JP2004155241A - Brake control device for vehicle - Google Patents

Brake control device for vehicle Download PDF

Info

Publication number
JP2004155241A
JP2004155241A JP2002320791A JP2002320791A JP2004155241A JP 2004155241 A JP2004155241 A JP 2004155241A JP 2002320791 A JP2002320791 A JP 2002320791A JP 2002320791 A JP2002320791 A JP 2002320791A JP 2004155241 A JP2004155241 A JP 2004155241A
Authority
JP
Japan
Prior art keywords
steering
braking force
braking
collision
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002320791A
Other languages
Japanese (ja)
Other versions
JP4267294B2 (en
Inventor
Hiroaki Fujinami
宏明 藤波
Shirou Kadosaki
司朗 門崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2002320791A priority Critical patent/JP4267294B2/en
Priority to KR10-2003-0062169A priority patent/KR100535193B1/en
Priority to US10/685,397 priority patent/US7260464B2/en
Priority to EP03023835A priority patent/EP1418104B1/en
Priority to CNB2003101047331A priority patent/CN100545015C/en
Publication of JP2004155241A publication Critical patent/JP2004155241A/en
Application granted granted Critical
Publication of JP4267294B2 publication Critical patent/JP4267294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control

Abstract

<P>PROBLEM TO BE SOLVED: To improve a collision avoiding effect as compared with a conventional way, by lowering braking force generated, in a state where the collision avoiding effect is lowered by an increase in braking force. <P>SOLUTION: When a possibility of a collision with a front obstacle is decided, target braking pressure Pbct for preventing a collision higher than that at a normal time is calculated (S20, 30). When steering is not performed by a driver or when steering is performed by the driver but a collision avoiding by steering is impossible (S40, 50), target braking pressure Pbt is set to the target braking pressure Pbct for preventing the collision (S120). When steering is performed by the driver and the collision avoiding by steering is possible but the collision avoiding by braking is impossible (S40 to 60), Low limit braking pressure Pbs based on an absolute value of a steering angle θ is set to lower braking force (S70, 110). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、車輌用の制動制御装置に係り、更に詳細には前方障害物との衝突の可能性があると判断された場合には制動力を増加させる車輌用制動制御装置に係る。
【0002】
【従来の技術】
前方障害物との衝突の可能性があると判断された場合には制動力を増加させる自動車等の車輌の制動制御装置の一つとして、例えば下記の特許文献1に記載されている如く、操舵により前方障害物との衝突を回避できる場合には制動力を発生させず、操舵により前方障害物との衝突を回避できない場合に制動力を発生させるよう構成された制動制御装置が従来より知られている。
【0003】
かかる制動制御装置によれば、操舵により前方障害物との衝突を回避しようとする状況に於いて、車輪の制動力により操舵輪の横力(コーナリングフォース)が低下されることに起因して操舵による衝突回避が効果的に行われなくなることを防止することができる。
【特許文献1】
特開平11−203598号公報
【0004】
【発明が解決しようとする課題】
しかし上述の如き従来の制動制御装置に於いては、操舵により前方障害物との衝突を回避できない状況になった段階で制動力が発生されるので、車輌を十分に減速させることができない場合があり、また操舵による前方障害物との衝突回避効果を向上させることができないという問題がある。
【0005】
本発明は、操舵により前方障害物との衝突を回避できる場合には制動力を発生させず、操舵により前方障害物との衝突を回避できない場合に制動力を発生させるよう構成された従来の制動制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、前方障害物との衝突の可能性があると判断された場合には制動力を増加させるが、制動力の増加により衝突回避効果が低下する状況に於いては発生する制動力を低下させることにより、従来に比して衝突回避効果を向上させることである。
【0006】
【課題を解決するための手段】
上述の主要な課題は、本発明によれば、前方障害物との衝突の可能性があると判断された場合には制動力を増加させる制動力増加手段を有する車輌用制動制御装置に於いて、運転者により操舵が行われているときには、運転者により操舵が行われていないときに比して、発生される制動力が低くなるよう制動力増加手段を制御する制御手段を有することを特徴とする車輌用制動制御装置(請求項1の構成)、又は前方障害物との衝突の可能性があると判断された場合には制動力を増加させる制動力増加手段を有する車輌用制動制御装置に於いて、操舵による衝突回避が可能と判断される場合には、操舵による衝突回避が不可能と判断される場合に比して、発生される制動力が低くなるよう制動力増加手段を制御する制御手段を有することを特徴とする車輌用制動制御装置(請求項2の構成)によって達成される。
【0007】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2の構成に於いて、前記制御手段は操舵による衝突回避が可能と判断される場合には発生される制動力を制限する制限手段を有すると共に、操舵による衝突回避が不可能と判断される場合には前記制限手段による制動力の制限を禁止するよう構成される(請求項3の構成)。
【0008】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至3の構成に於いて、前記制御手段は運転者の操舵操作若しくは車輌の運動状態量より推定される操舵輪の横力の指標値に応じて制動力の低下量を制御するよう構成される(請求項4の構成)。
【0009】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項4の構成に於いて、前記制御手段は前記操舵輪の横力の指標値が高いときにはそれが低いときに比して制動力の低下量を大きくするよう構成される(請求項5の構成)。
【0010】
また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至5の構成に於いて、前記制御手段は非操舵輪の制動力に比して操舵輪の制動力が小さくなるよう制動力増加手段を制御するよう構成される(請求項5の構成)。
【0011】
【発明の作用及び効果】
上記請求項1の構成によれば、制動力増加手段は運転者により操舵が行われているときには、運転者により操舵が行われていないときに比して、発生される制動力が低くなるよう制御されるので、運転者により操舵が行われているときにも制動力が低くされない従来の制動制御装置の場合に比して、制動力により車輪横力が低下されることに起因して操舵による車輌の転向性の低下を抑制することができ、これにより従来に比して操舵による衝突回避効果を向上させることができる。
【0012】
また上記請求項2の構成によれば、制動力増加手段は操舵による衝突回避が可能と判断される場合には、操舵による衝突回避が不可能と判断される場合に比して、発生される制動力が低くなるよう制御されるので、操舵による衝突回避が可能な状況に於いて操舵による衝突回避効果を確実に向上させることができると共に、操舵による衝突回避が不可能な状況に於いて制動力が不必要に低下されることを確実に防止し、これにより制動による衝突回避効果を確実に確保することができる。
【0013】
また上記請求項3の構成によれば、操舵による衝突回避が可能と判断される場合には制限手段により制動力が制限され、操舵による衝突回避が不可能と判断される場合には制限手段による制動力の制限が禁止されるので、操舵による衝突回避が可能な状況に於いて制動力を確実に低下させると共に、操舵による衝突回避が不可能な状況に於いて制動力が不必要に低下されることを確実に防止することができる。
【0014】
また上記請求項4の構成によれば、運転者の操舵操作若しくは車輌の運動状態量より推定される操舵輪の横力の指標値に応じて制動力の低下量が制御されるので、操舵輪の横力が考慮されない場合に比して、制動力の低下量を適正に制御することがで、これにより制動による衝突回避効果を確保しつつ操舵による衝突回避効果を向上させることができる。
【0015】
また上記請求項5の構成によれば、操舵輪の横力の指標値が高いときにはそれが低いときに比して制動力の低下量が大きくされるので、操舵輪の横力が小さい状況に於いては十分な制動力を発生させて制動による衝突回避効果を確実に確保することができ、操舵輪の横力が大きい状況に於いては制動力を十分に低下させて操舵による衝突回避効果を確実に向上させることができる。
【0016】
また上記請求項6の構成によれば、非操舵輪の制動力に比して操舵輪の制動力が小さくなるよう制動力増加手段が制御されるので、非操舵輪の制動力も操舵輪の制動力と同量低下される場合に比して、車輌全体の制動力の低下量を低減することができ、これによりできるだけ制動による衝突回避効果を確保しつつ操舵輪の横力の低下を効果的に防止して操舵による衝突回避効果を確実に向上させることができる。
【0017】
【課題解決手段の好ましい態様】
本発明の一つの好ましい態様によれば、上記請求項1の構成に於いて、操舵による衝突回避が可能と判断される場合に於いて運転者により操舵が行われているときには、運転者により操舵が行われていないときに比して、発生される制動力が低くなるよう制動力増加手段を制御するよう構成される(好ましい態様1)。
【0018】
本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、操舵による衝突回避が可能と判断される場合に於いて運転者により操舵が行われているときには、操舵による衝突回避が不可能と判断される場合に比して、発生される制動力が低くなるよう制動力増加手段を制御するよう構成される(好ましい態様2)。
【0019】
本発明の他の一つの好ましい態様によれば、上記請求項2の構成に於いて、操舵による衝突回避が可能であり且つ制動による衝突回避が不可能であると判断される場合に、操舵による衝突回避が不可能と判断される場合に比して、発生される制動力が低くなるよう制動力増加手段を制御するよう構成される(好ましい態様3)。
【0020】
本発明の他の一つの好ましい態様によれば、上記請求項3の構成に於いて、制限手段は運転者により操舵が行われており且つ操舵による衝突回避が可能と判断される場合には発生される制動力を制限するが、運転者により操舵が行われていない場合又は操舵による衝突回避が不可能と判断される場合には発生される制動力を制限しないよう構成される(好ましい態様4)。
【0021】
本発明の他の一つの好ましい態様によれば、上記好ましい態様4の構成に於いて、制限手段は運転者により操舵が行われており且つ操舵による衝突回避が可能であり且つ制動による衝突回避が不可能であると判断される場合に発生される制動力を制限するよう構成される(好ましい態様5)。
【0022】
本発明の他の一つの好ましい態様によれば、上記請求項4の構成に於いて、運転者の操舵操作若しくは車輌の運動状態量より推定される操舵輪の横力の指標値は操舵角の絶対値、車輌のヨーレートの絶対値、車輌の横加速度の絶対値の何れか又はそれらの任意の組合せであるよう構成される(好ましい態様6)。
【0023】
本発明の他の一つの好ましい態様によれば、上記請求項6の構成に於いて、操舵輪に比して非操舵輪の制動力の低下量を小さくすることにより、非操舵輪の制動力に比して操舵輪の制動力が小さくなるようにするよう構成される(好ましい態様7)。
【0024】
本発明の他の一つの好ましい態様によれば、上記請求項1乃至6の構成に於いて、制御手段は発生される制動力を通常時の制動力以上の範囲内にて低くなるよう制動力増加手段を制御するよう構成される(好ましい態様8)。
【0025】
【発明の実施の形態】
以下に添付の図を参照しつつ、本発明を好ましい実施形態(以下単に実施形態という)について詳細に説明する。
【0026】
図1は本発明による車輌用制動制御装置の一つの好ましい実施形態を示す概略構成図である。
【0027】
図1に於て、10FL及び10FRはそれぞれ車輌12の左右の前輪を示し、10RL及び10RRはそれぞれ車輌の駆動輪である左右の後輪を示している。従動輪であり操舵輪でもある左右の前輪10FL及び10FRは運転者によるステアリングホイール14の転舵に応答して駆動されるラック・アンド・ピニオン式のパワーステアリング装置16によりタイロッド18L 及び18R を介して操舵される。
【0028】
各車輪の制動力は制動装置20の油圧回路22によりホイールシリンダ24FR、24FL、24RR、24RLの制動圧が制御されることによって制御されるようになっている。図には示されていないが、油圧回路22はリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル26の踏み込み操作に応じて駆動されるマスタシリンダ28により制御され、また必要に応じて後に詳細に説明する如く電子制御装置30により制御される。
【0029】
マスタシリンダ28にはマスタシリンダ圧力Pmを検出する圧力センサ32が設けられ、ステアリングコラムにはステアリングシャフト34の回転角を操舵角θとして検出する操舵角センサ36が設けられている。また車輌12には例えばレーザ光や電波を利用して前方障害物までの距離L及び前方障害物に対する自車の相対速度Vreを検出するレーダーセンサ38が設けられている。尚操舵角センサ36は車輌の右旋回方向を正として操舵角を検出する。
【0030】
図示の如く、圧力センサ32により検出されたマスタシリンダ圧力Pmを示す信号、操舵角センサ36により検出された操舵角θを示す信号、レーダーセンサ38により検出された前方障害物までの距離L及び前方障害物に対する相対速度Vreを示す信号は電子制御装置30に入力される。尚図には詳細に示されていないが、電子制御装置30は例えばCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続された一般的な構成のマイクロコンピュータを含んでいる。
【0031】
電子制御装置30は、図2に示されたフローチャートに従い、レーダーセンサ38により検出された前方障害物までの距離L及び前方障害物に対する自車の相対速度Vreに基づき前方障害物との衝突の虞れを判定し、前方障害物との衝突の虞れがあるときには原則として通常時に比してマスタシリンダ圧力Pmに対するホイールシリンダ24FR、24FL、24RR、24RLの制動圧Pbi(i=fl、fr、rl、rr)の比を高くするが、前方障害物との衝突の虞れがある場合であっても、運転者により操舵が行なわれているときには、運転者により操舵が行なわれていないときに比して、マスタシリンダ圧力Pmに対する各車輪の制動圧Pbiの比を低くする。
【0032】
電子制御装置30は、図2に示されたフローチャートに従い、前方障害物との衝突の虞れがあるときには前方障害物までの距離L及び相対速度Vreに基づき操舵による衝突回避可能性及び制動による衝突回避可能性を判定し、その判定結果に応じてマスタシリンダ圧力Pmに対する各車輪の制動圧Pbiの比を可変制御する。
【0033】
次に図2に示されたフローチャートを参照して図示の実施形態に於ける制動圧制御ルーチンについて説明する。尚図2に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。また後述のステップ70〜130は例えば左右前輪について実行された後左右後輪について実行されることにより、左右前輪及び左右後輪について個別に実行される。
【0034】
まずステップ10に於いては圧力センサ32により検出されたマスタシリンダ圧力Pmを示す信号等の読み込みが行われ、ステップ20に於いては前方障害物との衝突の虞れがあるか否かの判別が行われ、否定判別が行われたときにはマスタシリンダ28とホイールシリンダ24FR、24FL、24RR、24RLとの連通を維持したまま図2に示されたルーチンによる制御を一旦終了し、肯定判別が行われたときにはステップ30へ進む。
【0035】
この場合、前方障害物との衝突の虞れがあるか否かの判別は当技術分野に於いて公知の任意の態様にて行われてよく、例えば図5に示されている如く、レーダーセンサ38により自車100の走行路102の前方に障害物104が検出された場合に於いて、前方障害物104に対する自車100の相対速度Vreが大きいほど小さい基準値Loが演算され、前方障害物104までの距離Lが基準値Lo以下であるときに衝突の虞れがあると判定されてよい。
【0036】
尚図5の実線の矢印は操舵による衝突の回避を示し、破線の矢印は制動による衝突の回避を示している。また基準値Loは例えば後述の図6に於ける操舵による衝突回避可能限界及び制動による衝突回避可能限界の距離のうち大きい方の値であってよい。
【0037】
ステップ30に於いてはマスタシリンダ圧力Pmに基づき図3に示されたグラフに対応するマップより衝突防止用目標制動圧Pbctが演算され、ステップ40に於いては例えば操舵角θの微分値θdが演算されると共に、操舵角θの大きさ及び微分値θdの大きさがそれぞれ基準値以上であるか否かの判別により運転者により操舵が行われているか否かの判別が行われ、否定判別が行われたときにはステップ120へ進み、肯定判別が行われたときにはステップ50へ進む。尚運転者により操舵が行われているか否かの判別は車輌のヨーレート若しくは横加速度又はこれらの何れかと操舵角θ若しくは微分値θdとの組合せに基づいて行われてもよい。
【0038】
ステップ50に於いてはレーダーセンサ38により検出された前方障害物との距離L及び相対速度Vreに基づき、操舵による衝突回避が可能であるか否かの判別が行われ、否定判別が行われたときにはそのままステップ120へ進み、肯定判別が行われたときにはステップ60へ進む。例えば図6の実線は操舵による衝突回避可能限界を示しており、距離Lが操舵による衝突回避可能限界よりも大きい場合に操舵による衝突回避が可能であると判定される。
