depending on the magnitude of the vector component in the direction of the regulation area, even if the deceleration is increased as approaching the regulation area. Therefore, even if the work table is close to the regulation area, the speed is not decelerated when the magnitude of the vector component is small, and unnecessary deceleration can be prevented as much as possible.
[0060]
According to a second aspect of the present invention, there is provided a safety device for an aerial work vehicle, wherein the position of the aerial work platform is calculated based on each detector and a signal from each of the detectors. In addition, the position of the workbench can be detected using the detector used for other safety devices.
[0061]
The safety device for an aerial work vehicle according to the third aspect of the present invention, in which the restriction area is set and stored in advance along the vehicle side edge or the vehicle front and rear edge, is more dangerous than the vehicle installed at the work site. Restricts the work table from jumping out to enable safe work.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating a safety device for an aerial work vehicle according to the present invention.
FIG. 2 is a graph illustrating deceleration control using a function based on a distance and a vector component.
FIG. 3 is a block diagram of another embodiment illustrating a safety device for an aerial work vehicle according to the present invention.
FIG. 4 is an explanatory diagram illustrating an aerial work vehicle.
FIG. 5 is an explanatory diagram illustrating a state in which a workbench of the aerial work vehicle is positioned in a regulation area by turning drive.
FIG. 6 is an explanatory diagram illustrating a state in which the workbench of the aerial work vehicle is positioned in a regulation area by telescopic drive.
FIG. 7 is an explanatory diagram illustrating a state in which the workbench of the aerial work platform is moved close to the regulation area by turning drive.
[Explanation of symbols]
1 vehicle
3 Telescopic boom
6 Workbench
20 Telescopic operation means
21 Undulating operation means
22 Turning operation means
23 Swing operation means
24 Horizontal operation means
25 Vertical operation means
26 Control output means
27 Telescopic drive means
28 Up-and-down driving means
29 Turning drive means
30 Swing drive means
31 Work platform position detecting means
32 Swing angle detector
33 Elevation angle detector
34 Boom length detector
35 Swing angle detector
36 Work platform position calculation means
37 regulated area storage means
38 Discriminating means
39 Regulatory measures
40 Distance calculation means
41 Vector component calculation means
42 deceleration control means
46 Warning means

Claims (5)

車両上に旋回および起伏可能に伸縮ブームを配置し、伸縮ブームの先端部に首振り可能に作業台を備えた高所作業車に、作業台を移動させる際に操作する各操作手段と、各操作手段からの信号に基づいて作業台を移動させる制御信号を出力する制御出力手段と、制御出力手段からの信号に基づいて作業台を移動させる各駆動手段と、車体に対する作業台の位置を検出する作業台位置検出手段と、車体に対する所定の規制領域を設定記憶した規制領域記憶手段と、作業台位置検出手段と規制領域記憶手段からの信号を受けて作業台が所定の規制領域に位置しているか否かを判別する判別手段と、判別手段により作業台が所定の規制領域に位置していると判別されたときに警報する警報手段または作業台の移動を規制する規制手段とを備えた高所作業車の安全装置であって、
前記作業台位置検出手段と前記規制領域記憶手段からの信号を受け平面視における作業台から規制領域までの最短距離を算出する距離算出手段と、前記作業台位置検出手段と前記規制領域記憶手段および各操作手段からの操作信号を受け平面視における作業台の移動速度ベクトルのうち規制領域にかかる規制境界線に直交する方向のベクトル成分を算出するベクトル成分算出手段と、両算出手段からの信号を受け前記距離と前記ベクトル成分に基づく関数に応じて、前記制御出力手段から各駆動手段に出力される信号を規制して作業台の移動速度を減速させる減速制御手段とを備えたことを特徴とする高所作業車の安全装置。
A telescopic boom is disposed on the vehicle such that the telescopic boom can be turned and raised and lowered, and each operating means operated when moving the work table to an aerial work vehicle equipped with a work table capable of swinging at the tip of the telescopic boom; Control output means for outputting a control signal for moving the workbench based on a signal from the operation means, each drive means for moving the workbench based on a signal from the control output means, and detecting a position of the workbench with respect to the vehicle body A workbench position detecting means, a control area storage means for setting and storing a predetermined control area for the vehicle body, and a workbench positioned in the predetermined control area by receiving signals from the worktable position detection means and the control area storage means. Discriminating means for discriminating whether or not the work table is located in a predetermined regulation area; high place A safety device for work vehicles,
Distance calculating means for receiving a signal from the worktable position detecting means and the control area storage means and calculating the shortest distance from the worktable to the control area in plan view, the worktable position detection means and the control area storage means, A vector component calculation unit that receives an operation signal from each operation unit and calculates a vector component in a direction orthogonal to a regulation boundary line according to a regulation area in a movement speed vector of the work table in a plan view, and a signal from both calculation units. Receiving means for controlling a signal output from the control output means to each driving means to reduce a moving speed of the worktable in accordance with a function based on the distance and the vector component, Safety equipment for aerial work vehicles.
前記減速制御手段の関数は、距離が所定距離以内に達した時に距離と前記ベクトル成分に基づき前記制御出力手段から各駆動手段に出力される信号を規制して作業台の移動速度を減速させるように構成していることを特徴とする請求項1記載の高所作業車の安全装置。The function of the deceleration control means controls the signal output from the control output means to each drive means based on the distance and the vector component when the distance reaches within a predetermined distance to reduce the moving speed of the worktable. The safety device for an aerial work vehicle according to claim 1, wherein the safety device is configured as follows. 前記減速制御手段の関数は、距離が小さいほど、前記ベクトル成分の大きさが大きいほど作業台の移動速度の減速を大きくするよう前記制御出力手段から各駆動手段に出力される信号を規制するよう構成してあることを特徴とする請求項2記載の高所作業車の安全装置。The function of the deceleration control means regulates a signal output from the control output means to each drive means so that the smaller the distance and the greater the magnitude of the vector component, the greater the deceleration of the moving speed of the worktable. The safety device for an aerial work vehicle according to claim 2, wherein the safety device is configured. 前記作業台位置検出手段は、伸縮ブームの旋回角、起伏角、ブーム長さ、作業台の首振り角を検出する各検出器と、各検出器からの信号で作業台位置を算出する作業台位置演算手段とで検出するよう構成したことを特徴とする請求項1乃至請求項3記載の高所作業車の安全装置。The workbench position detecting means includes: a detector for detecting a turning angle, an elevation angle, a boom length, and a swing angle of the workbench of the telescopic boom; 4. The safety device for an aerial work vehicle according to claim 1, wherein the safety device is configured to detect the position by the position calculating means. 前記規制領域記憶手段は、車側縁または車両前後縁に沿って規制領域を予め設定記憶させて構成したことを特徴とする請求項1乃至請求項4記載の高所作業車の安全装置。5. The safety device for an aerial work vehicle according to claim 1, wherein the restriction area storage unit is configured to preset and store the restriction area along a vehicle side edge or a vehicle front and rear edge.
JP2002320321A 2002-11-01 2002-11-01 Safety equipment for aerial work platforms Expired - Lifetime JP4227798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320321A JP4227798B2 (en) 2002-11-01 2002-11-01 Safety equipment for aerial work platforms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320321A JP4227798B2 (en) 2002-11-01 2002-11-01 Safety equipment for aerial work platforms