【0039】
ステップ60に於いてはレーダーセンサ38により検出された前方障害物までの距離L及び相対速度Vreに基づき、制動による衝突回避が可能であるか否かの判別が行われ、肯定判別が行われたときにはマスタシリンダ28とホイールシリンダ24FR、24FL、24RR、24RLとの連通を維持したまま図2に示されたルーチンによる制御を一旦終了し、否定判別が行われたときにはステップ70へ進む。例えば図6の破線は制動による衝突回避可能限界を示しており、距離Lが制動による衝突回避可能限界よりも大きい場合に制動による衝突回避が可能であると判定される。
【0040】
ステップ70に於いては操舵角θの絶対値に基づき図4に示されたグラフに対応するマップより操舵角θに基づく制限制動圧Pbsが演算され、ステップ80に於いてはステップ30に於いて演算された目標制動圧Pbctが制限制動圧Pbsよりも大きいか否かの判別が行われ、否定判別が行われたときにはそのままステップ120へ進み、肯定判別が行われたときにはステップ90へ進む。
【0041】
ステップ90に於いては制限制動圧Pbsがマスタシリンダ圧力Pmよりも小さいか否かの判別が行われ、肯定判別が行われたときにはステップ100に於いて目標制動圧Pbtがマスタシリンダ圧力Pmに設定され、否定判別が行われたときにはステップ110に於いて目標制動圧Pbtが制限制動圧Pbsに設定され、しかる後ステップ130へ進む。
【0042】
ステップ120に於いては目標制動圧Pbtがステップ30に於いて演算された衝突防止用目標制動圧Pbctに設定された後ステップ130へ進み、ステップ130に於いては各車輪の制動圧が目標制動圧Pbtになるよう制御され、しかる後ステップ10へ戻る。尚この場合、各車輪の制動圧は増減圧制御弁の開閉履歴より各車輪の制動圧が推定されることにより目標制動圧Pbtになるよう制御されてもよく、また図には示されていないが各車輪のホイールシリンダ24FR、24FL、24RR、24RL内の圧力を制動圧として検出する圧力センサが設けられ、それらの圧力センサの検出値が目標制動圧Pbtになるよう制御されてもよい。
【0043】
かくして図示の実施形態によれば、ステップ20に於いて前方障害物との衝突の虞れがあると判定されると、ステップ30に於いてマスタシリンダ圧力Pmに基づき衝突防止用目標制動圧Pbctが演算され、ステップ40に於いて運転者により操舵が行われているか否かの判別が行われ、運転者により操舵が行われているときにはステップ50及び60に於いてそれぞれ操舵による衝突回避が可能であるか否かの判別及び制動による衝突回避が可能であるか否かの判別が行われる。
【0044】
運転者により操舵が行われていない場合や運転者により操舵が行われているが操舵による衝突回避が不可能である場合には、ステップ120に於いて目標制動圧Pbtが衝突防止用目標制動圧Pbctに設定されるが、運転者により操舵が行われており操舵による衝突回避が可能であるが制動による衝突回避が不可能である場合には、ステップ110に於いて目標制動圧Pbtが原則として衝突防止用目標制動圧Pbctよりも低い制限制動圧Pbsに設定される。
【0045】
従って運転者により操舵が行われており操舵による衝突回避が可能であるが制動による衝突回避が不可能である場合(図6の領域A)には、制動力が衝突防止用目標制動圧Pbctよりも低い制限制動圧Pbsに対応する低い値になるよう制御されるので、運転者により操舵が行われているときにも制動力が低くされない従来の制動制御装置の場合に比して、制動力により車輪横力が低下されることに起因して操舵による車輌の転向性の低下を抑制することができ、これにより従来に比して操舵による衝突回避効果を向上させることができる。
【0046】
特に図示の実施形態によれば、運転者により操舵が行われているが操舵による衝突回避が不可能である場合(図6の領域B)には、目標制動圧Pbtが衝突防止用目標制動圧Pbctに設定されることにより制動力は低下されないので、車輌を効果的に減速させて制動による衝突回避効果を確実に確保し、衝突の影響を最小限に抑えることができる。
【0047】
また図示の実施形態によれば、運転者により操舵が行われており操舵による衝突回避及び制動による衝突回避の何れも可能である場合(図6の領域C)には、衝突の虞れがない場合と同様、各車輪の制動力がマスタシリンダ圧力Pmにより制御され制動力は増加も低下もされないので、車輌の減速度が変化することに起因して運転者が違和感を覚えることを確実に防止することができる。
【0048】
また図示の実施形態によれば、運転者により操舵が行われており操舵による衝突回避が可能であるが制動による衝突回避が不可能である場合(図6の領域A)に制動力が低下されるので、運転者により操舵が行われている場合又は操舵による衝突回避が可能である場合に制動力が低下される構成の場合に比して、制動力が不必要に低下されること及びこれに起因して制動による衝突回避効果が低下することを確実に防止することができる。
【0049】
また図示の実施形態によれば、非操舵輪である左右後輪の制動力の低下量は操舵輪である左右前輪の制動力の低下量よりも小さいので、非操舵輪及び操舵輪の制動力の低下量が同一である場合に比して、車輌全体の制動力をできるだけ確保しつつ操舵による衝突回避効果を向上させることができる。
【0050】
更に図示の実施形態によれば、運転者により操舵が行われており操舵による衝突回避が可能であるが制動による衝突回避が不可能である場合(図6の領域A)に於いて、制限制動圧Pbsがマスタシリンダ圧力Pmよりも低いときには制限制動圧Pbsがマスタシリンダ圧力Pmに設定されるので、車輌の減速度が運転者が希望する減速度よりも小さくなることを確実に防止することができる。
【0051】
以上に於いては本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。
【0052】
例えば上述の実施形態に於いては、運転者の操舵操作若しくは車輌の運動状態量より推定される操舵輪の横力の指標値は操舵角θの絶対値であるが、この指標値は車輌のヨーレートの絶対値又は車輌の横加速度の絶対値であってもよく、また操舵角θの絶対値、車輌のヨーレートの絶対値、車輌の横加速度の絶対値の任意の組合せであってもよい。
【0053】
また上述の実施形態に於いては、運転者により操舵が行われており操舵による衝突回避が可能であるが制動による衝突回避が不可能である場合に制動力が低下されるようになっているが、例えばステップ60が省略され、運転者により操舵が行われており操舵による衝突回避が可能である場合に制動力が低下されるよう修正されてもよく、運転者により操舵が行われている場合又は操舵による衝突回避が可能である場合に制動力が低下されるよう修正されてもよい。
【0054】
また上述の実施形態に於いては、運転者により操舵が行われており操舵による衝突回避が可能であるが制動による衝突回避が不可能である場合に制動力が低下されるようになっているが、制動力が低下される領域は図7に於いて領域A′として示された領域に拡張され、操舵による衝突回避効果が早めに向上されるよう修正されてもよい。
【0055】
また上述の実施形態に於いては、非操舵輪である左右後輪の制動力の低下量は操舵輪である左右前輪の制動力の低下量よりも小さくなるよう構成されているが、非操舵輪及び操舵輪の制動力の低下量は同一であってもよく、また例えば運転者により操舵が行われており操舵による衝突回避が可能であるが制動による衝突回避が不可能である場合に、操舵輪である左右前輪の衝突防止用目標制動圧Pbctが非操舵輪である左右後輪の衝突防止用目標制動圧Pbctよりも低い値に演算されてもよい。
【0056】
また上述の実施形態に於いては、目標制動圧Pbctが制限制動圧Pbsに低下され、制限制動圧Pbsがマスタシリンダ圧力Pmよりも小さいときには目標制動圧Pbctがマスタシリンダ圧力Pmに設定されるようになっているが、目標制動圧Pbctは必要に応じてマスタシリンダ圧力Pmよりも低い値に低下されてもよい。
【0057】
更に上述の実施形態に於いては、前方障害物との衝突の虞れがない場合には、マスタシリンダ28とホイールシリンダ24FR、24FL、24RR、24RLとの連通が維持されるようになっているが、イグニッションスイッチが閉成されるとマスタシリンダ28とホイールシリンダ24FR、24FL、24RR、24RLとの連通が遮断され、前方障害物との衝突の虞れがない場合には、ホイールシリンダ24FR、24FL、24RR、24RL内の圧力がマスタシリンダ圧力Pmに制御されるよう修正されてもよい。
【図面の簡単な説明】
【図1】本発明による車輌用制動制御装置の一つの好ましい実施形態を示す概略構成図である。
【図2】図示の実施形態に於ける制動圧制御ルーチンを示すフローチャートである。
【図3】マスタシリンダ圧力Pmと通常時の制動圧及び衝突防止用制動圧Pbctとの間の関係を示すグラフである。
【図4】操舵角θの絶対値と前輪及び後輪の制限制動圧Pbsとの間の関係を示すグラフである。
【図5】車輌が前方障害物に衝突する虞れがある状況と共に、操舵による衝突回避及び制動による衝突回避を示す説明図である。
【図6】前方障害物に対する相対速度Vreと前方障害物までの距離Lとの間の関係として操舵による衝突回避可能限界、制動による衝突回避可能限界及び図示の実施形態に於ける各制御領域を示すグラフである。
【図7】前方障害物に対する相対速度Vreと前方障害物までの距離Lとの間の関係として操舵による衝突回避可能限界、制動による衝突回避可能限界及び修正例に於ける各制御領域を示すグラフである。
【符号の説明】
14…ステアリングホイール
16…パワーステアリング装置
20…制動装置
28…マスタシリンダ
30…電子制御装置
32…圧力センサ
36…操舵角センサ
38…レーダーセンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vehicle brake control device, and more particularly, to a vehicle brake control device that increases a braking force when it is determined that there is a possibility of collision with a forward obstacle.
[0002]
[Prior art]
One of the braking control devices for a vehicle such as an automobile that increases a braking force when it is determined that there is a possibility of collision with a forward obstacle, for example, as disclosed in Patent Document 1 below, Conventionally, a braking control device configured to generate no braking force when a collision with a forward obstacle can be avoided by generating a braking force when a collision with a forward obstacle cannot be avoided by steering has been known. ing.
[0003]
According to such a braking control device, in a situation where a collision with an obstacle in front is to be avoided by steering, the steering force is reduced because the lateral force (corner force) of the steered wheels is reduced by the braking force of the wheels. Can be prevented from being effectively avoided.
[Patent Document 1]
JP-A-11-203598
[0004]
[Problems to be solved by the invention]
However, in the conventional braking control device as described above, a braking force is generated at a stage where a collision with a front obstacle cannot be avoided by steering, so that the vehicle cannot be sufficiently decelerated. In addition, there is a problem that the effect of avoiding collision with a forward obstacle by steering cannot be improved.
[0005]
The present invention relates to a conventional braking system which does not generate a braking force when a collision with a front obstacle can be avoided by steering, and generates a braking force when a collision with a front obstacle cannot be avoided by steering. The present invention has been made in view of the above-described problems in the control device, and a main problem of the present invention is to increase the braking force when it is determined that there is a possibility of collision with a forward obstacle. In a situation in which the collision avoidance effect is reduced by an increase in the braking force, the collision avoidance effect is improved as compared with the related art by reducing the generated braking force.
[0006]
[Means for Solving the Problems]
According to the present invention, the main problem described above is a vehicle braking control device having a braking force increasing unit that increases a braking force when it is determined that there is a possibility of collision with a forward obstacle. And a control means for controlling the braking force increasing means so that the generated braking force is lower when steering is performed by the driver than when steering is not performed by the driver. Or a vehicle braking control device having braking force increasing means for increasing a braking force when it is determined that there is a possibility of collision with a forward obstacle. In this case, when it is determined that collision avoidance by steering is possible, the braking force increasing means is controlled so that the generated braking force is lower than when it is determined that collision avoidance by steering is impossible. Control means for controlling It is achieved by the vehicular brake control apparatus (the second aspect) to.
[0007]
Also, according to the present invention, in order to effectively achieve the above-mentioned main problem, in the configuration of the second aspect, the control means is generated when it is determined that collision avoidance by steering is possible. In addition to the limiting means for limiting the braking force, when it is determined that collision avoidance by steering is impossible, the limitation of the braking force by the limiting means is prohibited (the configuration of claim 3).
[0008]
Further, according to the present invention, in order to effectively achieve the above-mentioned main object, in the above-described first to third aspects, the control means is estimated from a steering operation of the driver or a motion state amount of the vehicle. The amount of decrease in the braking force is controlled in accordance with the index value of the lateral force of the steered wheel (configuration of claim 4).
[0009]
According to the present invention, in order to effectively achieve the above-mentioned main object, in the configuration of the above-described claim 4, the control means may be configured to perform a control when the index value of the lateral force of the steered wheel is low. The configuration is such that the amount of reduction in the braking force is increased as compared to the case of (5).
[0010]
Further, according to the present invention, in order to effectively achieve the above-described main object, in the above-described first to fifth aspects, the control means controls the steering wheel in comparison with the braking force of the non-steered wheel. It is configured to control the braking force increasing means so as to reduce the power (the configuration of claim 5).
[0011]
Function and effect of the present invention
According to the configuration of the first aspect, the braking force increasing means causes the generated braking force to be lower when the steering is being performed by the driver than when the steering is not being performed by the driver. As compared with the conventional braking control device in which the braking force is not reduced even when the steering is performed by the driver, the steering force is reduced due to the reduction of the wheel lateral force due to the braking force. Therefore, it is possible to suppress a decrease in turning performance of the vehicle due to the above, and thereby it is possible to improve a collision avoidance effect by steering compared to the related art.
[0012]
Further, according to the configuration of the second aspect, the braking force increasing means is generated when it is determined that collision avoidance by steering is possible, compared to when it is determined that collision avoidance by steering is impossible. Since the braking force is controlled to be low, it is possible to reliably improve the collision avoidance effect by the steering in a situation where the collision can be avoided, and to control the collision in a situation where the collision cannot be avoided by the steering. It is possible to reliably prevent the power from being unnecessarily reduced, and to thereby reliably ensure the collision avoidance effect by the braking.
[0013]
Further, according to the configuration of the third aspect, when it is determined that collision avoidance by steering is possible, the braking force is limited by the limiting means, and when it is determined that collision avoidance by steering is not possible, the limiting means is used. Since the restriction of the braking force is prohibited, the braking force is surely reduced in a situation where the collision can be avoided by steering, and the braking force is unnecessarily reduced in the situation where the collision cannot be avoided by steering. Can be reliably prevented.
[0014]
According to the configuration of the fourth aspect, the amount of decrease in the braking force is controlled in accordance with the index value of the lateral force of the steered wheel estimated from the driver's steering operation or the amount of motion of the vehicle. As compared with the case where the lateral force is not considered, the reduction amount of the braking force is appropriately controlled, whereby the collision avoidance effect by the steering can be improved while the collision avoidance effect by the braking can be secured.
[0015]
According to the configuration of the fifth aspect, when the index value of the lateral force of the steered wheels is high, the amount of decrease in the braking force is increased as compared with when the index value is low, so that the lateral force of the steered wheels is small. In this situation, sufficient braking force is generated to ensure the collision avoidance effect of braking, and in situations where the lateral force of the steered wheels is large, the braking force is sufficiently reduced to reduce the collision avoidance effect of steering. Can be reliably improved.
[0016]
Further, according to the configuration of claim 6, since the braking force increasing means is controlled so that the braking force of the steered wheels becomes smaller than the braking force of the non-steered wheels, the braking force of the non-steered wheels is also reduced. Compared to the case where the braking force is reduced by the same amount, the amount of reduction in the braking force of the entire vehicle can be reduced, thereby reducing the lateral force of the steered wheels while ensuring the collision avoidance effect by braking as much as possible. Thus, the collision avoidance effect of the steering can be reliably improved.
[0017]
Preferred embodiments of the means for solving the problems
According to one preferred aspect of the present invention, in the configuration of claim 1, when it is determined that collision avoidance by steering is possible, when steering is performed by the driver, steering by the driver is performed. It is configured to control the braking force increasing means so that the generated braking force is lower than when no is performed (preferred embodiment 1).
[0018]
According to another preferred aspect of the present invention, in the configuration of the second aspect, when it is determined that collision avoidance by steering is possible, when steering is performed by the driver, steering by steering is performed. The braking force increasing means is configured to control the braking force increasing means so that the generated braking force is lower than when it is determined that collision avoidance is impossible (preferred mode 2).
[0019]
According to another preferred embodiment of the present invention, in the configuration of claim 2, when it is determined that collision avoidance by steering is possible and collision avoidance by braking is impossible, The braking force increasing means is configured to control the braking force increasing unit so that the generated braking force is lower than when it is determined that collision avoidance is impossible (preferred mode 3).
[0020]
According to another preferred aspect of the present invention, in the configuration of the third aspect, the restricting means is generated when it is determined that the driver is performing steering and collision avoidance by steering is possible. However, when the driver does not perform steering or when it is determined that collision avoidance by steering cannot be performed, the generated braking force is not limited (preferred mode 4). ).
[0021]
According to another preferred embodiment of the present invention, in the configuration of the above-mentioned preferred embodiment 4, the limiting means is being steered by a driver, is capable of avoiding collision by steering, and is capable of avoiding collision by braking. It is configured to limit the braking force generated when it is determined that it is impossible (preferred mode 5).
[0022]
According to another preferred aspect of the present invention, in the configuration according to the fourth aspect, the index value of the lateral force of the steered wheels estimated from the steering operation of the driver or the motion state amount of the vehicle is the steering angle. The absolute value, the absolute value of the yaw rate of the vehicle, the absolute value of the lateral acceleration of the vehicle, or any combination thereof are configured (preferred mode 6).
[0023]
According to another preferred aspect of the present invention, in the configuration of claim 6, the amount of reduction in the braking force of the non-steered wheels is made smaller than that of the steered wheels, so that the braking force of the non-steered wheels is reduced. (Preferable mode 7).
[0024]
According to another preferred embodiment of the present invention, in the above-mentioned configuration, the control means may reduce the generated braking force within a range equal to or higher than the normal braking force. It is configured to control the increasing means (Preferred Mode 8).
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments (hereinafter, simply referred to as embodiments) of the present invention will be described in detail with reference to the accompanying drawings.
[0026]
FIG. 1 is a schematic configuration diagram showing one preferred embodiment of a vehicle braking control device according to the present invention.
[0027]
In FIG. 1, 10FL and 10FR denote left and right front wheels of the vehicle 12, respectively, and 10RL and 10RR denote left and right rear wheels that are driving wheels of the vehicle, respectively. The left and right front wheels 10FL and 10FR, which are both driven wheels and steering wheels, are driven by a rack-and-pinion type power steering device 16 driven in response to the steering of the steering wheel 14 by the driver via tie rods 18L and 18R. Steered.
[0028]
The braking force of each wheel is controlled by controlling the braking pressure of the wheel cylinders 24FR, 24FL, 24RR, 24RL by the hydraulic circuit 22 of the braking device 20. Although not shown in the drawing, the hydraulic circuit 22 includes a reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven in accordance with the driver's depression operation of the brake pedal 26. It is controlled by a master cylinder 28 and, if necessary, by an electronic control unit 30 as will be described in detail later.
[0029]