Publications (2)

Publication Number Publication Date
JP2004155520A true JP2004155520A (en) 2004-06-03
JP4227798B2 JP4227798B2 (en) 2009-02-18

Family

ID=32801264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320321A Expired - Lifetime JP4227798B2 (en) 2002-11-01 2002-11-01 Safety equipment for aerial work platforms

Country Status (1)

Country Link
JP (1) JP4227798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052948A (en) * 2011-09-02 2013-03-21 West Nippon Expressway Co Ltd Safety device for vehicle for high lift work
GB2560935A (en) * 2017-03-28 2018-10-03 Bamford Excavators Ltd Load handling machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016219005B2 (en) * 2015-02-13 2020-07-02 Esco Group Llc Monitoring ground-engaging products for earth working equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052948A (en) * 2011-09-02 2013-03-21 West Nippon Expressway Co Ltd Safety device for vehicle for high lift work
GB2560935A (en) * 2017-03-28 2018-10-03 Bamford Excavators Ltd Load handling machine

Also Published As

Publication number Publication date
JP4227798B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
KR102075808B1 (en) Controller and control method of Forklift
EP1038823B1 (en) Safety system for boom-equipped vehicle
JP6177400B1 (en) Crane truck
JP2013052948A (en) Safety device for vehicle for high lift work
US11027953B2 (en) Method for monitoring the road path of a truck and a floor conveyor
JP2013052949A (en) Safety device for vehicle for high lift work
JP2004155520A (en) Safety device for high altitude working vehicle
JP3776032B2 (en) Boom automatic storage device
JP4452048B2 (en) Boom operation control device for aerial work platforms
JP5719143B2 (en) Aerial work platform
JP7484432B2 (en) Crane travel support device
JPH11301994A (en) Work range regulating device for track traveling work wagon
JP3682191B2 (en) Safety equipment for aerial work platforms
JPS6092145A (en) Device for setting horizontal attitude of vehicle body of working vehicle having outrigger
JP6656976B2 (en) Aerial work vehicle
JP3819218B2 (en) Work table movement control device for work vehicle
JP2004115232A (en) Safety device for high lift work vehicle
US20220106175A1 (en) Operation control device for vehicle with an aerial work platform
JPH0262475B2 (en)
JP2004262629A (en) Operation control device
JP4287700B2 (en) Control equipment for aerial work platforms
JPH1192096A (en) Interference preventive device for high lift work vehicle
JP3872699B2 (en) Safety equipment for aerial work platforms
JPH10167698A (en) Safety device of service car
JP4427275B2 (en) Control equipment for aerial work platforms

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4227798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term