The master cylinder 28 is provided with a pressure sensor 32 for detecting a master cylinder pressure Pm, and the steering column is provided with a steering angle sensor 36 for detecting a rotation angle of a steering shaft 34 as a steering angle θ. Further, the vehicle 12 is provided with a radar sensor 38 for detecting a distance L to a forward obstacle and a relative speed Vre of the own vehicle with respect to the forward obstacle using, for example, laser light or radio waves. The steering angle sensor 36 detects the steering angle with the right turning direction of the vehicle as positive.
[0030]
As shown, a signal indicating the master cylinder pressure Pm detected by the pressure sensor 32, a signal indicating the steering angle θ detected by the steering angle sensor 36, the distance L to the front obstacle detected by the radar sensor 38, and the forward A signal indicating the relative speed Vre with respect to the obstacle is input to the electronic control device 30. Although not shown in detail in the figure, the electronic control device 30 has, for example, a general configuration in which a CPU, a ROM, a RAM, and an input / output port device are connected to each other by a bidirectional common bus. Includes microcomputer.
[0031]
According to the flowchart shown in FIG. 2, the electronic control unit 30 may cause a collision with the front obstacle based on the distance L to the front obstacle detected by the radar sensor 38 and the relative speed Vre of the own vehicle with respect to the front obstacle. When there is a risk of collision with a forward obstacle, the braking pressures Pbi (i = fl, fr, rl) of the wheel cylinders 24FR, 24FL, 24RR, 24RL with respect to the master cylinder pressure Pm are in principle compared to normal times. , Rr) is increased, but even when there is a risk of collision with a forward obstacle, when the steering is being performed by the driver, the ratio is higher when the steering is not being performed by the driver. Then, the ratio of the braking pressure Pbi of each wheel to the master cylinder pressure Pm is reduced.
[0032]
According to the flowchart shown in FIG. 2, when there is a possibility of collision with a forward obstacle, the electronic control unit 30 can perform collision avoidance by steering and collision by braking based on the distance L to the forward obstacle and the relative speed Vre. The avoidability is determined, and the ratio of the braking pressure Pbi of each wheel to the master cylinder pressure Pm is variably controlled according to the determination result.
[0033]
Next, a braking pressure control routine in the illustrated embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 2 is started by closing an ignition switch (not shown), and is repeatedly executed at predetermined time intervals. Steps 70 to 130 described later are executed individually for the left and right front wheels and the left and right rear wheels, for example, by being executed for the rear left and right rear wheels executed for the left and right front wheels.
[0034]
First, in step 10, a signal indicating the master cylinder pressure Pm detected by the pressure sensor 32 is read, and in step 20, it is determined whether there is a possibility of collision with a forward obstacle. When a negative determination is made, the control by the routine shown in FIG. 2 is temporarily terminated while maintaining the communication between the master cylinder 28 and the wheel cylinders 24FR, 24FL, 24RR, 24RL, and an affirmative determination is made. If so, the process proceeds to step 30.
[0035]
In this case, the determination as to whether or not there is a possibility of collision with a forward obstacle may be performed in any manner known in the art. For example, as shown in FIG. In a case where the obstacle 104 is detected ahead of the traveling path 102 of the own vehicle 100 by 38, a smaller reference value Lo is calculated as the relative speed Vre of the own vehicle 100 with respect to the forward obstacle 104 is increased, and the forward obstacle is calculated. When the distance L to 104 is equal to or less than the reference value Lo, it may be determined that there is a risk of collision.
[0036]
Note that the solid arrow in FIG. 5 indicates that collision due to steering is avoided, and the broken arrow indicates that collision due to braking is avoided. The reference value Lo may be, for example, the larger of the distances of the collision avoidable limit by steering and the collision avoidable limit by braking in FIG. 6 described later.
[0037]
In step 30, the target braking pressure Pbct for collision prevention is calculated from the map corresponding to the graph shown in FIG. 3 based on the master cylinder pressure Pm. In step 40, for example, the differential value θd of the steering angle θ is calculated. In addition to the calculation, it is determined whether or not the steering is performed by the driver by determining whether or not the magnitude of the steering angle θ and the magnitude of the differential value θd are each equal to or larger than the reference value. Is performed, the process proceeds to step 120, and if the affirmative determination is made, the process proceeds to step 50. The determination as to whether the driver is steering may be made based on the yaw rate or lateral acceleration of the vehicle or a combination of any of these and the steering angle θ or the differential value θd.
[0038]
In step 50, it is determined whether or not collision avoidance by steering is possible based on the distance L to the obstacle ahead and the relative speed Vre detected by the radar sensor 38, and a negative determination is made. In some cases, the process directly proceeds to step 120, and when an affirmative determination is made, the process proceeds to step 60. For example, the solid line in FIG. 6 indicates the limit of collision avoidance by steering. When the distance L is greater than the limit of collision avoidance by steering, it is determined that collision avoidance by steering is possible.
[0039]
In step 60, it is determined whether collision avoidance by braking is possible based on the distance L to the obstacle ahead and the relative speed Vre detected by the radar sensor 38, and an affirmative determination is made. At this time, while the communication between the master cylinder 28 and the wheel cylinders 24FR, 24FL, 24RR, 24RL is maintained, the control according to the routine shown in FIG. 2 is temporarily terminated, and if a negative determination is made, the routine proceeds to step 70. For example, the broken line in FIG. 6 indicates the limit of collision avoidance by braking. When the distance L is greater than the limit of collision avoidance by braking, it is determined that collision avoidance by braking is possible.
[0040]
In step 70, the limit braking pressure Pbs based on the steering angle θ is calculated from the map corresponding to the graph shown in FIG. 4 based on the absolute value of the steering angle θ, and in step 80 in step 30 It is determined whether or not the calculated target braking pressure Pbct is greater than the limit braking pressure Pbs. If a negative determination is made, the process proceeds directly to step 120, and if an affirmative determination is made, the process proceeds to step 90.
[0041]
In step 90, it is determined whether or not the limit braking pressure Pbs is smaller than the master cylinder pressure Pm. If the determination is affirmative, in step 100, the target braking pressure Pbt is set to the master cylinder pressure Pm. When a negative determination is made, the target braking pressure Pbt is set to the limit braking pressure Pbs in step 110, and thereafter, the routine proceeds to step 130.
[0042]
In step 120, after the target braking pressure Pbt is set to the collision prevention target braking pressure Pbct calculated in step 30, the routine proceeds to step 130. In step 130, the braking pressure of each wheel is reduced to the target braking pressure. The pressure is controlled to be Pbt, and thereafter, the process returns to step S10. In this case, the braking pressure of each wheel may be controlled to reach the target braking pressure Pbt by estimating the braking pressure of each wheel from the opening / closing history of the pressure increase / decrease control valve, and is not shown in the figure. May be provided with pressure sensors that detect the pressures in the wheel cylinders 24FR, 24FL, 24RR, 24RL of the respective wheels as braking pressures, and control may be performed so that the detection values of these pressure sensors become the target braking pressure Pbt.
[0043]
Thus, according to the illustrated embodiment, if it is determined in step 20 that there is a possibility of collision with a forward obstacle, in step 30 the collision prevention target braking pressure Pbct is determined based on the master cylinder pressure Pm. In step 40, it is determined whether or not steering is being performed by the driver. When steering is being performed by the driver, collision avoidance by steering can be performed in steps 50 and 60, respectively. It is determined whether or not there is a vehicle and whether or not collision avoidance by braking is possible.
[0044]
If steering is not performed by the driver, or if steering is performed by the driver but collision avoidance by steering cannot be performed, in step 120, the target braking pressure Pbt is set to the target braking pressure for collision prevention. Although Pbct is set, when steering is performed by the driver and collision avoidance by steering is possible but collision avoidance by braking is not possible, in step 110, the target braking pressure Pbt is set in principle. The limit braking pressure Pbs is set lower than the collision prevention target braking pressure Pbct.
[0045]
Therefore, when steering is performed by the driver and collision avoidance by steering is possible but collision avoidance by braking is not possible (region A in FIG. 6), the braking force is higher than the target brake pressure Pbct for collision prevention. Is also controlled to a low value corresponding to the low limiting braking pressure Pbs, so that the braking force is lower than in the case of the conventional braking control device in which the braking force is not reduced even when the steering is performed by the driver. Accordingly, it is possible to suppress a decrease in turning performance of the vehicle due to steering due to a decrease in the lateral force of the wheel, and thereby it is possible to improve the collision avoidance effect by steering compared to the related art.
[0046]
In particular, according to the illustrated embodiment, when steering is performed by the driver but collision avoidance by steering is impossible (region B in FIG. 6), the target braking pressure Pbt is set to the target braking pressure for collision prevention. Since the braking force is not reduced by setting to Pbct, the vehicle can be effectively decelerated, the collision avoidance effect by the braking can be reliably ensured, and the influence of the collision can be minimized.
[0047]
Further, according to the illustrated embodiment, when steering is performed by the driver and collision avoidance by steering and collision avoidance by braking are both possible (region C in FIG. 6), there is no fear of collision. As in the case described above, the braking force of each wheel is controlled by the master cylinder pressure Pm, and the braking force is not increased or decreased, so that it is possible to surely prevent the driver from feeling uncomfortable due to the change in the deceleration of the vehicle. can do.
[0048]
Further, according to the illustrated embodiment, when the driver is performing steering and collision avoidance by steering is possible but collision avoidance by braking is not possible (region A in FIG. 6), the braking force is reduced. Therefore, the braking force is unnecessarily reduced as compared with the case where the braking force is reduced when steering is performed by the driver or when collision avoidance by steering is possible. Therefore, it is possible to reliably prevent the collision avoidance effect due to braking from being reduced.
[0049]
Further, according to the illustrated embodiment, the amount of reduction in the braking force of the left and right rear wheels that are the non-steered wheels is smaller than the amount of reduction in the braking force of the left and right front wheels that are the steered wheels. As compared with the case where the reduction amount is the same, the collision avoidance effect by the steering can be improved while securing the braking force of the entire vehicle as much as possible.
[0050]
Further, according to the illustrated embodiment, in the case where steering is performed by the driver and collision avoidance by steering is possible but collision avoidance by braking is not possible (region A in FIG. 6), limited braking is performed. When the pressure Pbs is lower than the master cylinder pressure Pm, the limit braking pressure Pbs is set to the master cylinder pressure Pm. Therefore, it is possible to reliably prevent the deceleration of the vehicle from becoming smaller than the deceleration desired by the driver. it can.
[0051]
In the above, the present invention has been described in detail with respect to a specific embodiment, but the present invention is not limited to the above embodiment, and various other embodiments are possible within the scope of the present invention. Some will be apparent to those skilled in the art.
[0052]
For example, in the above-described embodiment, the index value of the lateral force of the steered wheels estimated from the steering operation of the driver or the motion state amount of the vehicle is the absolute value of the steering angle θ. It may be the absolute value of the yaw rate or the absolute value of the lateral acceleration of the vehicle, or may be any combination of the absolute value of the steering angle θ, the absolute value of the yaw rate of the vehicle, and the absolute value of the lateral acceleration of the vehicle.
[0053]
Further, in the above-described embodiment, the braking force is reduced when steering is performed by the driver and collision avoidance by steering is possible, but collision avoidance by braking is not possible. However, for example, step 60 may be omitted and the braking force may be modified to be reduced when steering is performed by the driver and collision avoidance by steering is possible, and steering is performed by the driver. In such a case, or when collision avoidance by steering is possible, the braking force may be modified to be reduced.
[0054]
Further, in the above-described embodiment, the braking force is reduced when steering is performed by the driver and collision avoidance by steering is possible, but collision avoidance by braking is not possible. However, the region where the braking force is reduced may be extended to the region shown as region A ′ in FIG. 7 and modified so that the collision avoidance effect of the steering is improved earlier.
[0055]
Further, in the above-described embodiment, the braking force of the left and right rear wheels that are the non-steered wheels is configured to be smaller than the braking force of the left and right front wheels that are the steered wheels. The amount of reduction in the braking force of the wheel and the steered wheel may be the same, and for example, when steering is performed by the driver and collision avoidance by steering is possible, but collision avoidance by braking is impossible, The target braking pressure Pbct for preventing collision of the left and right front wheels that are the steered wheels may be calculated to a value lower than the target braking pressure Pbct for preventing collision of the left and right rear wheels that are the non-steered wheels.
[0056]
In the above-described embodiment, the target brake pressure Pbct is reduced to the limit brake pressure Pbs. When the limit brake pressure Pbs is smaller than the master cylinder pressure Pm, the target brake pressure Pbct is set to the master cylinder pressure Pm. However, the target braking pressure Pbct may be reduced to a value lower than the master cylinder pressure Pm if necessary.
[0057]
Further, in the above-described embodiment, when there is no possibility of collision with a front obstacle, the communication between the master cylinder 28 and the wheel cylinders 24FR, 24FL, 24RR, 24RL is maintained. However, when the ignition switch is closed, the communication between the master cylinder 28 and the wheel cylinders 24FR, 24FL, 24RR, 24RL is interrupted, and when there is no possibility of collision with a forward obstacle, the wheel cylinders 24FR, 24FL , 24RR, 24RL may be modified to be controlled to the master cylinder pressure Pm.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing one preferred embodiment of a vehicle brake control device according to the present invention.
FIG. 2 is a flowchart illustrating a braking pressure control routine in the illustrated embodiment.
FIG. 3 is a graph showing a relationship between a master cylinder pressure Pm and a normal braking pressure and a collision preventing braking pressure Pbct.
FIG. 4 is a graph showing a relationship between an absolute value of a steering angle θ and a limit braking pressure Pbs for front wheels and rear wheels.
FIG. 5 is an explanatory diagram showing a situation in which the vehicle may collide with an obstacle ahead, and a collision avoidance by steering and a collision avoidance by braking.
FIG. 6 shows a relationship between a relative speed Vre with respect to a front obstacle and a distance L to the front obstacle, a collision avoidable limit by steering, a collision avoidable limit by braking, and each control area in the illustrated embodiment. It is a graph shown.
FIG. 7 is a graph showing a collision avoidable limit by steering, a collision avoidable limit by braking, and each control region in a modified example as a relationship between a relative speed Vre to a forward obstacle and a distance L to the forward obstacle. It is.
[Explanation of symbols]
14. Steering wheel
16 Power steering device
20 ... Brake device
28 ... Master cylinder
30 Electronic control unit
32 ... Pressure sensor
36 ... Steering angle sensor
38 ... Radar sensor

Claims (6)

前方障害物との衝突の可能性があると判断された場合には制動力を増加させる制動力増加手段を有する車輌用制動制御装置に於いて、運転者により操舵が行われているときには、運転者により操舵が行われていないときに比して、発生される制動力が低くなるよう制動力増加手段を制御する制御手段を有することを特徴とする車輌用制動制御装置。When it is determined that there is a possibility of collision with a forward obstacle, in a vehicle braking control device having a braking force increasing means for increasing a braking force, when steering is performed by a driver, A braking control device for a vehicle, comprising: a control unit that controls a braking force increasing unit such that a generated braking force is lower than when steering is not performed by a driver. 前方障害物との衝突の可能性があると判断された場合には制動力を増加させる制動力増加手段を有する車輌用制動制御装置に於いて、操舵による衝突回避が可能と判断される場合には、操舵による衝突回避が不可能と判断される場合に比して、発生される制動力が低くなるよう制動力増加手段を制御する制御手段を有することを特徴とする車輌用制動制御装置。When it is determined that there is a possibility of collision with a forward obstacle, in a vehicle braking control device having a braking force increasing means for increasing a braking force, when it is determined that collision avoidance by steering is possible. Is a vehicle braking control device comprising: a control unit that controls a braking force increasing unit such that a generated braking force is lower than a case where it is determined that collision avoidance by steering is impossible. 前記制御手段は操舵による衝突回避が可能と判断される場合には発生される制動力を制限する制限手段を有すると共に、操舵による衝突回避が不可能と判断される場合には前記制限手段による制動力の制限を禁止することを特徴とする請求項2に記載の車輌用制動制御装置。The control means has limiting means for limiting the braking force generated when it is determined that collision avoidance by steering is possible. When the collision avoidance by steering is determined to be impossible, the control means controls the braking force. The vehicle braking control device according to claim 2, wherein restriction of power is prohibited. 前記制御手段は運転者の操舵操作若しくは車輌の運動状態量より推定される操舵輪の横力の指標値に応じて制動力の低下量を制御することを特徴とする請求項1乃至3に記載の車輌用制動制御装置。4. The control device according to claim 1, wherein the control unit controls a reduction amount of a braking force according to an index value of a lateral force of a steered wheel estimated from a driver's steering operation or a vehicle motion state amount. Vehicle braking control device. 前記制御手段は前記操舵輪の横力の指標値が高いときにはそれが低いときに比して制動力の低下量を大きくすることを特徴とする請求項4に記載の車輌用制動制御装置。5. The vehicle brake control device according to claim 4, wherein the control means increases the amount of reduction in the braking force when the index value of the lateral force of the steered wheels is high as compared to when the index value is low. 前記制御手段は非操舵輪の制動力に比して操舵輪の制動力が小さくなるよう制動力増加手段を制御することを特徴とする請求項1乃至5に記載の車輌用制動制御装置。The vehicle braking control device according to claim 1, wherein the control unit controls the braking force increasing unit such that a braking force of the steered wheels becomes smaller than a braking force of the non-steered wheels. 7.
JP2002320791A 2002-11-05 2002-11-05 Brake control device for vehicle Expired - Fee Related JP4267294B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002320791A JP4267294B2 (en) 2002-11-05 2002-11-05 Brake control device for vehicle
KR10-2003-0062169A KR100535193B1 (en) 2002-11-05 2003-09-05 Vehicular brake control apparatus
US10/685,397 US7260464B2 (en) 2002-11-05 2003-10-16 Vehicle braking control device
EP03023835A EP1418104B1 (en) 2002-11-05 2003-10-20 Vehicle braking control device
CNB2003101047331A CN100545015C (en) 2002-11-05 2003-11-04 Vehicle brake control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320791A JP4267294B2 (en) 2002-11-05 2002-11-05 Brake control device for vehicle

Publications (2)

Publication Number Publication Date
JP2004155241A true JP2004155241A (en) 2004-06-03
JP4267294B2 JP4267294B2 (en) 2009-05-27

Family

ID=32105412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320791A Expired - Fee Related JP4267294B2 (en) 2002-11-05 2002-11-05 Brake control device for vehicle

Country Status (5)

Country Link
US (1) US7260464B2 (en)
EP (1) EP1418104B1 (en)
JP (1) JP4267294B2 (en)
KR (1) KR100535193B1 (en)
CN (1) CN100545015C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331458A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Avoidance control device, vehicle having the avoidance control device, and avoidance control method
JP2008018923A (en) * 2006-06-16 2008-01-31 Nissan Motor Co Ltd Brake control device for vehicle, brake control method for vehicle
JP2010030444A (en) * 2008-07-29 2010-02-12 Nissan Motor Co Ltd Side obstacle avoiding device and side obstacle avoiding method
JP2010036857A (en) * 2008-08-08 2010-02-18 Nissan Motor Co Ltd Traveling assistant device for vehicle and traveling assistant method for vehicle
US8200419B2 (en) 2006-08-15 2012-06-12 Toyota Jidosha Kabushiki Kaisha Braking control system and braking control method
JP2012183867A (en) * 2011-03-03 2012-09-27 Fuji Heavy Ind Ltd Vehicle driving support apparatus
DE112010005601T5 (en) 2010-05-27 2013-03-28 Toyota Jidosha K.K. Bremskraftsteuerungsvorrrichtung for a vehicle
CN103364776A (en) * 2012-03-29 2013-10-23 富士通天株式会社 Radar device and method of processing signal
WO2014054937A1 (en) * 2012-10-05 2014-04-10 Chong Woi Joon An automatic vehicle braking system and a control method thereof
JP2016124311A (en) * 2014-12-26 2016-07-11 マツダ株式会社 Control system of vehicle
US10035507B2 (en) 2016-04-26 2018-07-31 International Business Machines Corporation Vehicle collision avoidance

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235414A1 (en) * 2002-08-02 2004-02-12 Robert Bosch Gmbh Method and device for determining the impending inevitable collision
DE102005003274A1 (en) * 2005-01-25 2006-07-27 Robert Bosch Gmbh Collision occurrence preventing or reducing method for use in vehicle, involves identifying obstacle using field sensor, determining data of obstacle, and determining vehicle deceleration based on the data of obstacle and data of vehicle
DE102005016009A1 (en) * 2005-04-07 2006-10-12 Robert Bosch Gmbh Method and device for stabilizing a vehicle after a collision
JP2007145152A (en) * 2005-11-28 2007-06-14 Mitsubishi Electric Corp Vehicular automatic braking device
JP4169065B2 (en) * 2006-02-13 2008-10-22 株式会社デンソー Vehicle control device
US20070213911A1 (en) * 2006-03-09 2007-09-13 Ford Global Technologies, Llc Trailbraking
DE102007013303A1 (en) * 2007-03-16 2008-09-18 Robert Bosch Gmbh Method for calculating a collision avoiding trajectory for a driving maneuver of a vehicle
DE102007019991A1 (en) * 2007-04-27 2008-10-30 Robert Bosch Gmbh Avoiding a rear-end collision during an automatic braking intervention of a vehicle safety system
DE102011106520A1 (en) * 2011-06-15 2011-12-15 Daimler Ag A method for preventing a collision of a vehicle and driver assistance system for a vehicle
CN103085789B (en) * 2011-10-27 2015-07-08 现代摩比斯株式会社 Control method of electronic parking brake system
DE102012002695A1 (en) * 2012-02-14 2013-08-14 Wabco Gmbh Method for determining an emergency braking situation of a vehicle
JP6156364B2 (en) 2012-04-02 2017-07-05 トヨタ自動車株式会社 Collision avoidance support device
DE112013006126A5 (en) * 2012-12-20 2015-09-10 Continental Teves Ag & Co. Ohg Method and device for automated braking and steering of a vehicle
DE102013204893A1 (en) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Method and system for avoiding a collision in connection with vehicles
DE112013007255T5 (en) * 2013-07-19 2016-03-31 Honda Motor Co., Ltd. Vehicle Ride Safety Device, Vehicle Ride Safety Procedure and Vehicle Ride Safety Program
JP6287244B2 (en) * 2014-01-20 2018-03-07 トヨタ自動車株式会社 Brake control device for vehicle
US9542848B2 (en) * 2014-04-08 2017-01-10 Continental Automotive Systems, Inc. Adjustment of vehicle alerts based on response time learning
JP6198181B2 (en) * 2015-11-06 2017-09-20 マツダ株式会社 Vehicle behavior control device
JP6194942B2 (en) * 2015-11-20 2017-09-13 マツダ株式会社 Engine control device
JP6461066B2 (en) * 2016-10-13 2019-01-30 矢崎総業株式会社 Production lighting device for vehicle
CN112026758B (en) * 2017-09-30 2021-06-15 上海蔚来汽车有限公司 Front collision avoidance method and system for vehicle
US20230030815A1 (en) * 2021-07-29 2023-02-02 Argo AI, LLC Complementary control system for an autonomous vehicle

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0614400B2 (en) 1983-10-26 1994-02-23 本田技研工業株式会社 Inter-vehicle distance warning device
JPH0613287B2 (en) 1984-05-21 1994-02-23 日産自動車株式会社 Vehicle braking force control device
JP2715528B2 (en) 1989-03-17 1998-02-18 トヨタ自動車株式会社 Vehicle safety control device
JP3104463B2 (en) 1993-04-08 2000-10-30 トヨタ自動車株式会社 Rear-end collision prevention device for vehicles
JP3400497B2 (en) 1993-07-09 2003-04-28 マツダ株式会社 Anti-skid brake device for vehicle
JP3975510B2 (en) 1996-07-15 2007-09-12 株式会社デンソー Brake device for vehicle
JPH10138894A (en) 1996-11-12 1998-05-26 Toyota Motor Corp Automatic brake control device for vehicle
JPH10297452A (en) 1997-04-25 1998-11-10 Denso Corp Brake control device
JP4011711B2 (en) 1998-01-13 2007-11-21 本田技研工業株式会社 Vehicle travel safety device
JP3853991B2 (en) 1998-11-04 2006-12-06 本田技研工業株式会社 Vehicle travel safety device
JP4647055B2 (en) * 2000-03-03 2011-03-09 富士重工業株式会社 Vehicle motion control device
JP3859939B2 (en) 2000-06-21 2006-12-20 本田技研工業株式会社 Vehicle travel safety device
JP3838005B2 (en) 2000-08-18 2006-10-25 日産自動車株式会社 Vehicle collision prevention device
JP3800007B2 (en) * 2001-01-09 2006-07-19 日産自動車株式会社 Braking control device
JP4230124B2 (en) 2001-04-20 2009-02-25 富士重工業株式会社 Vehicle motion control device
JP3642308B2 (en) * 2001-10-04 2005-04-27 日産自動車株式会社 Brake control device for vehicle

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007331458A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Avoidance control device, vehicle having the avoidance control device, and avoidance control method
US8090537B2 (en) 2006-06-13 2012-01-03 Nissan Motor Co., Ltd. Obstacle avoidance path computing apparatus, obstacle avoidance path computing method, and obstacle avoidance control system equipped with obstacle avoidance path computing system
JP2008018923A (en) * 2006-06-16 2008-01-31 Nissan Motor Co Ltd Brake control device for vehicle, brake control method for vehicle
US7729840B2 (en) 2006-06-16 2010-06-01 Nissan Motor Co., Ltd. Vehicle brake control system and method
US8200419B2 (en) 2006-08-15 2012-06-12 Toyota Jidosha Kabushiki Kaisha Braking control system and braking control method
JP2010030444A (en) * 2008-07-29 2010-02-12 Nissan Motor Co Ltd Side obstacle avoiding device and side obstacle avoiding method
JP2010036857A (en) * 2008-08-08 2010-02-18 Nissan Motor Co Ltd Traveling assistant device for vehicle and traveling assistant method for vehicle
DE112010005601T5 (en) 2010-05-27 2013-03-28 Toyota Jidosha K.K. Bremskraftsteuerungsvorrrichtung for a vehicle
US9126573B2 (en) 2010-05-27 2015-09-08 Toyota Jidosha Kabushiki Kaisha Braking force control apparatus for a vehicle
DE112010005601B4 (en) * 2010-05-27 2016-03-24 Toyota Jidosha Kabushiki Kaisha Brake force control device for a vehicle
JP2012183867A (en) * 2011-03-03 2012-09-27 Fuji Heavy Ind Ltd Vehicle driving support apparatus
CN103364776A (en) * 2012-03-29 2013-10-23 富士通天株式会社 Radar device and method of processing signal
CN103364776B (en) * 2012-03-29 2015-06-17 富士通天株式会社 Radar device and method of processing signal
WO2014054937A1 (en) * 2012-10-05 2014-04-10 Chong Woi Joon An automatic vehicle braking system and a control method thereof
JP2016124311A (en) * 2014-12-26 2016-07-11 マツダ株式会社 Control system of vehicle
US10035507B2 (en) 2016-04-26 2018-07-31 International Business Machines Corporation Vehicle collision avoidance
US11084488B2 (en) 2016-04-26 2021-08-10 International Business Machines Corporation Vehicle collision avoidance

Also Published As

Publication number Publication date
US7260464B2 (en) 2007-08-21
EP1418104B1 (en) 2011-08-24
EP1418104A3 (en) 2004-12-15
EP1418104A2 (en) 2004-05-12
US20040088097A1 (en) 2004-05-06
KR100535193B1 (en) 2005-12-08
JP4267294B2 (en) 2009-05-27
CN1498803A (en) 2004-05-26
CN100545015C (en) 2009-09-30
KR20040040333A (en) 2004-05-12

Similar Documents

Publication Publication Date Title
JP4267294B2 (en) Brake control device for vehicle
US7392120B2 (en) Vehicle dynamics control apparatus
JP2000168526A (en) Motion control device of vehicle
JP2005028919A (en) Behavior control device of vehicle
JP3551132B2 (en) Vehicle braking force control type behavior control device
JP5333245B2 (en) Vehicle behavior control device
JP4222129B2 (en) Device for determining fear of rollover of vehicle
JP2004155303A (en) Braking force control device for vehicle
JP2002213958A (en) Vehicle controller
JP2001047989A (en) Motion controller for vehicle
JP2004210046A (en) Vehicular anti-skid controller
JP2008174234A (en) Deciding device of possibility of rollover of vehicle
JP2006298315A (en) Operation supporting system
JP4635578B2 (en) Vehicle behavior control device
JP4178948B2 (en) Vehicle behavior control device
JP4379039B2 (en) Vehicle motion control device
JP4023340B2 (en) Vehicle collision prevention device
JP2009113752A (en) Steering force control device
JP2007069739A (en) Attitude control device of vehicle
JP4411836B2 (en) Brake control device for vehicle
JP2004182148A (en) Brake lamp control device for vehicle
JP3304776B2 (en) Vehicle wheel grip determination device
JP2004306744A (en) Control device of collision affect reducing device for vehicle
JP4263508B2 (en) Vehicle behavior control device
JP4127105B2 (en) Vehicle seat belt tension control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071217

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees